-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

An Architecture for High Performance Computing and Data
Systems using Byte-Addressable Persistent Memory

Citation for published version:

Jackson, W, Weiland, M, Parsons, M & Homoelle, B 2019, An Architecture for High Performance Computing
and Data Systems using Byte-Addressable Persistent Memory. in M Weiland , G Juckeland, S Alam & H
Jagode (eds), High Performance Computing: ISC High Performance 2019. Lecture Notes in Computer
Science, Springer, pp. 258-274, ISC High Performance 2019, Frankfurt, Germany, 16/06/19.
https://doi.org/10.1007/978-3-030-34356-9_21

Digital Object Identifier (DOI):
10.1007/978-3-030-34356-9_21

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
High Performance Computing

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 11. May. 2020

https://core.ac.uk/display/322483394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-34356-9_21
https://doi.org/10.1007/978-3-030-34356-9_21
https://www.research.ed.ac.uk/portal/en/publications/an-architecture-for-high-performance-computing-and-data-systems-using-byteaddressable-persistent-memory(66f44d1e-5f9c-417d-8ba8-b719c87896e0).html

An Architecture for High Performance
Computing and Data Systems using
Byte-Addressable Persistent Memory

Adrian Jackson®, Michele Weiland!, Mark Parsons!, and Bernhard Homélle?

! EPCC, The University of Edinburgh, Edinburgh, United Kingdom
2 SVA System Vertrieb Alexander GmbH, Paderborn, Germany

Abstract. Non-volatile and byte-addressable memory technology with
performance close to main memory has the potential to revolutionise
computing systems in the near future. Such memory technology provides
the potential for extremely large memory regions (i.e. > 3TB per server),
very high performance I/O, and new ways of storing and sharing data for
applications and workflows. This paper proposes hardware and system
software architectures that have been designed to exploit such memory
for High Performance Computing and High Performance Data Analytics
systems, along with descriptions of how applications could benefit from
such hardware, and initial performance results on a system with Intel
Optane DC Persistent Memory.

Keywords: Non-volatile memory - persistent memory - system archi-
tecture - systemware - NVRAM - B-APM

1 Introduction

There are a number of new memory technologies that are impacting, or likely
to impact, computing architectures in the near future. One example of such
a technology is so called high bandwidth memory, already featured on Intel’s
latest many-core processor, the Xeon Phi Knights Landing [1], and NVIDIA’s
latest GPU, Volta [2]. These contain MCDRAM [1] and HBM2 [3] respectively,
memory technologies built with traditional DRAM hardware but connected with
a very wide memory bus (or series of buses) directly to the processor to provide
very high memory bandwidth when compared to traditional main memory (DDR
channels).

This has been enabled, in part, by the hardware trend for incorporating
memory controllers and memory controller hubs directly onto processors, en-
abling memory to be attached to the processor itself rather than through the
motherboard and associated chipset. However, the underlying memory hardware
is the same, or at least very similar, to the traditional volatile DRAM memory
that is still used as main memory for computer architectures, and that remains
attached to the motherboard rather than the processor.

Non-volatile memory, i.e. memory that retains data even after power is turned
off, has been exploited by consumer electronics and computer systems for many

2 A. Jackson, M. Weiland, et al.

years. The flash memory cards used in cameras and mobile phones are an ex-
ample of such hardware, used for data storage. More recently, flash memory has
been used for high performance data input/output (I/O) in the form of Solid
State Disk (SSD) drives, providing higher bandwidth and lower latency than
traditional Hard Disk Drives (HDD).

Whilst flash memory can provide fast 1/O performance for computer systems,
there are some drawbacks. It has limited endurance when compare to HDD tech-
nology, restricted by the number of modifications a memory cell can undertake
and thus the effective lifetime of the flash storage [29]. It is also generally more
expensive than other storage technologies. However, SSD storage, and enter-
prise level SSD drives, are heavily used for I/O intensive functionality in large
scale computer systems because of their random read and write performance
capabilities.

Byte-addressable random access persistent memory (B-APM), also known
as storage class memory (SCM), NVRAM or NVDIMMs, exploits a new gen-
eration of non-volatile memory hardware that is directly accessible via CPU
load/store operations, has much higher durability than standard flash memory,
and much higher read and write performance. B-APM, with its very high perfor-
mance I/O characteristics, and vastly increased capacity (compared to volatile
memory), offers a potential hardware solution to enable the construction of a
compute platform that can support High-performance computing (HPC) and
high-performance data analytics (HPDA) use cases, with high performance pro-
cessors, very large amounts of B-APM in compute nodes, and a high performance
network, providing a scalable compute, memory, and I/O system, and moving
to address some of the performance imbalance systems currently have between
memory and I/O performance.

In this paper, we outline the systemware and hardware required to provide
such a system, and discuss prelimarily performance results from just such a
system. We start by describing persistent memory, and the functionality it pro-
vides, in more detail in section 2. In section 3 we discuss how B-APM could be
exploited for scientific computation or data analytics. Following this we outline
our proposed hardware and systemware architectures in sections 4 and 5. We
finish by presenting performance results on a prototype system containing Intel
Optane DC Persistent memory, in secont 6, discussing related work in section 7,
and summarise the paper in the final section.

2 Persistent Memory

B-APM takes new non-volatile memory technology and packages it in the same
form factor (i.e. using the same connector and dimensions) as main memory
(SDRAM DIMM form factor). This allows B-APM to be installed and used
alongside DRAM based main memory, accessed through the same memory con-
troller. As B-APM is installed in a processor’s memory channels, applications
running on the system can access B-APM directly in the same manner as main
memory, including true random data access at byte or cache line granularity.

B-APM Architecture for HPC 3

Such an access mechanism is very different to the traditional block based ap-
proaches used for current HDD or SSD devices, which generally requires I/O to
be done using blocks of data (i.e. 4KB of data written or read in one operation),
and relies on expensive kernel interrupts and context switches.

