

Edinburgh Research Explorer

NORNS: Extending Slurm to Support Data-Driven Workflows
through Asynchronous Data Staging

Citation for published version:
Miranda, A, Jackson, W, Tocci, T, Panourgias, I & Nou, R 2019, NORNS: Extending Slurm to Support Data-
Driven Workflows through Asynchronous Data Staging. in 2019 IEEE International Conference on Cluster
Computing (CLUSTER). Institute of Electrical and Electronics Engineers (IEEE), pp. 1-12, IEEE Cluster
2019, Albuquerque, United States, 23/09/19. https://doi.org/10.1109/CLUSTER.2019.8891014

Digital Object Identifier (DOI):
10.1109/CLUSTER.2019.8891014

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE International Conference on Cluster Computing (CLUSTER)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322483388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/CLUSTER.2019.8891014
https://doi.org/10.1109/CLUSTER.2019.8891014
https://www.research.ed.ac.uk/portal/en/publications/norns-extending-slurm-to-support-datadriven-workflows-through-asynchronous-data-staging(a3684683-9ee6-40e2-b547-a773e2bfff61).html

NORNS: Extending Slurm to Support Data-Driven
Workflows through Asynchronous Data Staging

Alberto Miranda∗, Adrian Jackson†, Tommaso Tocci∗, Iakovos Panourgias†, Ramon Nou∗
∗Barcelona Supercomputing Center, †EPCC, The University of Edinburgh

{alberto.miranda, ramon.nou, tommaso.tocci}@bsc.es, {a.jackson, i.panourgias}@epcc.ed.ac.uk

Abstract—As HPC systems move into the Exascale era, parallel
file systems are struggling to keep up with the I/O requirements
from data-intensive problems. While the inclusion of burst buffers
has helped to alleviate this by improving I/O performance, it
has also increased the complexity of the I/O hierarchy by adding
additional storage layers each with its own semantics. This forces
users to explicitly manage data movement between the different
storage layers, which, coupled with the lack of interfaces to
communicate data dependencies between jobs in a data-driven
workflow, prevents resource schedulers from optimizing these
transfers to benefit the cluster’s overall performance. This paper
proposes several extensions to job schedulers, prototyped using
the Slurm scheduling system, to enable users to appropriately
express the data dependencies between the different phases in
their processing workflows. It also introduces a new service for
asynchronous data staging called NORNS that coordinates with
the job scheduler to orchestrate data transfers to achieve better
resource utilization. Our evaluation shows that a workflow-aware
Slurm exploits node-local storage more effectively, reducing the
filesystem I/O contention and improving job running times.

Index Terms—Scientific Workflows, Burst Buffers, High-
Performance Computing, Data Staging, In Situ Processing

I. INTRODUCTION

As HPC systems become capable of computations in the
order of hundreds of petaFLOPs [1], researchers are in-
creasingly turning their attention to more complex problems
which require the large-scale analysis of experimental and
observational data (EOD), such as the computational analysis
of ITER reactor designs [2] or the simulation, filtering, and
evaluation of large-scale experiments such as the Compact
Muon Solenoid at the Large Hadron Collider [3][4]. What sep-
arates these data-intensive problems from traditional, compute-
bound large-scale simulations is that, even though they exhibit
comparable computational needs, they also incur significant
data requirements. Thus, while much of the I/O volume in
traditional HPC applications comes from checkpoint files [5],
which are written once and almost never read back, data-
intensive applications generate and consume data at much
larger volumes and/or rates1. What’s more, in many cases these

This work was partially supported by the Spanish Ministry of Sci-
ence and Innovation under the TIN2015–65316 grant, the Generalitat de
Catalunya under contract 2014–SGR–1051, as well as the European Union’s
Horizon 2020 Research and Innovation Programme, under Grant Agree-
ment no. 671951 (NEXTGenIO). Source code for NORNS is available at
https://github.com/NGIOproject/NORNS Source code for Slurm extensions is
available at https://github.com/NGIOproject/Slurm.

1The LHC data output is expected to grow to 150 PB/year + 600 PB/year
of derived data by 2025, while the Large Synoptic Survey Telescope will
generate 3.2 Gigapixel images every 20 seconds [6][7].

problems are run as a composition of separate tasks that are
executed as a scientific workflow in the context of a large
parallel job [8], with each task representing a separate phase
in a complex model that may depend on data generated by
previous tasks. This requires communicating large amounts of
data between tasks, which is typically accomplished by means
of the storage subsystem. Thus, even if modern HPC clusters
are capable of running many such applications at the same
time to maximize the use of supercomputing resources, severe
I/O performance degradation is often observed due to uncoor-
dinated, competing accesses to shared storage resources.

To mitigate this phenomenon, burst buffers such as Cray
Datawarp [9] or DDN IME [10] are being increasingly
included into the HPC storage architecture to reduce I/O
contention. By writing data to these burst buffers rather than to
the cluster’s parallel file system (PFS), processes running on
compute nodes can reduce the time required for reading and/or
writing data to persistent storage, even if this storage is not
the data’s ultimate destination. For example, the Cori system
at NERSC and the Trinity supercomputer at LANL rely on
Cray Datawarp to accelerate I/O [11][12]. However, appliances
typically consist of dedicated storage hardware deployed onto
separate I/O nodes and available as an I/O resource that is
external to the compute nodes in the same way a traditional
parallel filesystem is accessed. This means that burst buffers
require correct sizing to ensure they can adequately handle
the volume of I/O the system may produce, exactly the same
as parallel filesystems. The increasing availability of low-
latency storage devices and interfaces such as Non-Volatile
Memory Express (NVMe) and Intel® Optane™ [13] has
favored new architecture designs where such technologies are
included into compute nodes. For instance, the Summit [14],
Sierra [15], and MareNostrum IV [16] supercomputers include
NVMe devices as node-local burst buffers. Since these devices
often exhibit faster performance than NAND Flash Solid-State
Drives (SSDs), their inclusion as node-local storage effectively
adds a new high-performance staging layer where processes
can efficiently store files, thus moving data closer to the
computing resources that require it.

Nevertheless, as multiple layers of storage are added to
the HPC I/O architecture, the complexity of transferring data
between these layers also increases [17]. Unfortunately, while
computing and network resources can be shared and managed
effectively by state-of-the-art job schedulers, storage resources
are still mostly considered as black boxes by these infrastruc-

978-1-7281-4734-5/19/$31.00 ©2019 IEEE

(a) ARCHER

100

1000

10000

1 2 4 8 16 32

Nodes

B
a

n
d

w
id

t
h

/

M

B
/
s

(
lo

g
)

Read

Write

(b) MareNostrum IV

Fig. 1. Impact of cross-application interference in I/O performance

ture services [18]. While there has been increasing interest in
HPC to use burst buffers to optimize the I/O path of data-
driven workflows through autonomous, asynchronous data
staging [19][20][21], these research efforts have not considered
I/O as a first class entity in resource scheduling decisions.
Thus, we argue that the integration of application I/O needs
with scheduling and resource managers is critical to effectively
use and manage a hierarchical storage stack that can include as
many layers as NVRAM, node-local burst buffers, shared burst
buffers, parallel file system, campaign storage, and archival
storage. Improved coordination between the storage system
and the job scheduler can reduce I/O contention resulting in
reduced job runtimes and improved system efficiency.

In this paper, we propose a new infrastructure service for
HPC clusters called NORNS, that coordinates with the job
scheduler to orchestrate asynchronous data transfers between
the available storage layers. NORNS provides facilities to
system administrators to expose the cluster’s storage archi-
tecture to job schedulers and applications, and also offers
interfaces for creating and monitoring asynchronous data
transfers between these local and remote layers. We also
propose extensions to the Slurm job scheduler [22] so that
users can define jobs as processing phases of larger I/O-
driven workflows, and also provide information about how data
resources should propagate through the storage layers in each
workflow phase. Using this information, Slurm can rely on the
NORNS API to create appropriate I/O tasks to stage-in/stage-
out data from/to the PFS when the workflow starts/ends, keep
persistent data on node-local storage to feed upcoming phases
or move data directly between compute nodes to match future
job schedules. NORNS, thus, provides a framework for the
development of data-aware scheduling algorithms to arbitrate
these transfers, so that it is possible to maximize transfer
throughput and minimize interferences with application I/O.

This work makes the following contributions: (1) we present
the Slurm extensions for data-driven workflow support in
Section III; (2) we introduce the design and implementation
of the NORNS service in Section IV-A and Section IV-B,
respectively; (3) we discuss the NORNS user and administra-
tive APIs in Section IV-C; and (4) we finalize in Section V by
evaluating the benefits for HPC clusters of using data-driven
workflows as a central job scheduling component.

II. BACKGROUND AND MOTIVATION

As we move towards the Exascale era, the I/O performance
gap widens [23][24]. While large scale environments have
traditionally relied on remote parallel file systems such as
Lustre [25] or GPFS [26], most of these file systems are
facing significant challenges in performance and scalability
due to the massive amounts of data produced by EOD-
driven applications [27]. Figure 1 shows the impact of this
interference on the I/O performance of the ARCHER [28] and
MareNostrum IV [16] supercomputers.

ARCHER is a Cray XC30 system with 24 cores (two Intel
Xeon 2.7 GHz, 12-core E5-2697v2 processors) and 64 GB
of DDR3 memory per node (128 GB on a small number of
large memory nodes). Its 4,920 nodes are connected by the
Cray Aries network, with three Lustre filesystems. The Lustre
filesystem used for benchmarks presented in this paper have 12
Object Storage Services (OSSs), each with 4 Object Storage
Targets (OSTs) containing 10 disk drives (4TB SEAGATE
ST4000NM0023). This gives 40 disks per OST (configured
in RAID6 mode) and 480 disks for the filesystem. There is a
single Metadata Service for the filesystem.

For ARCHER we repeatedly ran an MPI-I/O benchmark
using the same number of process/nodes once a day for an
extended period of time. Each benchmark was run using
two different Lustre striping options (either the default stripe,
which used 4 OSTs, or using all the OSTs in the filesystem).
The benchmark writes to a single file across all processes
using collective MPI-I/O functions. The maximum achieved
bandwidth for writing 100MB of data per writer is presented
in Figure 1a. This figure shows that, when using sufficient
numbers of writing processes it is possible to achieve close
to the 20GB/s of theoretical write performance the filesystem
provides. However, this can only be achieved when using the
full Lustre striping (i.e. all the filesystem OSTs), and even
in that circumstance we can see a four fold difference in
achieved bandwidth between the fastest (around 16GB/s) and
slowest (under 3GB/s) results collected for a given number of
writers. The only difference between any one data point using
the same number of writers is the amount of other network
communication and filesystem traffic occurring at the same
time as the benchmark is being undertaken.

MareNostrum IV has 48 racks with 3,456 Lenovo ThinkSys-
tem SD530 compute nodes. Each node has two Intel Xeon
Platinum 8160 24C chips, each with 24 processors at 2.1GHz,
amounting to a total of 165,888 processors and a main memory
of 390 TB. The interconnection network is a 100Gb Intel
Omni-Path Full-Fat Tree and its 14PB of storage capacity are
offered by IBM’s GPFS. For MareNostrum IV (Fig. 1b), we
used the IOR benchmark [29] to measure the I/O performance
variability observed by applications depending on the PFS
load. To measure variability, we ran 25 independent repetitions
of the same benchmark during one week, each in a different
node allocation and on a different time frame. The benchmarks
ran co-located with the normal HPC workload, and were
configured to create independent files per core in each compute
node, using 24 out of 48 cores. To avoid cache effects, file sizes
were chosen to be large enough to fill the node’s memory. The
benchmark then proceeded to read/write from/to the created
files, using a transfer size equal to the file system’s. As
with ARCHER, the results show extremely high variability
in GPFS’ I/O performance, with measured bandwidths often
diverging by orders of magnitude. This extreme variation
present in both machines, is due to a phenomenon known as
cross-application interference which happens when multiple
applications access a shared resource (e.g. the PFS) in an
uncoordinated manner. This I/O congestion is such a common
occurrence in most HPC sites [30][31][32], that some studies
suggest that this so-called I/O bottleneck could be one of the
main problems for Exascale machines [33][34][35].

While the widespread inclusion of SSDs, NVMe devices
and shared burst buffer nodes in HPC storage has alleviated
this issue by improving I/O performance, it has done so at
the cost of increasing complexity in the I/O hierarchy. This
introduces multiple challenges in the space of possible con-
figurations and complicated interactions. First, burst buffers
(shared or node-local) can be used (at least) as temporary
storage for intermediate data, to cache PFS data, and as a
medium to share data between workflow phases. Second, users
now need to explicitly manage the placement and movement of
application data between the different storage layers, a clearly
sub-optimal solution since users obviously lack information
about the global state of the system as well as the best moment
to perform such movements. Moreover, it also forces users (i.e.
scientists and researchers) to spend some time learning the best
way to use these technologies in their applications, an effort
better spent in their scientific problems. Third, opportunities
for global I/O optimization are lost by not communicating
application needs to the infrastructure services in charge of
resource allocation, which could exploit this information to
produce better scheduling policies to reduce contention. Thus,
any interfaces that do not expose any information about the
storage hierarchy to applications, and relying solely on the OS
and hardware to transparently manage the storage stack will
lead to sub-optimal performance.