The first B-APM technology to make it to market is Intel and Micron’s Op-
tane DC Persistent T memory [5]. The performance of this B-APM is lower than
main memory (with a latency ~5-10x that of DDR4 memory when connected
to the same memory channels), but much faster than SSDs or HDDs. It is also
much larger capacity than DRAM, around 2-5x denser (i.e. 2-5x more capacity
in the same form factor, with 128, 256, and 512GB currently available DIMMSs).

2.1 Data Access

This new class of memory offers very large memory capacity for servers, as well as
long term persistent storage within the memory space of the servers, and the abil-
ity to undertake I/O in a new way. B-APM can enable synchronous, byte level,
direct access (DAX) to persistent data , moving away from the asynchronous
block-based file I/O applications currently rely on. In current asynchronous I1/0
user applications pass data to the operating system (OS) which then use driver
software to issue an I/O command, putting the I/O request into a queue on a
hardware controller. The hardware controller will process that command when
ready, notifying the OS that the I/O operation has finished through an interrupt
to the device driver.

B-APM, on the other hand, can be accessed simply by using a load or store
instruction, as with any other memory operation from an application or program.
However, because B-APM can provide persistence functionality (allowing data
to be accessible after power loss), some further considerations are required if
persistent is to be guaranteed. Applications must also ensure stored data has
been flush from the volatile CPU caches and has arrived on the non-volatile
medium (using new cache flush commands and fence instructions to ensure stores
are ordered ordered before subsequent instructions) before they can confirm data
has been persisted (although this flush may only be required to the memory
controller, rather than the non-volatile medium, if using enhanced power supply
functionality such as asynchronous DRAM self-refresh [6]).

With B-APM providing much lower latencies than external storage devices,
the traditional I/O block access model, using interrupts, becomes inefficient be-
cause of the overhead of context switches between user and kernel mode (which
can take thousands of CPU cycles [30]). Furthermore, in the future it may
become possible to implement remote persistent access to data stored in the
memory using RDMA technology over a suitable interconnect. Using high per-
formance networks has the potential to enable access to data stored in B-APM in
remote nodes faster than accessing local high performance SSDs via traditional
I/0O interfaces and stacks inside a node.

Therefore, it is possible to use B-APM to greatly improve I/O performance
within a server; increase the memory capacity of a server; or provide a remote
data store with high performance access for a group of servers to share. Such

4 A. Jackson, M. Weiland, et al.

storage hardware can also be scaled up by adding more B-APM memory in a
server, or adding more nodes to the remote data store, allowing the I/O perfor-
mance of a system to scale as required. The use of B-APM in compute nodes also
removes competition for I/O resources between jobs in a system, isolating ap-
plication I/O traffic and removing the performance fluctuations associated with
I/O users often experience on shared HPC systems [25]. However, if B-APM
is provisioned in the servers, there must be software support for managing data
within the B-APM. This includes moving data as required for the jobs running
on the system, and providing the functionality to let applications run on any
server and still utilise the B-APM for fast I/O and storage (i.e. applications
should be able to access B-APM in remote nodes if the system is configured
with B-APM only in a subset of all nodes).

As B-APM is persistent, it also has the potential to be used for resiliency, pro-
viding backup for data from active applications, or providing long term storage
for databases or data stores required by a range of applications. With support
from the systemware, servers can be enabled to handle power loss without ex-
periencing data loss, efficiently and transparently recovering from power failure
and resuming applications from their latest running state, and maintaining data
with little overhead in terms of performance.

2.2 B-APM modes of operation

Ongoing developments in memory hierarchies, such as the high bandwidth mem-
ory in Xeon Phi manycore processors or NVIDIA GPUS, have provided new
memory models for programmers and system designers/implementers. A com-
mon model that has been proposed includes the ability to configure main memory
and B-APM in two different modes: Single-level and Dual-level memory [8].

Single-level memory, or SLM, has main memory (DRAM) and B-APM as two
separate memory spaces, both accessible by applications, as outlined in Figure 1.
This is very similar to the Flat Mode [7] configuration of the high bandwidth, on-
package, MCDRAM in Intel Knights Landing processor. The DRAM is allocated
and managed via standard memory API’s such as malloc and represent the OS
visible main memory size. The B-APM is be managed by programming APIs and
presents the non-volatile part of the system memory. In order to take advantage
of B-APM in SLM mode, systemware or applications have to be adapted to use
these two distinct address spaces.

Dual-level memory, or DLM, configures DRAM as a cache in front of the B-
APM, as shown in Figure 2. Only the memory space of the B-APM is available
to applications, data being used is stored in DRAM, and moved to B-APM when
no longer immediately required by the memory controller (as in standard CPU
caches). This is very similar to the Cache Mode [7] configuration of MCDRAM
on KNL processors.

This mode of operation does not require applications to be altered to exploit
the capacity of B-APM, and aims to give memory access performance at main
memory speeds whilst providing access to the large memory space of B-APM.
However, exactly how well the main memory cache performs will depend on

B-APM Architecture for HPC 5

B-APM

Fig. 2. Dual-level memory (DLM) con-
figuration using main memory and B-

. . APM
Fig.1. Single-level memory (SLM)
configuration using main memory and
B-APM
.......) () (Lo o o ———

] [Modified Applications |

http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
Fig. 4. Software stack exploiting B-
Fig. 3. PMDK software architecture APM in compute nodes

the specific memory requirements and access pattern of a given application.
Furthermore, persistence of the B-APM contents cannot be longer guaranteed,
due to the volatile DRAM cache in front of the B-APM, so the non-volatile
characteristics of B-APM are not exploited.

2.3 Non-volatile memory software ecosystem

The Storage Networking Industry Association (SNIA) have produced a soft-
ware architecture for B-APM with persistent load/store access, formalised in
the Linux Persistent Memory Development Kit (PMDK) [9] library. This ap-
proach re-uses the naming scheme of files as traditional persistent entities and
maps the B-APM regions into the address space of a process (similar to memory
mapped files in Linux). Once the mapping has been done, the file descriptor
is no longer needed and can be closed. Figure 3 outlines the PMDK software
architecture. Figure 4 details the software architecture we are considering for
systems exploiting B-APM for HPC and HPDA work, which will be discussed
in more detail in section 5.

6 A. Jackson, M. Weiland, et al.

3 Opportunities for exploiting B-APM for computational
simulations and data analytics

Reading data from and writing it to persistent storage is usually not the most
time consuming part of computational simulation applications. Analysis of com-
mon applications from a range of different scientific areas shows that around
5-20% of runtime for applications is involved in I/O operations [10] [11]. Tt
is evident that B-APM can be used to improve I/O performance for applica-
tions by replacing slower SSDs or HDDs in external filesystems. However, such a
use of B-APM would be only an incremental improvement in I/O performance,
and would neglect some of the significant features of B-APM that can provide
performance benefits for applications.

Firstly, deploying B-APM as an external filesystem would require provision-
ing a filesystem on top of the B-APM hardware. Standard storage devices re-
quire a filesystem to enable data to be easily written to or read from the hard-
ware. However, B-APM does not require such functionality, and data can be
manipulated directly on B-APM hardware simply through load/store instruc-
tions. Adding the filesystem and associated interface guarantees (i.e. POSIX
interface [12]) adds performance overheads that will reduce I/O performance on
B-APM.

Secondly, an external (to the compute nodes) B-APM based filesystem would
require all I/O operations to be performed over a network connection (see Figure
5). This would limit the maximum performance of I/O to that of the network
between compute nodes and the nodes the B-APM is hosted in, and expose
application I/O performance to the variations associated with a shared external
resource, however fast it is.

B-APM
Compute
Node

]
| oo [l saem |
N

Compute || Compute
de

Filesystem

Fig. 6. Internal storage using B-
Fig.5. Current external storage APM in compute nodes for HPC

for HPC and HPDA systems and HPDA systems

Our vision for exploiting B-APM for HPC and HPDA systems is to incor-
porate the B-APM into the compute nodes, as outlined in Figure 6. This archi-
tecture allows applications to exploit the full performance of B-APM within the
compute nodes they are using, by enabling access to B-APM through load /store
operations at byte-level granularity, as opposed to block based, asynchronous
I/0. Incorporating B-APM into compute nodes also has the benefit that I/0O
capacity and bandwidth can scale with the number of compute nodes in the
system. Adding more compute nodes will increase the amount of B-APM in the
system and add more aggregate bandwidth to I/O/B-APM operations.

B-APM Architecture for HPC 7

For example, current memory bandwidth of a HPC system scales with the
number of nodes used. If we assume an achievable memory bandwidth per node
of 100GB/s, then it follows that a system with 10 nodes has the potential to
provide 1TB/s of memory bandwidth for a distributed application, and a system
with 10000 nodes can provide 1PB/s of memory bandwidth. If an application
is memory bandwidth bound and can parallelise across nodes then scaling up
nodes in this fashion clearly has the potential to improve performance. For B-
APM in nodes, and taking Intel®Optane DC persistent memory (DCPM) as an
example, if we assume 20GB/s of memory bandwidth per node (5x less than the
volatile memory bandwidth), then scaling up to 10 nodes provides 200GB/s of
(I/O) memory bandwidth and 10000 nodes provides 200TB/s of(I/O) memory
bandwidth. For comparison, the Titan system at ORNL has a Lustre file system
with 1.4TB/s of bandwidth [26] and they are aiming for 50TB/s of burst buffer
(28] I/O by 2024 [27].

Furthermore, there is the potential to optimise not only the performance of
a single application, but the performance of a whole scientific workflow, from
data preparation, simulations, data analysis and visualisation. Optimising full
workflows by sharing data between different stages or steps in the workflow has
the scope to completely remove, or greatly reduce, data movement/storage costs
for large parts of the workflow altogether. Leaving data in-situ on B-APM for
other parts of the workflow can significantly improve the performance of analysis
and visualisation steps at the same time as reducing I/O costs for the application
when writing the data out.

Finally, the total runtime of an application can be seen as the sum of its com-
pute time, plus the time spent in I/O. Greatly reduced I/O costs therefore also
has the beneficial side effect of allowing applications to perform more I/O within
the same total cost of the overall application run. This will enable applications
to maintain I/O costs in line with current behaviour whilst being able to process
significantly more data. Furthermore, for those applications for which I/O does
take up a large portion of the run time, including data analytics applications,
B-APM has the potential to significantly reduce runtime.

3.1 Potential caveats

However, utilising internal storage is not without drawbacks. Firstly, the benefit
of external storage is that there is a single namespace and location for compute
nodes to use for data storage and retrieval. This means that applications can
run on any compute nodes and access the same data as it is stored external to
the compute nodes. With internal storage, this guarantee is not provided, data
written to B-APM is local to specific compute nodes. It is therefore necessary for
applications to be able to manage and move data between compute nodes, as well
as to external data storage, or for some systemware components to undertake
this task, to reduce scheduling restrictions on applications sharing a system with
a finite set of compute nodes.

Secondly, B-APM may be expensive to provision in all compute nodes. It may
not be practical to add the same amount of B-APM to all compute nodes, mean-

8 A. Jackson, M. Weiland, et al.

nEer

#cle
Controller Controller
Netuork
Memory e ——
o

cgricgen]

Fig. 7. Compute node hardware architecture

ing systems may be constructed with islands of nodes with B-APM, and islands
of nodes without B-APM. Therefore, application or systemware functionality
to enable access to remote B-APM and to exploit/manage asymmetric B-APM
configurations will be required. Both these issues highlight the requirement for
an integrated hardware and software (systemware) architecture to enable effi-
cient and easy use of this new memory technology in large scale computational
platforms.

4 Hardware architecture

As Intel®Optane DCPM, and other B-APM when it becomes available, is de-
signed to fit into standard memory form factors and be utilised using the same
memory controllers that main memory exploit, the hardware aspect of incorpo-
rating B-APM into a compute server or system is not onerous. Standard HPC
and HPDA systems comprise a number of compute nodes, connected together
with a high performance network, along with login nodes and an external filesys-
tem. Inside a compute node there are generally 2 or more multicore processors,
connected to a shared motherboard, with associated volatile main memory pro-
vided for each processor. One or more network connections are also required in
each node, generally connected to the PCle bus on the motherboard.