Unfortunately, the currently available interfaces between
users and resource managers do not make it possible to convey
data dependencies between jobs to model the different phases

in a workflow. For example, if a job A generates data that
should be fed into a job B, there is no way for users to express
this dependency, nor to influence the job scheduling process
so that A’s output is kept in burst buffers until B starts. Worse
yet, since the I/O stack remains a black box for today’s job
schedulers, job A’s output could end up being synchronized to
the cluster’s PFS and, at some point in the near future, staged
back into the new node allocation for job B, which might end
up including some of the original nodes reserved for job A.

Thus, capturing application I/O requirements and appropri-
ately exposing the layers in the new storage architecture offers
advantages for the overall I/O performance of the HPC cluster.
More specifically, appropriate usage of NVM-based node-local
burst buffers would provide several benefits. First, restricting
applications to rely on node-local storage is an effective way
to prevent them from arbitrarily causing contention to the PFS.
By leveraging node-local storage, the cluster’s PFS would only
need to be accessed during two well-controlled situations:
(1) to copy input data into node-local storage; and (2) to
persist output data to the PFS for long-term storage. Second,
replacing normal application I/O by stage-in/processing/stage-
out workflows would allow for a more effective use of the
PFS: since accesses to the PFS would be mostly restricted to
staging phases, several staging phases could be scheduled to
run concurrently while minimizing I/O contention. Moreover,
from the point of view of the PFS, application I/O would
transform from a stream of unrelated, random data accesses,
to well-defined sequential read/write phases. Third, EOD-
driven workflows could take advantage of high-density node-
local NVM for data to be left in situ for the next workflow
phase. Fourth, leveraging node-local storage hardware can
allow application-observed I/O performance to scale with the
number of compute nodes used, with larger parallel runs
acquiring larger I/O bandwidth through the aggregation of the
I/O hardware in the number of nodes used for the job.

Addressing these challenges motivates the design of the pro-
posed scheduler extensions and the NORNS service. Through
this new infrastructure service, we aim to provide a robust
set of interfaces and data transfer primitives so that special-
ized scheduling algorithms can be developed to optimize I/O
performance in the HPC cluster.

III. SLURM EXTENSIONS FOR DATA-DRIVEN WORKFLOWS

Computational simulation or data analytics and machine
learning activities generally are not confined to using a single
application on a single data set. Most users of compute
resources will run a range of applications, scripts, and tools,
to process, produce and analyze data. As such, they will have
a workflow that they use to undertake their work, composed
of a range of applications. Unfortunately, most mainstream
job schedulers do not support rich workflow functionality.
Even though some schedulers support dependencies, however,
dependant jobs are generally treated as new tasks by schedul-
ing algorithms, ignoring the history of previous dependencies
in the workflow. Moreover, this approach does not support
sharing data on compute nodes between stages in a workflow,

#NORNS stage_in origin destination mapping
#NORNS stage_out origin destination mapping
#NORNS persist operation location user

Listing 1. Scheduler options and parameters for specifying job data depen-
dencies and operations

which is one of the key advantages of node-local persistent
storage hardware. Thus, to enable users to efficiently share data
between workflow phases utilizing node-local storage without
requiring all compute nodes to be reserved for the full duration
of the workflow2, we propose extensions to fully integrate user
workflows with the scheduler and its scheduling algorithms.

We have developed prototype workflow functionality that
allows the scheduling algorithms of the Slurm job scheduler
to consider all jobs that are part of a workflow as a unit.
Each intermediate job gets updated priorities and resource
allocations as the different phases progress, even though an
intermediate job might not be able to start due to depen-
dencies. Moreover, a dependant job cannot start before all
its dependencies are satisfied. The workflow is supported
through new options passed to the scheduler by the user, as
part of their job submission script, which specify if a job
is the start of a workflow (workflow-start), the end of a
workflow (workflow-end), or has a dependency with another
job in the workflow (workflow-prior-dependency ID).
Each workflow is assigned a unique Workflow ID enabling
users to be able to enquire about the overall status of a
workflow and obtain a list of all jobs and their status (running,
pending, etc.). If a workflow job fails; then all subsequent jobs
are cancelled and users can react accordingly.

Workflow functionality in isolation, however, does not pro-
vide the ability to share data between workflow components.
Such functionality requires further extensions to the job sched-
uler to enable each workflow component to specify what data
should stay on node-local persistent storage, as well as which
data is required for input to, or will be produced as output by,
a given workflow component. To enable such functionality
we added further batch system options to allow users to
specify data input, output, and dependencies for a workflow
component job. These consist of stage_in, stage_out,
and persist options that the user can specify a given data
source/sink with to enable data to be shared between workflow
components. These options accept a range of parameters to
specify the types and locations of data under consideration, as
outlined in Listing 1.

Parameters origin, destination, and location must
refer to pre-existing dataspaces or data resources (refer to
Section IV-A for details), while location must be a node-
local storage resource. Argument user must be a username
in the form that the scheduler recognizes, and argument
operation can be one of the following options:

• store: take a location and maintain it on a node-local
storage resource

2Which may be wasteful as workflows often have varying compute require-
ments for different parts of the workflow.

• delete: delete an existing persisted location from node-
local storage resources

• share: add permission for user to access the persist
location

• unshare: remove permission for user to access the
persist location

The mapping argument is used to specify how data is
mapped from shared to node-local resources and vice versa.
For a single node Slurm job, mapping is not required as there
may only be a single set of node-local resources to place data
on, although mapping may be used to specify which specific
node local resource data items are mapped to if there are
multiple node-local resources (i.e. where there is a mount point
per socket on a dual socket node).

Prior to the launch of an individual job, the scheduler will
have sufficient information to trigger data movement for the
nodes chosen for a given job to move any data required
for that job (i.e stage_in operations). The scheduler uses
calculations of average data transfer times and data sizes to
decide when to trigger such movements prior to a job starting.
When the job is ready to start, the scheduler will check the data
has arrived. If the data is ready the compute part of the jobs is
started. If the data is still being transferred the scheduler will
wait until the transfer is complete or until a pre-configured
timeout is encountered. If the timeout is reached or if there is
a failure to obtain the data item specified, the scheduler will
terminate the job and clean up all data already staged to nodes.

Similar operations are undertaken on a stage_out re-
quest, except this happens at the end of a job run. A mappings
file can also be used for stage out processes, although this
can simply be a single directory to copy all the data into.
If a stage_out operation fails then the current approach
is to leave the data on the node local resources for future
stage_out operations to try and recover.

Whilst all the functionality we have discussed requires the
batch scheduler to coordinate and provide user interfaces to
enable efficient and effective use of the storage hardware envi-
ronments we are targeting in this work, it does not necessarily
make sense to implement all this functionality within the job
scheduler. For flexibility, we decided to create a standalone
service, the NORNS service, to provide the functionality to
manage and move data on compute nodes, with interfaces
defined to enable both user and system applications to interact
with the service and request operations.