To construct a compute cluster that incorporates B-APM all that is required
is a processor and embedded memory controller that support such memory. Cus-
tomised memory controllers are required to intelligently deal with the variation
in performance between B-APM and traditional main memory (i.e. DDR). For
instance, as B-APM has a higher access latency than DDR memory it would im-
pact performance if B-APM accesses were blocking, i.e. if the memory controller
could not progress DDR accesses whilst an B-APM access was outstanding.
However, other than modifying the memory controller to support such variable
access latencies, it should be possible to support B-APM in a standard hardware
platform, provided that sufficient capacity for memory is provided, as outlined
in 7.

Given both DRAM and B-APM are connected through the same memory
controller, and memory controllers have a number of memory channels, it is also
important to consider the balance of DRAM and B-APM attached to a processor.
If we assume a processor has 6 memory channels, to get full DRAM bandwidth we
require at least one DRAM DIMM per memory channel. Likewise, if we want full

B-APM Architecture for HPC 9

B-APM bandwidth we need a B-APM DIMM per memory channel. Assuming
that a memory channel can support are two DIMM slots, this leads us to a
configuration with 6 DRAM DIMMs and 6 B-APM DIMMs per processor, and
double that with two processors per node. This configuration is also desirable
to enable the DLM configuration, as DLM requires DRAM available to act as
a cache for B-APM, meaning at least a DRAM DIMM is required per memory
controller.

Pairing DRAM and B-APM DIMMs on memory channels is not required for
all systems, and it should be possible to have some memory channels with no
B-APM installed, or some memory channels with no DRAM DIMMs installed.
However, if DLM mode is required on a system, it is sensible to expect that at
least one DRAM DIMM must be installed per memory controller in addition to
B-APM. Future system design may consider providing more than two DIMM
slots per memory channel to facilitate systems with different memory configura-
tions (i.e. more B-APM than DRAM DIMMSs, or memory controllers enabling full
B-APM population of memory channels, or only on-chip high bandwith memory
with B-APM occupying all the DIMM slots).

Integrating new memory technology in existing memory channels does mean
that providing sufficient locations for both main memory and B-APM to be
added is important. Depending on the size of B-APM and main memory tech-
nology available, sufficient memory slots must be provided per processor to allow
a reasonable amount of both memory types to be added to a node. Therefore,
we are designing our system around a standard compute node architecture with
sufficient memory slot provision to support large amounts of main memory and
B-APM as shown in Figure 7.

Another aspect, which we are not focusing on in the hardware architecture,
is data security. As B-APM enables data to be retained inside compute nodes,
ensuring the security of that data, and ensuring that it cannot be accessed by
users or applications that are not authorised to access the data is important. The
reason that we are not focusing on this in the hardware architecture is because
this requirement can be addressed in software, but it may also be sensible to
integrate encryption directly in the memory hardware, memory controller, or
processor managing the B-APM.

5 Systemware architecture

Systemware implements the software functionality necessary to enable users to
easily and efficiently utilise the system. We have designed a systemware architec-
ture that provides a number of different types of functionality, related to different
methods for exploiting B-APM for large scale computational simulation or data
analytics.

From the hardware features B-APM provides, our analysis of current HPC
and HPDA applications and functionality they utilise, and our investigation
of future functionality that may benefit such applications, we have identified

10 A. Jackson, M. Weiland, et al.

a number of different kinds of functionality that the systemware architecture
should support:

1. Enable users to be able to request systemware components to load/store data
in B-APM prior to a job starting, or after a job has completed. This can be
thought of as similar to current burst buffer technology. This will allow users
to be able to exploit B-APM without changing their applications.

2. Enable users to directly exploit B-APM by modifying their applications to
implement direct memory access and management. This offers users the
ability to access the best performance B-APM can provide, but requires
application developers to undertake the task of programming for B-APM
themselves, and ensure they are using it in an efficient manner.

3. Provide a filesystem built on the B-APM in compute nodes. This allows
users to exploit B-APM for I/O operations without having to fundamentally
change how I/O is implemented in their applications. However, it does not
enable the benefit of moving away from file based I/O that B-APM can
provide.

4. Provide an object, or key value, store that exploits the B-APM to enable
users to explore different mechanisms for storing and accessing data from
their applications.

5. Enable the sharing of data between applications through B-APM. For ex-
ample, this may be sharing data between different components of the same
computational workflow, or the sharing of a common dataset between a
group of users.

6. Ensure data access is restricted to those authorised to access that data and
enable deletion or encryption of data to make sure those access restrictions
are maintained

7. Provide different memory modes if they are supported by the B-APM hard-
ware.

The systemware architecture we have defined appear to have a large number
of components and significant complexity, however the number of systemware
components that are specific to a system that contains B-APM is relatively
small. The new or modified components we have identified are required to sup-
port B-APM in a large scale, multi-user, multi-application, compute platforms
are as follows; Job Scheduler, Data Scheduler, Object Store, and Filesystems.
There are a number of object stores under development, of which some are
focussed on efficiently exploiting B-APM hardware, such as DAOS [21] and
dataClay [22]. As such we will not focus on object stores in this paper. Like-
wise, there are a plethora of filesystems that could be deployed on the hardware,
both as local filesystems on each node (i.e. ext4) or as distributed filesystems
spanning compute nodes (i.e. GekkoF'S [33]). We will utilise some filesystems to
test performance but not focus on the specifics of filesystems in this paper.

5.1 Job scheduler

As the innovation in our proposed system is the inclusion of B-APM within
nodes, one of the key components that must support the new hardware resource

B-APM Architecture for HPC 11

is the job scheduler. Job schedulers, or batch systems, are used to manage,
schedule, and run user jobs on the shared resource that are the compute nodes.
Standard job schedulers are configured with the number of nodes in a system,
the number of cores per node, and possibly the amount of memory or whether
there are accelerators (like GPUs) in compute nodes in a system. They then use
this information, along with a scheduling algorithm and scheduling policies, to
allocate user job request to a set of compute nodes. Users submit job requests
specifying the compute resources required (i.e. number of nodes or number of
compute cores a job will require) along with a maximum runtime for the job.
This information is used by the job scheduler to accurately, efficiently, and fairly
assign applications to resources.

Adding B-APM to compute nodes provides another layer of hardware re-
source that needs to managed by the job scheduler. As data can persist in B-
APM, and one of our target use cases is the sharing of data between applications
using B-APM, the job scheduler needs to be extended to both be aware of this
new hardware resource, and to allow data to be retained in B-APM after an
individual job has finished. This functionality is achieved through adding work-
flow awareness to the job scheduler, providing functionality to allow data to be
retained and shared through jobs participating in the workflow, although not in-
definitely [24]. The job scheduler also needs to be able to clean up the B-APM
after a job has finished, ensuring no data is left behind or B-APM resources
consumed, unless specifically as part of a workflow.

Job schedulers already do support assigning resources to jobs, in the form
of burst buffer allocations. They also can support workflows, with users able
to specify dependencies between jobs submitted or running on a system. How-
ever, currently no schedulers support workflow locality, the association of specific
nodes with workflow jobs, as is required when sharing data residing in compute
nodes. The allocation of burst buffer resources through scheduler functionality
also does not provide support for the local nature of data in B-APM, relying on
the external nature of burst buffer placements in the storage hierarchy.

Furthermore, as the memory system can have different modes of operation,
a supporting job scheduler will need to be able to query the current configu-
ration of the memory hardware, and be able to change configuration modes if
required by the next job that will be using a particular set of compute nodes.
There are job schedulers that do have support for querying and modify hardware
configurations, such as Slurm functionality to support different KNL processor
configurations. However, the configuration of B-APM is significantly more com-
plex that KNL MCDRAM, and requires the use of multiple system tools or
interfaces to ensure valid memory configurations can be achieved. This requires
significant extra on-node scheduler functionality for a job scheduler.

Finally, efficiently allowing users to exploit this new hardware resource will
require data aware and energy aware scheduling algorithms. These will utilise
the job scheduler’s awareness of B-APM functionality and compute job data
requirements, and enable scheduling compute tasks to data rather than moving
data to compute tasks (as is currently done with external filesystems), or moving

12 A. Jackson, M. Weiland, et al.

data between compute nodes or external filesystems as required to maximise the
utilisation or efficiency of the overall system.

5.2 Data scheduler

The data scheduler is an entirely new component, designed to run on each
compute node and provide data movement and shepherding functionality. This
include functionality to allow users to move data to and from B-APM asyn-
chronously (i.e. pre-loading data before a job starts, or moving data from B-
APM after a job finishes), or between different nodes (i.e. in the case that a job
runs on a node without B-APM and requires B-APM functionality, or a job runs
and needs to access data left on B-APM in a different node by another job). To
provide such support without requiring users to modify their applications we
implement functionality in the data scheduler component. This component has
interfaces for applications to interact with, and is also for job scheduler compo-
nent on each compute node. Through these interfaces the data scheduler can be
instructed to move data as required by a given application or workflow.

6 Performance Evaluation

To evaluate the performance and usability of our architectures we benchmarked
on a prototype HPC system with B-APM installed in the compute nodes. We
used a range of different benchmarks, from synthetic workflows, through large
scale applications, and I/O benchmarks such as IOR [38].

Test system and setup: All experiments were conducted using a prototype
system composed of 34 compute nodes. Each node has two Intel® Xeon®) Plat-
inum 8260M CPU running at 2.40 GHz (i.e. 48 physical cores per node), 192 GiB
of DDR4 RAM (12x16GB DIMMSs) and 3 TBytes of DCPM memory (12x256GB
DCPM DIMMs). A single rail Intel® Omni Path network connects the compute
nodes through a 100Gbps switch, as well as a 56 Gbps InfiniBand™ network to
communicate with a 270TB external Lustre filesystem with 6 OSTs. The com-
pute nodes are running Linux CentOS 7.5 and we use Slurm for job scheduling.
To manage and configure the DCPM we use Intel’s ipmctl and Linux’s ndctl [37)
tools. Version 1.05 of the PMDK toolkit is installed, along with the Intel 19
compiler suite, and Intel’s MPI and MKL libraries.

Synthetic workflow: We created a synthetic workflow benchmark that con-
tains two components, a producer and a consumer of data. These components
can be configured to produce and consume a number of files of different sizes, but
then do no work other than reading or writing and verifying data. We ran this
benchmark either targeting the Lustre filesystem or the B-APM in the compute
node, and also using the job scheduler integration and data scheduler component
to maintain data in B-APM between workflow component execution. Table 1
outlines the performance achieved when producing and consuming 200GB (10 x
20GB files) of data for each configuration. Each benchmark workflow ran 5 times
and we report the mean time to complete the benchmark. Performance varied by

B-APM Architecture for HPC 13

Table 1. Synthetic workflow benchmark Table 2. OpenFOAM workflow benchmark
using Lustre or B-APM in a using Lustre or B-APM with data staging
compute node

Component Target Runtime (seconds) Workflow phase Lustre B-APM

Producer Lustre 197 decomposition 1352 1323
Consumer Lustre 112 data-staging - 51
Producer B-APM 133 solver 747 95
Consumer B-APM 60

<15% across runs when using Lustre and <2% when using B-APM. When using
B-APM we ran a job that reads and writes 200GB of data between workflow
components on the same node to ensure caching does not affect performance.
Benchmarks were compiled using the Intel 19 compiler with the -03 flag.

Benchmarking using Lustre was configured with the producer and consumer
processes on two separate compute nodes to ensure that I/O caching locally did
not affect measured runtimes. For the benchmark using B-APM we ran using
the same node for producer and consumer, communicating data through the
B-APM in the node. We can see from the Table 1 using B-APM storage gives
~45% faster overall runtime (172 vs 309 seconds) for the workflow compared to
using Lustre.