IV. THE NORNS SERVICE

NORNS is an infrastructure service whose main goals are
to facilitate exploiting the cluster’s storage architecture, and
to coordinate with the scheduler to orchestrate data transfers
between the different storage layers in an HPC cluster. Its
design objectives are the following:

• To simplify the job scheduler’s management of the in-
creasingly heterogeneous I/O stack by offering interfaces
for abstracting and controlling the different storage layers,
as well as modelling and managing batch jobs/workflows.

node to node transfers
[TCP, verbs, RDMA]

login node

slurmctld

SLURM
extensions

compute node

slurmd urd

user process

node-local storage
[POSIX, NVMe, DAX]

API

SLURM COMMANDS

Shared Burst Buffer

compute node

slurmd urd

user process

node-local storage
[POSIX, NVMe, DAX]

API

slurmctld ↔ slurmd messages

Parallel File System

POSIX
I/O

BB
API POSIX

I/O

BB
API

Batch job
submission

Fig. 2. NORNS service architecture and component interaction.

• To hide the complexity of each specific storage layer by
providing a unified interface for transferring data, so that
the job scheduler and end-users do not need to bother with
the technical details to execute such transfers efficiently.

• To allow the job scheduler to start, monitor, and manage
transfers between storage layers, so that it can control
and account the data staging required to run a job.

• To allow parallel applications to start, monitor, and man-
age transfers between the different storage layers made
available to a job by the scheduler, while restricting ac-
cess to any layers not explicitly allowed by the scheduler.

• To execute data transfers as efficiently as possible, taking
advantage of fast interconnects and native APIs where
available, and minimizing contention to the PFS.

NORNS, hence, serves as the main component that val-
idates, orchestrates, and executes the required transfers to
run an already scheduled job. By executing these transfers
asynchronously, NORNS allows the job scheduler to submit
requests to transfer data without having to wait for it to
actually be available at the intended destination. This frees the
scheduler to continue scheduling oncoming job submissions.

A. Design and Architecture

Since its main goal is to keep track of any data staging
required to run a job, the architecture of the NORNS service
has been designed to be tightly coupled with job schedulers.
As shown in Figure 2, the NORNS service is currently
composed of the following components:

• A resource control daemon called urd which runs at each
compute node. Its responsibilities are to coordinate with
the job scheduler to manage and track the dataspaces
defined for each batch job. It is also the component in
charge of actually accepting, validating, executing, and
monitoring all I/O tasks affecting this compute node both
by the job scheduler and parallel applications.

• A control nornsctl API. This API offers adminis-
trative interfaces so that the job scheduler can control

TABLE I
PRINCIPAL INTERFACES IN THE NORNS APIS

Control API (All functions share the nornsctl_ prefix)

Daemon
management

send_command(cmd, args),
status(cmd, args)

Dataspace
management

backend_init(flags, path),
register_dataspace(DSID, backend),
update_dataspace(DSID, backend),
unregister_dataspace(DSID)

Job management job_init(hosts, limits),
register_job(JOBID, job),
update_job(JOBID, job),
unregister_job(JOBID)

Process
management

proc_init(PID, UID, GID),
add_process(JOBID, proc),
remove_process(JOBID, proc),

Task management resource_init(type, ...),
iotask_init(type, input, output),
submit(task), wait(task, timeout),
error(task, stats)

User API (All functions share the norns_ prefix)

Dataspaces & task
management

get_dataspace_info(dataspaces),
resource_init(type, ...),
iotask_init(type, input, output),
submit(task), wait(task, timeout),
error(task, stats)

the urd daemon, query its state, define the appropriate
dataspaces for each job, and submit/control I/O tasks.

• A user-level norns API. This API allows parallel appli-
cations running in the context of a batch job or workflow
to query information about any dataspaces defined for
them, and also offers interfaces so that they can submit
and control I/O tasks between such dataspaces.

Thus, considering a practical example integrating with one
such job scheduler, Slurm, when a batch job/workflow is
submitted, slurmctld3, through the extensions discussed
on Section III, captures and internally registers both the
storage layers affected by the job and its I/O requirements.
Based on this information, Slurm schedules the next job to
run, reserves a set of nodes for it and communicates with
slurmd4 to configure the nodes. Note that this implied adding
additional messages to the usual communication between
slurmctld and slurmd, which performs the actual calls to
the nornsctl API. Any storage resources available to a job
will be assigned an ID by slurmctld (e.g. “lustre://”,
“nvme0://”, or “pmdk0://”), which will then contact the
slurmd daemons in the nodes reserved for the job so that they
register them in the local urd daemons through the control
API. This creates an abstraction called dataspace5 that hides
from users the technical details of available storage tiers (e.g.
local/shared burst buffers, PFS) and allows Slurm to account
and limit how tiers are used by jobs by leveraging OS control
facilities such as cgroups or chroot if the tier supports them.

3The principal Slurm control daemon users interact with.
4A Slurm daemon in charge of controlling each compute node.
5A portmanteau for data namespace.

When all dataspaces are defined, the job scheduler may
satisfy the job’s I/O requirements by creating and submitting
several I/O tasks to execute data transfers between the avail-
able dataspaces. This typically means transferring data from
either the shared PFS/burst buffer dataspace using specialized
APIs (e.g. POSIX/MPI-IO, or the DataWarp API), or from a
dataspace defined in a remote node using the cluster’s intercon-
nect (e.g. Intel®’s Omni-Path™, or Cray®’s Gemini/Aries™).

At this point, each urd daemon in the involved compute
nodes will be responsible for asynchronously transferring the
requested data, as well as monitoring the performance of such
transfers in order to compute an E.T.A. for each task. This is
done so that slurmctld can estimate how long a node may
be “in use” by data transfers before a job starts and after a
job completes, so that it can fine-tune its internal scheduling
algorithms. Once the initial set of I/O tasks has completed,
the job can be safely started using the data located in node-
local storage. In order to use the new dataspaces, users only
need to change their scripts to use the appropriate environment
variables provided by Slurm when starting the job processes
(e.g. $LUSTRE, $PMDK0, $NVME0), which correspond to the
I/O requirements defined by the user when submitting the
job. Alternatively, user code may also rely on the norns
API to query information about the dataspaces exposed for
the application. Note that the norns API may also be used
by applications while the job is running, in order to schedule
asynchronous data transfers between the dataspaces they have
access to (e.g. to offload memory buffers to node-local storage
for checkpointing). Once a job finally completes, Slurm may
schedule additional I/O tasks before releasing compute nodes
(e.g. output results may need to be transferred to the PFS or to
another set of nodes for further processing). In this situation,
NORNS E.T.A. tracking becomes even more important since
it allows Slurm to determine at which time a compute node
will re-enter the pool of free resources. Note as well that
user transfers while the job was running may leave data in
local dataspaces unbeknownst to Slurm. To account for this
situation, Slurm can optionally prompt NORNS to “track”
dataspaces so that it checks whether they are empty if a node
release is attempted. If data remains in a tracked dataspace
Slurm will be informed of the presence of a non-empty
dataspace, which will allow it to take appropriate measures.