Application workflow: OpenFOAM [35] is a C++ library that provides com-
putational fluid dynamics functionality that can easily be extended and modify
by users. It is parallelised with MPI and is heavily used in academia and indus-
try for large scale computational simulations. It often requires multiple stages
to complete a simulation, from preparing meshes and decomposing them for
the required number of parallel processes, to running the solver and processing
results. It also, often, undertakes large amounts of I/0O, reading in input data
and producing data for analysis. It is common that the different stages require
differing amounts of compute resources, with some stages only able to utilise
one node, and others (such as the solver) requiring a large number of nodes to
complete in a reasonable amount of time. OpenFOAM generally creates a di-
rectory per process that will be used for the solver calculations, necessitating
significant amounts of I/O operations for a large simulation. It is also often use-
ful to save data about the state of the simulation every timestep or every few
timesteps. Given these features, OpenFOAM is a good target for both workflow
functionality and improved I/O performance through node-local I/O hardware

To evaluate the performance of our architectures using OpenFOAM we ran
a low-Reynolds number laminar-turbulent transition modeling simulation of the
flow over the surface of an aircraft [34], using a mesh with ~43 million mesh
points. We decomposed the mesh over 20 nodes enabling 960 MPI processes to
be used for the solver step (picoFOAM). The decomposition step is serial, takes
1105 seconds, and requires 30GB of memory.

We ran the solver for 20 timesteps, and compared running the full workflow
(decomposing the mesh and then running the solver) entirely using the Lus-

14 A. Jackson, M. Weiland, et al.

Table 3. 10 node IOR performance using B-APM and GekkoF'S

Benchmark Bandwidth (GB/s)

FPP Write 24
SF Write 3
FPP Read 27
SF Read 7

tre filesystem or using node-local B-APM with data staging between the mesh
decomposition step and the solver. The solver produces 160GB of output data
when run in this configuration, with a directory per process. Running the solver
using Lustre required 747 seconds, whereas running the solver using node-local
B-APM storage required 95 seconds, more than seven times faster (see Table 2).
Using node-local storage needs a redistribution of data from the storage on the
single compute node used for decomposing the mesh to the 20 nodes needed for
the solver. This data copy took 51 seconds, so even if not overlapped with other
running tasks this approach would provide improved performance compared to
directly using Lustre, more so when run for a full simulation, which would re-
quire many thousands of timesteps meaning the initial cost of copying the data
would be negligible.

IOR: Finally, we ran the IOR benchmark on the prototype system using the
GekkoF'S distributed filesystem. We ran the filesystem on 10 compute nodes,
and ran 10 IOR clients per compute node, give a total of 100 IOR processes. We
tested both TOR with a single file per process (FPP), and IOR with a shared
file (SF) for all processes. For the FFP benchmark each process is writing or
reading 8.2GB per file. For the SF benchmark each process is writing 222000
blocks containing 47008 bytes each.

Table 3 presents the performance achieved using 10 nodes using the GekkoF'S
distributed filesystem exploiting B-APM. We can see that using a single file
per process, read and write bandwidth as around 24-27GB/s. The bandwidth
achieved using a shared file for all processes is low, at 3GB/s for write and
7GB/s for read (the B-APM is slower for writing than it is for reading). However,
these tests are run with a prototype version GekkoFS using only TCP/IP for
communication between the nodes, and only the B-APM on a single socket per
node meaning communication performance and NUMA effects have reduced the
achievable performance.

7 Related work

There are existing technological solutions that are offering similar functionality
to B-APM and that can also be exploited for high performance I/O. One example
is NVMe devices: SSDs that are attached to the PCle bus and support the NVM
Express interface. Indeed, Intel already has a line of an NVMe device on the
market that use B-APM technology, called Intel Optane. Other vendors have a

B-APM Architecture for HPC 15

large range of NVMe devices on the market, most of them based on different
variations of Flash technology.

NVMe devices have the potential to provide byte-level storage access, using
the PMDK libraries. A file can be opened and presented as a memory space for
an application, and then can be used directly as memory by that application,
removing the overhead of file access (i.e. data access through file reads and
writes) when performing I/O and enabling the development of applications that
exploit B-APM functionality. However, given that NVMe devices

are connected via the PCle bus, and have a disk controller on the device
through which access is managed, NVMe devices do not provide the same level
of performance that B-APM offers. Indeed, as these devices still use block-based
data access, fine grained memory operation still require whole blocks of data,
rather than individual bytes, to be stored to the device when persistence is
required rather than individual bytes, incurring all the overheads associated
with such operations.

There are a wide range of parallel and high performance filesystems designed
to enable high performance I/O from large scale compute clusters [13] [14] [15].
However, these provide POSIX compliant block based I/O interfaces, which do
not offer byte level data access, requiring conversion of data from program data
structures to a flat file format. Furthermore, whilst it is advantageous that such
filesystems are external resources, and therefore can be accessed from any com-
pute node in a cluster, this means that filesystem performance does not neces-
sarily scale with compute nodes. Such filesystems are specified and provisioned
separately from the compute resource in a HPC or HPDA system. Work has
been done to optimise I/O performance of such high performance filesystems
[16] [17] [18] [19], but they do not address B-APM or new mechanisms for stor-
ing or accessing data without the overhead of a POSIX-compliant (or weakly-
compliant) filesystem.

The same is true of burst-buffer filesystems, now commonly used to provide
improved 1/O performance for large scale parallel filesystems. A range of re-
search and implementation [28] [31] [32] work has been undertaken to exploit
high performance disk systems, based on SSDs, that can provide optimised I/0
operations but with reduced capacity compared to typical full scale parallel
filesystems. However, as has already been discussed in section 3, such filesys-
tems are still external to compute nodes, and limited in capacity, bandwidth,
and access latency compared to B-APM in compute nodes.

Another technology that is being widely investigated for improving perfor-
mance and changing I/O for applications is some form of object, or key-value,
store [20] [21] [22]. These provide alternatives to file-based data storage, en-
abling data to be stored in similar formats or structures as those used in the
application itself. Object stores can start to approach byte level access granular-
ity, however, they require applications to be significantly re-engineered to exploit
such functionality.

We are proposing hardware and systemware architectures in this work that
will integrate B-APM into large scale compute clusters, providing significant I/0O

16 A. Jackson, M. Weiland, et al.

performance benefits and introducing new I/O and data storage/manipulation
features to applications. Our key goal is to create systems that can both exploit
the performance of the hardware and support applications whilst they port to
these new I/O or data storage paradigms.

Indeed, we recognise that there is a very large body of existing applications
and data analysis workflows that cannot immediately be ported to new storage
hardware (for time and resource constraint reasons). Therefore, our aims in this
work are to provide a system that enables applications to obtain best perfor-
mance if porting work is undertaken to exploit B-APM hardware features, but
still allow applications to exploit B-APM and significantly improve performance
without major software changes.

8 Summary

This paper outlines a hardware and systemware architecture designed to enable
the exploitation of B-APM hardware directly by applications, or indirectly by
applications using systemware functionality that can exploit B-APM for appli-
cations. This dual nature of the system provides support for existing application
to exploit this emerging memory new hardware whilst enabling developers to
modify applications to best exploit the hardware over time.

The system outlined provides a range of different functionality. Not all func-
tionality will be utilised by all applications, but providing a wide range of func-
tionality, from filesystems to object stores to data schedulers will enable the
widest possible use of such systems. We are aiming for hardware and systemware
that enables HPC and HPDA applications to co-exist on the same platform.

Whilst the hardware is novel and interesting in its own right, we predict
that the biggest benefit in such technology will be realised through changes
in application structure and data storage approaches facilitated by the byte-
addressable persistent memory that will become routinely available in computing
systems.

In time it could possible to completely remove the external filesystem from
HPC and HPDA systems, removing hardware complexity and the energy/cost
associated with such functionality. There is also the potential for volatile memory
to disappear from the memory stack everywhere except on the processor itself,
removing further energy costs from compute nodes. However, further work is
required to evaluate the impact of the costs of the active systemware environment
we have outlined in this paper, and the memory usage patterns of applications.

Moving data asynchronously to support applications can potentially bring
big performance benefits but the impact such functionality has on applications
running on those compute node needs to be investigated. This is especially impor-
tant as with distributed filesystems or object stores hosted on node distributed
B-APM such in-node asynchronous data movements will be ubiquitous, even
with intelligent scheduling algorithms.

B-APM Architecture for HPC 17

Acknowledgements

The NEXTGenlO project® and the work presented in this paper were funded
by the European Union’s Horizon 2020 Research and Innovation programme
under Grant Agreement no. 671951. All the NEXTGenlO Consortium mem-
bers (EPCC, Allinea, Arm, ECMWF, Barcelona Supercomputing Centre, Fu-
jitsu Technology Solutions, Intel Deutschland, Arctur and Technische Univer-
sitdt Dresden) contributed to the design of the architectures.

References

1. Avinash Sodani. Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor
In Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE, 124.

2. NVIDIA Volta. https://www.nvidia.com/en-us/data-center/
volta-gpu-architecture

3. Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho Jin,
Keith Kim, HBM (High Bandwidth Memory) DRAM Technology and Architecture,
Memory Workshop (IMW) 2017 IEEE International, pp. 1-4, 2017

4. Andy Turner, Simon MecIntosh-Smith, A survey of application memory usage
on a national supercomputer: an analysis of memory requirements on ARCHER
http://www.archer.ac.uk/documentation/white-papers/memory-use/ARCHER_
mem_use.pdf

5. T. Hady, Frank & Foong, A & Veal, Bryan & Williams, Dan. (2017). Platform
Storage Performance With 8D XPoint Technology. Proceedings of the IEEE. PP.
1-12. 10.1109/JPROC.2017.2731776.

6. NVDIMM Messaging and FAQ, SNIA website, accessed November 2017
https://www.snia.org/sites/default/files/NVDIMM\Y,20Messaging\’%20and\
%20FAQ\%20Jan\%2020143.pdf

7. Report on MCDRAM technology from Colfax Research: https://colfaxresearch.
com/knl-mcdram/

8. Intel Patent on multi-level memory configuration for nonvolatile memory technology;
https://www.google.com/patents/US20150178204

9. pmem.io: http://pmem.io/

10. Layton J. (2010) IO Pattern Characterization of HPC Applications. In: Mewhort
D.J.K., Cann N.M., Slater G.W., Naughton T.J. (eds) High Performance Computing
Systems and Applications. Lecture Notes in Computer Science, vol 5976. Springer,
Berlin, Heidelberg

11. Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns,
Kevin Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A Multi-
platform Study of I/O Behavior on Petascale Supercomputers. In Proceed-
ings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC °’15). ACM, New York, NY, USA, 33-44.
DOI=http://dx.doi.org/10.1145/2749246.2749269

12. IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004) - IEEE Standard for
Information Technology - Portable Operating System Interface (POSIX(R))

13. Schwan, Philip. Lustre: Building a file system for 1000-node clusters. In Proceed-
ings of the 2003 Linux Symposium, vol. 2003. 2003

3 www.nextgenio.eu

18 A. Jackson, M. Weiland, et al.

14. Frank Schmuck and Roger Haskin. 2002. GPFS: A Shared-Disk File System for
Large Computing Clusters. In Proceedings of the 1st USENIX Conference on File
and Storage Technologies (FAST ’02). USENIX Association, Berkeley, CA, USA,
Article 19.