B. Implementation

For performance, the NORNS service has been written in
C++. Figure 3 shows the internal components of the urd
daemon and its interactions with client processes. When either
Slurm (through slurmd) or an application needs to send a
request, it only needs to invoke the desired functions exposed
by the appropriate API, which capture the request parameters
and forward them to the daemon. This message passing is
done by sending messages serialized with Google’s Protocol
Buffers [36] through local AF_UNIX sockets. Note that since
both APIs are built as standard ELF shared objects that any
application can link to, any application may potentially invoke
any of their functions. To prevent unauthorized use, two sepa-

urd

protobuf

task queue

network
manager

accept thread

task
scheduler

completions

workers

transfer
plugins

job &
dataspace
controller re

m
o

te
 r

eq
u

es
ts

:
R

P
C

s,
 R

D
M

A
 t

ra
n

sf
er

s

data staging, layer
& job management

slurmd

API protobuf

slurm daemon

client process

user process

APIprotobufAPI

user tasks/queries

Fig. 3. Internal components of the urd daemon

rate “control” and “user” sockets are created with differing file
system permissions. In this way, if an API function is invoked,
the function can verify whether the calling process actually
has permission to access the underlying socket and deny the
request if it does not. This allows administrators to restrict
usage of the APIs using the kernel’s security mechanisms,
for instance by creating a norns group for any applications
that can make administrative changes to the service, and a
norns-user group for user applications allowed to use the
NORNS service.6

When incoming requests from any API reach the urd
daemon, they are processed by a dedicated accept thread that
relies on the kernel’s epoll(7) mechanism to implement
an asynchronous event handling pattern for high availability.
When a request is received, the accept thread deserializes it,
creates a task descriptor for it and places into a task queue
for pending requests. Note that task order in the queue is
controlled by a task scheduler component, which arbitrates
the order of the execution of I/O tasks depending on several
metrics. FCFS is the default arbitration policy, but the compo-
nent will be extended in the future to support other strategies.

I/O tasks are then extracted from the queue and executed
by urd’s worker threads, which will rely on the information
registered in the job & dataspace controller to validate the
request, which implies checking that the calling process has
access to the requested dataspaces and also that it has the
appropriate file system permissions to access the requested
resources. Note that, for flexibility, NORNS supports defining
specific plugins to transfer data between a pair of resource
types, which allows developers to write high performance data
transfers based on the internals of each data resource. In this
way, NORNS can be easily extended to efficiently support
additional data resources as they become available. Thus, if
the task is deemed as valid, the worker thread will select the
appropriate transfer plugin for the task at hand and will initiate
the transfer (Table II shows the currently supported plugins).
Moreover, since some I/O tasks may require orchestrating data
transfers between urd daemons running in separate compute
nodes, the urd daemon also includes a network manager
component that allows sending RPCs to remote urd daemons,

6Note that Slurm may add job processes to the norns-users group by
using the setgroups(2) system call upon creation.

TABLE II
TRANSFER PLUGINS SUPPORTED BY NORNS

Plugin Simplified Operation

Process memory ⇒ local path out=fallocate()+mmap();
process_vm_readv(in, out);

Memory buffer⇒ remote path At initiator:
tmp=fallocate()+mmap();
process_vm_readv(in, tmp);
send_to_target(tmp_info);
At target:
RDMA_PULL(tmp_info, out);

Memory buffer⇐ remote path in_info=query_target(in);
tmp=fallocate()+mmap();
RDMA_PULL(in_info, tmp);
process_vm_writev(tmp,out);

Local path ⇒ local path in_fd=open(in, RDONLY);
out_fd=open(out, WRONLY);
sendfile(in_fd, out_fd);

Local path ⇒ remote path At initiator:
in_info=mmap(in);
send_to_target(in_info);
At target:
RDMA_PULL(tmp_info, out);

Local path ⇐ remote path in_info=query_target(in);
out=fallocate()+mmap();
RDMA_PULL(in_info, out);

and also supports RDMA-capable transfers if the interconnect
fabric supports it. The implementation of this component relies
on ANL’s Mercury library [37], a C library for implementing
RPCs and bulk data transfers that has been especially designed
(and optimized) to be used in HPC clusters. Mercury includes
a Network Abstraction (NA) layer which provides a minimal
set of function calls that abstract from the underlying net-
work fabric and that can be used to provide target address
lookup, point-to-point messaging, remote memory access, and
transfer progress/cancellation. Most interestingly for NORNS,
Mercury’s NA layer uses a plugin mechanism so that support
for various network fabrics such as Ethernet, Omni-Path™,
Gemini/Aries™, or InfiniBand™ can be easily selected at
runtime, making them transparently available to NORNS.

Finally, upon a task’s completion, the worker thread respon-
sible for executing it will place a descriptor of its completion
status into a completion list, so that clients can query it with
the appropriate API interfaces.

C. APIs

Table I shows the principal interfaces exposed by both the
nornsctl and norns APIs. The APIs are written in C,
since its flexibility to being used from other programming
languages simplifies creating bindings for other languages
such as Fortran, C++, Java, or Python, commonly used in
HPC. The nornsctl administrative API has been designed
to allow job schedulers to control the urd daemon and interact
with it to define the required dataspaces, jobs, and I/O tasks.
By relying on the interfaces in this API, it is possible for
urd to have reliable information from trusted sources about
what a process invoking the API should be allowed to do.

void buffer_offloading(void* buffer, int size) {

// define and submit transfer task for buffer
norns_iotask_t tsk = NORNS_IOTASK(

NORNS_IOTASK_COPY,
NORNS_MEMORY_REGION(buffer, size),
NORNS_POSIX_PATH(

"tmp0://", "path/to/output"));

if(norns_submit(&tsk) != NORNS_SUCCESS) {
fatal("task submission failed");

}

work_not_dependent_on_task();

// wait for task to complete and check status
norns_wait(&tsk, /* timeout = */ NULL);
norns_stat_t stats;
norns_error(&tsk, &stats);

if(stats.st_status == NORNS_ETASKERROR) {
fatal("task failed");

}
}

Listing 2. Defining, submitting, and monitoring a user-level I/O task

This in turn allows it to: (1) account the usage that registered
processes make of their assigned dataspaces; (2) reject any I/O
task submissions from processes not registered in the service;
and (3) reject any task submissions from registered processes
involving dataspaces they shouldn’t access. The norns user
API, on the other hand, has been designed to allow parallel
applications to query information about their configured datas-
paces, and also to allow them to define, submit, monitor, and
control I/O tasks. Listing 2 shows how a task to transfer a
process buffer can be scheduled for asynchronous execution.

V. EVALUATION

A. Methodology

Testbed: All experiments were conducted using the NEXTGe-
nIO prototype, which is composed of 34 compute nodes [38].
Each node has a dual Intel® Xeon® Platinum 8260M CPU
@ 2.40 GHz (i.e. 48 cores per node), 192 GiB of RAM and
3 TBytes of Intel® DCPMM™ memory. Compute nodes are
interconnected through an Omni-Path™ fabric, and a Lustre
server (6 OSTs) is reached using a 56 Gbps InfiniBand™ link.

B. NORNS Performance

As an infrastructure service for job schedulers and appli-
cations, NORNS must add as few overhead as possible to
the normal operations of its intended clients, and it is also
important for NORNS to transfer data efficiently, so that jobs
are not delayed due to staging operations. In this section,
we evaluate how NORNS performs when serving concurrent
requests from multiple clients as well as its data transfer rates
when moving data between compute nodes.
Request Rate: Figures 4 and 5 show, respectively, NORNS
performance when serving requests from local processes and
from other NORNS instances in remote compute nodes. For
local requests, we create up to 32 concurrent processes that
submit 50×103 consecutive requests to the local urd daemon

0

10

20

30

40

50

60

0

100

200

300

400

500

600

700

1 2 4 8 16 32

u
se

cs

re
q

s/
se

c

x
1

0
0

0

concurrent processes

throughput
latency

Fig. 4. NORNS throughput and la-
tency serving local requests

0

100

200

300

400

500

600

700

800

900

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32

u
se

cs

re
q

s/
se

c

x
1

0
0

0

concurrent clients

throughput (1 rpc)
throughput (16 rpcs)
latency (1 rpc)
latency (16 rpcs)

Fig. 5. NORNS throughput and la-
tency serving remote requests

0,001

0,01

0,1

1

10

100

1 2 4 8 16 32

b
an

d
w

id
th

 (
M

iB
/s

) x
1

0
0

0

concurrent clients

1 rpc 2 rpcs 4 rpcs 8 rpcs 16 rpcs

Fig. 6. NORNS aggregated bandwidth
for remote data reads

0,001

0,01

0,1

1

10

100

1 2 4 8 16 32

b
an

d
w

id
th

 (
M

iB
/s

) x
1

0
0

0

concurrent clients

1 rpc 2 rpcs 4 rpcs 8 rpcs 16 rpcs

Fig. 7. NORNS aggregated bandwidth
for remote data writes

using the norns API. For remote requests, we use up to 32
compute nodes to send 50×103 remote requests in parallel
to the same NORNS target instance, both sequentially and in
groups of 16. We configure NORNS to use the ofi+tcp
plugin since it is less performant than other fabric-specific
plugins and should be supported by most HPC clusters. In
both cases we measure the latency taken by the daemon to
respond to the client (i.e. the time taken to process the request,
create a task descriptor, add it to the task queue, and respond
to the client) as well as the observed aggregated throughput
in requests per second (RPS). Each experiment is repeated
20 times. NORNS exhibits low latency when serving local
requests (≈50 µseconds in the worst case), which is expectedly
higher for remote requests (≈900 µseconds in the worst case)
since they involve network communication rather than node-
local IPCs. Throughput scales up to ≈700,000 local RPS and
up to≈45,000 remote RPS, which should be enough to support
the expected load from Slurm and applications.
Transfer rate: Figures 6 and 7 show the data transfer rates
when respectively reading/writing from/to remote NORNS
instances. The benchmark measures the aggregated bandwidth
rate from up to 32 clients reading/writing data in parallel from
a single NORNS target. Again, we measure the performance
using the ofi+tcp plugin and show results with 1 RPC
and 16 RPCs in flight. NORNS clients use a 16 MiB buffer
for transfers since increasing the buffer did not improve
bandwidth further, and each experiment is repeated 20 times.
Results show that aggregated bandwidth scales linearly with
the number of nodes peaking at ≈55.6GiB/s for reads and at
≈59.7GiB/s for writes. A detailed examination of the results
that the bandwidth per client saturates at ≈1.7GiB/s for reads
and ≈1.8GiB/s for writes, and that it remains stable (without
either rising or falling) even if the number of in-flight RPCs or
nodes is increased. This suggests that NORNS Mercury-based
network manager is capable of reaching the maximum band-
width for this particular protocol and that transfer performance
is limited by the underlying network stack.

C. Performance from Node-Local NVMs:

A key issue in supporting data-driven workflows effectively,
is to exploit node-local I/O as much as possible to share
data between workflow tasks, avoiding data transfers between
storage layers and instructing the job scheduler to move
computation to where data already resides. For this approach
to be successful, the node-local devices used for absorbing

●●●●

●●●●

●

●

●

●●

1000

10000

1 2 4 8 16 24 32

Nodes

B
a
n
d
w

id
th

 /
 M

B
/s

 (
lo

g
)

Read Lustre (median)
Read DCPMM
Write Lustre (median)
Write DCPMM

Fig. 8. Lustre I/O performance vs node-local Intel DCPMM NVM on the
NEXTGenIO prototype

normal application I/O need to provide a performance at
least similar to that of the underlying PFS. In this experi-
ment, we compare the performance between the Lustre PFS
used in the NEXTGenIO cluster and the node-local NVMs
available in compute nodes. We used IOR to use the 48
cores available to each node to spawn processes that created
as many independent files, both using Lustre for storage
and Intel®’s node-local DCPMM™s. The benchmark then
proceeded to read/write from/to the created files sequentially,
using a transfer size of 512KiB. To avoid benefiting from the
page cache, file sizes were chosen to be larger than 192GiB
to fill the nodes RAM. Both benchmarks were run for 25
independent repetitions during a maintenance period where
fewer jobs competed for I/O resources. Figure 8 confirms, as
expected, that the aggregated bandwidth from NVM devices is
significantly higher than Lustre’s median bandwidth, even up
to an order of magnitude for higher node counts. It also scales
better, even if Lustre is not under a production workload.

D. Workflow Performance

We also evaluated the performance benefits achievable when
utilising the functionality we have outlined to maintain data
on compute node NVMs and share that data between compute
jobs in a workflow. We evaluated performance with a synthetic
benchmark and using a user application (OpenFOAM), both
of which will be discussed in the following sections.
Synthetic benchmark: We created a synthetic workflow
benchmark that has a producer and a consumer of data,
configurable to produce a range of files with a range of
different sizes. We can run this benchmark either targeting
the Lustre filesystem or the NVMs on each compute node
and observe the performance difference between utilising both
forms of storage. We can also utilise the scheduler integration

TABLE III
SYNTHETIC WORKFLOW BENCHMARK USING

LUSTRE AND/OR NVMS IN A
COMPUTE NODE

Component Target Runtime (seconds)

Producer Lustre 96
Consumer Lustre 74
Producer NVM 64

Consumer NVM 30

TABLE IV
SYNTHETIC WORKFLOW BENCHMARK

WITH DATA STAGING

Component Runtime (seconds)

Producer 64
Consumer 30

HPCG stage out 137
HPCG stage in 142

HPCG no activity 122

TABLE V
OPENFOAM WORKFLOW BENCHMARK

USING LUSTRE VS NVMS + DATA STAGING

Workflow phase Lustre NVMs

decomposition 1191 1105
data-staging – 32

solver 123 66

and NORNS components to maintain data on a compute node,
in NVMs between workflow component runs and observe
the performance benefit this provides. Table III outlines the
performance achieved when producing and consuming 100GB
of data running the workflow on Lustre or directly on NVMs.
Each benchmark workflow ran 5 times and report the mean
result. Performance varied by <5% across runs. Benchmarks
were compiled using the Intel 19 compiler with the -O3 flag.

For the benchmark targeting Lustre we ran the producer
and consumer on two separate compute nodes to ensure
that data/I/O caching in the computing node operating did
not affect the measured runtimes. For the workflow using
NVMs we ran in two different configurations, one with the
components re-using the same node and the data stored on
the NVMs, and one using different compute nodes with data
moved off the producer node after production and pre-staged
on to the consumer node before the consumer is run.

For the staging benchmark we run another application on
the nodes where the data staging was occurring (both post-
producer and pre-consumer staging) to evaluate the potential
impact on applications of operations NORNS and the job
scheduler may undertake. For this we chose to run the High
Performance Conjugate Gradients (HPCG) [39] benchmark.
This aims to represent the computational and data access
patterns of a broad set of important computational simulation
applications. The conjugate gradients algorithm used in the
benchmark is not just floating point performance limited, it is
also heavily reliant on the performance of the memory system,
and to a lesser extend on the network used to connect the
processors together. We ran a small HPCG test case that would
complete in ≈122 seconds using 48 MPI processes per node.

We can see from the Table III, which outlines the per-
formance of using Lustre directly, or running the workflow
components consecutively on the same node, that using local
NVM storage gives ≈46% faster performance (96 vs 170
seconds) overall runtime for the workflow compared to using
Lustre. Note, for the NVM case we run a job that reads and
writes 200GB of data between workflow components on the
same node to ensure caching does not affect performance.

When considering the staging of data benchmark, were data
is moved to Lustre after the producer has completed and
loaded in to NVM before the consumer starts, we see outlined
in Table IV that the Producer and Consumer tasks are not
affected by this mode of operation, we achieve performance
commensurate with running both tasks on the same node using
node-local NVM. However, it is evident that the application

running on the compute nodes whilst the data is being moved
to and from the node-local storage is impacted by that activity.
We experience an approximately 15% increase in runtime for
the HPCG benchmark. It is worth noting that this is likely
to be a disproportionately large impact compared to general
applications as the runtime of HPCG is similar to that of the
time required to stage the data to or from the NVM. For most
applications this activity would normally only impact at the
beginning and/or end of execution, when the job scheduler is
preparing for a job finishing and the next job starting, and
thus should impact a much smaller part of the application
execution. However, it is important to note there is potential
for impact on running applications.
OpenFOAM performance: OpenFOAM [40] is a C++
object oriented library for Computational Continuum Me-
chanics developed to provide Computational Fluid Dynamics
functionality that can easily be extended and modify by users.
It is parallelised with MPI and is heavily used in academia
and industry for large scale computational simulations.

OpenFOAM often requires multiple stages to complete a
simulation, from preparing meshes and decomposing them for
the required number of parallel processes, to running the solver
and processing results. It also, often, undertakes large amounts
of I/O, reading in input data and producing data for analysis. It
is common that the different stages require differing amounts
of compute resources, with some stages only able to utilise
one node, and others (such as the solver) requiring a large
number of nodes to complete in a reasonable amount of time.

In general, OpenFOAM favours creating a directory per
process that will be used for the solver calculations, neces-
sitating a large amount of I/O for big simulation. Given these
features, OpenFOAM is a strong target for both workflow
functionality and improved I/O performance through node-
local I/O hardware. For this benchmark we ran a low-Reynolds
number laminar-turbulent transition modeling simulation of
the flow over the surface of an aircraft [41], using a mesh with
≈43 million mesh points. We decomposed the mesh over 16
nodes enabling 768 MPI processes to be used for the solver
step (picoFOAM). The decomposition step is serial, takes 1105
seconds, and requires 30GB of memory.

We ran the solver for 20 timesteps, and compared running
the full workflow (decomposing the mesh and then running
the solver) entirely using the Lustre filesystem or using node-
local NVM with data staging between the mesh decomposition
step and the solver. The solver produces 160GB of output data
when run in this configuration, with a directory per process.

Running the solver using Lustre required 123 seconds, whereas
running the solver using node-local storage required 66 sec-
onds, close to two times faster (see Table V). Using node-
local storage needs a redistribution of data from the storage
on the single compute node used for decomposing the mesh
to the 16 nodes needed for the solver. This data copy took 32
seconds, so even if not overlapped with other running tasks this
approach would provide improved performance compared to
directly using Lustre, more so when run for a full simulation,
which would require many thousands of timesteps meaning
the initial cost of copying the data would be negligible.

VI. RELATED WORK

In [42], the authors discuss the potential benefit of using
NVM in compute nodes and for computational science or data
analytics workflows. The work presented in [43] also addresses
the topic of HPC workflows and introduces NVStream, a
user-level data management system for producer-consumer
applications that exploits the byte-addressable and persistent
nature of NVM to enable streamed I/O for scientific work-
flows. However, NVStream requires application modification
and potentially algorithmic change to exploit the developed
framework. Our approach provides the potential for applica-
tions to move towards new modes of I/O, i.e. through memory
operations and sharing via NORNS, but also supports data
movement through files for already existing applications.

ADIOS [44] provides functionality to undertake I/O across
different storage targets, namespaces, and representations, in-
cluding volatile memory. With recent extensions, including
DataSpace/data staging integration, it can also manage and
move data around or between systems. However, as with the
NVStream approach, it is built around object or key-value level
storage where the middleware stores data for the application.
It does not provide the same functionality to support and
move files that NORNS supports, and also requires application
changes to exploit the provided functionality. Furthermore,
the data staging functionality is designed in a many-to-few
operation mode, with compute node data written to stage
nodes. This means the overall buffer available for data staging
is limited, and subject to performance interference between
applications. Our approach leverages storage within compute
nodes to reduce application interference and scale I/O perfor-
mance. It can also be used in scenarios where data is staged to
a limited number of nodes or to an external resource such as
a burst buffer, but is not restricted to this mode of operation.
Kimpe et al. [45] build atop IOFSL [46] to offer a container
abstraction and API to help manage local storage devices.
Similarly to NORNS, it focuses on data movement across
the system but with the goal of optimizing checkpointing I/O
instead of workflow-related I/O. Swift [47][48] is a workflow
description language and manager that allows describing data
flows in terms of composable independent computational
activities. Swift manages each workflow independently and is
tailored for scientific campaigns involving multi-site transfers,
whereas NORNS interfaces with SLURM to provide optimal
data transfers within the HPC cluster.

Work has also been done into integrating burst buffer
devices into scheduling and resource management decisions.
For example Cray DataWarp users can request allocations in
their job request through the DataWarp API [9], and IBM
burst buffers allow staging data into and out of node-local
storage via their job script [49]. Some work involving data-
aware scheduling has been done for grid computing [50], and
some more recent works have shown ways to map jobs onto
compute nodes [51] and to integrate storage with batch job
schedulers [52][53][54], but neither explicitly look at opti-
mizing end-to-end scientific workflows. Similarly to NORNS,
CLARISSE [55] provides middleware functionality aiming at
optimizing I/O operations on a system-wide basis. CLARISSE
does not consider node-local storage resources or full work-
flow/workload scheduling optimizations, however. TRIO [19]
explores how to efficiently move large checkpointing datasets
to the PFS by utilizing the burst buffers. Data Elevator [20]
and Stacker [21] are similar to NORNS in that they focus
on asynchronously moving data across I/O layers to optimize
scientific workflows. The former specializes on applications
using HDF5 while the latter optimizes data movements using
machine learning techniques. As far as we know, neither
integrates with the scheduler to capture a global view of the
workflows in the system.

VII. CONCLUSIONS AND FUTURE WORK

We present the design and implementation of NORNS, a
new service for asynchronous data staging that coordinates
with job schedulers to orchestrate data transfers to achieve a
better utilization of the multiple HPC I/O layers. We also in-
troduce several extensions to Slurm that allow users to express
data dependencies and I/O requirements to their job definitions
which, coupled with the APIs and primitives provided by
NORNS, effectively adds support to Slurm for modelling and
executing data-driven workflows. Experimental results show
that by leveraging this framework to include awareness of
node-local NVMs storage into Slurm’s scheduling process,
makes better use of the available storage layers, reducing
contention to the PFS by effectively isolating workflow I/O
to node-local storage and reducing job runtimes.

Nonetheless, we acknowledge that there is still the chal-
lenge of how to optimally schedule transfers from/to the
PFS/between compute nodes to maximize job throughput and
minimize I/O interference with user applications. NORNS
instances in each compute node could monitor the performance
of the dataspaces assigned to them, and arbitrate pending
requests to minimize metrics such as time to completion,
energy consumption, or I/O task throughput. Information about
observed I/O performance could be fed back to the job
scheduler so that it could take better informed decisions,
offering a robust platform upon which smarter data-aware
scheduling algorithms could be built. Integrating NORNS with
existing workflow engines, exploring the effects of competition
between administrative and application I/O as well as imple-
menting transfer plugins for shared burst buffers are additional
tasks for the future.

REFERENCES

[1] “TOP500 Supercomputer Sites,” November 2018. [Online]. Available:
https://www.top500.org/lists/2018/11/

[2] Lister, JB and Duval, BP and Farthing, JW and Fredian, TJ and
Greenwald, M and How, J and Llobet, X and Saint-Laurent, F and
Spears, W and Stillerman, JA, “The ITER project and its data handling
requirements,” in 9th ICALEPCS Conference, Gyeongju, Korea, 2003.

[3] “The Large Hadron Collider.” [Online]. Available: http://home.cern/
topics/large-hadron-collider

[4] CMS Collaboration et al., “The CMS experiment at the CERN LHC,”
2008. [Online]. Available: http://cms.cern/

[5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham,
and R. Ross, “Understanding and improving computational science
storage access through continuous characterization,” ACM Transactions
on Storage (TOS), vol. 7, no. 3, p. 8, 2011.

[6] S. Habib, R. Roser, R. Gerber, K. Antypas, K. Riley, T. Williams,
J. Wells, T. Straatsma, A. Almgren, J. Amundson et al., “ASCR/HEP
exascale requirements review report,” arXiv preprint arXiv:1603.09303,
2016.

[7] P. A. Abell, D. L. Burke, M. Hamuy, M. Nordby, T. S. Axelrod,
D. Monet, B. Vrsnak, P. Thorman, D. Ballantyne, J. D. Simon et al.,
“LSST Science Book, Version 2.0,” arXiv:0912.0201, 2009.

[8] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175, 2018.

[9] CRAY Inc., “libdatawarp - the DataWarp API.” [Online].
Available: https://pubs.cray.com/content/S-2558/CLE%206.0.UP06/
xctm-series-datawarptm-user-guide/libdatawarp---the-datawarp-api

[10] DataDirect Networks (DDN®) Storage, “Infinite Mem-
ory Engine.” [Online]. Available: https://www.ddn.com/products/
ime-flash-native-data-cache/

[11] National Energy Research Scientific ComputingCenter (NERSC), “Cori
Computational System.” [Online]. Available: https://www.nersc.gov/
users/computational-systems/cori/

[12] Los Alamos National Laboratory (LANL), “The Trinity supercomputer.”
[Online]. Available: https://www.lanl.gov/projects/trinity/

[13] Intel Corporation, “Optane™ memory.” [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-technology/
optane-memory.html

[14] J. L. Whitt, “Oak Ridge Leadership Computing Fa-
cility: Summit and Beyond,” 3 2017. [Online].
Available: https://indico.cern.ch/event/618513/contributions/2527318/
attachments/1437236/2210560/SummitProjectOverview jlw.pdf

[15] Lawrence Livermoore National Lab, “Sierra.” [Online]. Available:
https://hpc.llnl.gov/hardware/platforms/sierra

[16] Barcelona Supercomputing Center, “MareNostrum IV – Technical
Information.” [Online]. Available: https://www.bsc.es/marenostrum/
marenostrum/technical-information

[17] A. M. Caulfield, L. M. Grupp, and S. Swanson, “Gordon: using
flash memory to build fast, power-efficient clusters for data-intensive
applications,” ACM Sigplan Notices, vol. 44, no. 3, pp. 217–228, 2009.

[18] “Slurm