15. Introduction to BeeGFS: http://www.beegfs.io/docs/whitepapers/
Introduction_to_BeeGFS_by_ThinkPar(Q.pdf

16. S. Jian, L. Zhan-huai and Z. Xiao, The performance optimization of Lustre file sys-
tem 2012 7th International Conference on Computer Science & Education (ICCSE),
Melbourne, VIC, 2012, pp. 214-217. doi: 10.1109/ICCSE.2012.6295060

17. Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, Chita Das, A Scale-Out En-
terprise Storage Architecture, IEEE International Conference on Computer Design
(ICCD), 2017, 10.1109/1CCD.2017.96

18. Kuan-Wu Lin, Surendra Byna, Jerry Chou, and Kesheng Wu. 2013. Optimiz-
ing fastquery performance on lustre file system. In Proceedings of the 25th In-
ternational Conference on Scientific and Statistical Database Management (SS-
DBM), Alex Szalay, Tamas Budavari, Magdalena Balazinska, Alexandra Meliou,
and Ahmet Sacan (Eds.). ACM, New York, NY, USA, , Article 29 , 12 pages.
DOI=http://dx.doi.org/10.1145/2484838.2484853

19. Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang,
Robert Latham, and Robert Ross. 2011. Understanding and improving compu-
tational science storage access through continuous characterization. In Proceed-
ings of the 2011 IEEE 27th Symposium on Mass Storage Systems and Tech-
nologies (MSST ’11). IEEE Computer Society, Washington, DC, USA, 1-14.
DOI=http://dx.doi.org/10.1109/MSST.2011.5937212

20. Jungwon Kim, Seyong Lee, Jeffrey S. Vetter: PapyrusKV: a high-performance par-
allel key-value store for distributed NVM architectures. SC 2017: 57:1-57:14

21. J. Lofstead, I. Jimenez, C. Maltzahn, Q. Koziol, J. Bent and E. Barton, DAOS and
Friends: A Proposal for an Ezascale Storage System, SC16: International Conference
for High Performance Computing, Networking, Storage and Analysis, Salt Lake City,
UT, 2016, pp. 585-596. doi: 10.1109/SC.2016.49

22. Jonathan Mart, Anna Queralt, Daniel Gasull, Alex Barcel, Juan Jos Costa, Toni
Cortes, Dataclay: A distributed data store for effective inter-player data sharing, In
Journal of Systems and Software, Volume 131, 2017, Pages 129-145, ISSN 0164-1212,
https://doi.org/10.1016/j.jss.2017.05.080

23. Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M Ba-
dia, Jordi Torres, Toni Cortes, Jess Labarta, PyCOMPSs: Parallel computational
workflows in Python, The International Journal of High Performance Comput-
ing Applications, Vol 31, Issue 1, pp. 66 82 First Published August 19, 201,
https://doi.org/10.1177/1094342015594678

24. E. Farsarakis, I. Panourgias, A. Jackson, J.F.R. Herrera, M. Weiland, M. Parsons;
Resource Requirement Specification for Novel Data-aware and Workflow-enabled
HPC Job Schedulers, PDSW-DISCS17 http://www.pdsw.org/pdsw-discs17/wips/
farsarakis-wip-pdsw-discs17.pdf, 2017

25. Weiland, M, Jackson, A, Johnson, N & Parsons, M 2018, Ezploiting the Perfor-
mance Benefits of Storage Class Memory for HPC and HPDA Workflows Supercom-
puting Frontiers and Innovations, vol 5, no. 1, pp. 79-94. DOI: 10.14529/jsfi180105

26. ORNL Titan specification http://phys.org/pdf285408062.pdf

27. Valentine Anantharaj, Fernanda Foertter, Wayne Joubert ,Jack Wells Ap-
proaching FEzascale: Application Requirements for OLCF Leadership Com-
puting https://www.olcf.ornl.gov/wp-content/uploads/2013/01/0LCF_
Requirements_TM_2013_Finall.pdf July 2013

B-APM Architecture for HPC 19

28. Daley, C., Ghoshal, D., Lockwood, G., Dosanjh, S., Ramakrishnan, L., Wright, N.:
Performance Characterization of Scientific Workflows for the Optimal Use of Burst
Buffers. Future Generation Computer Systems (2017), 10.1016/j.future.2017.12.022

29. N. R. Mielke, R. E. Frickey, 1. Kalastirsky, M. Quan, D. Ustinov and V.
J. Vasudevan, Reliability of Solid-State Drives Based on NAND Flash Memory
in Proceedings of the IEEE, vol. 105, no. 9, pp. 1725-1750, Sept. 2017. doi:
10.1109/JPROC.2017.2725738

30. Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the cost of
context switch. In Proceedings of the 2007 workshop on Experimental com-
puter science (ExpCS ’07). ACM, New York, NY, USA, Article 2 . DOL
https://doi.org/10.1145/1281700.1281702

31. N. Liu et al., On the role of burst buffers in leadership-class storage systems, 012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST), San
Diego, CA, 2012, pp. 1-11. doi: 10.1109/MSST.2012.6232369

32. Torben Kling Petersen, John Bent, Hybrid flash arrays for HPC storage systems:
An alternative to burst buffers, High Performance Extreme Computing Conference
(HPEC) 2017 IEEE, pp. 1-7, 2017.

33. Marc-André Vef and Nafiseh Moti and Tim Sl and Tomasso Tocci and Ramon
Nou and Alberto Miranda and Toni Cortes and André Brinkmann, GekkoFS - A
temporary distributed file system for HPC applications, Proceedings of the 2018
IEEE International Conference on Cluster Computing (CLUSTER), Belfast, UK,
September 10-13, 2018,

34. Andrejasi¢c, Matej and Veble, Gregor and Bat, Nejc, Cloud-based Simula-
tion of Aerodynamics of Light Aircraft, https://hpc-forge.cineca.it/files/
CoursesDev/public/2015/Workshop_HPC_Methods_for_Engineering/cloud_
based_aircraft.pdf

35. Hrvoje Jasak, OpenFOAM: Open source CFD in research and industry, Inter-
national Journal of Naval Architecture and Ocean Engineering, vol=1, no=2,
pages=89-94, 2009, issn=2092-6782

36. IPMCTL, https://github.com/intel/ipmctl

37. NDCTL - Utility library for managing the libnvdimm (non-volatile memory device)
sub-system in the Linux kernel, https://github.com/pmem/ndctl

38. IOR https://github.com/LLNL/ior

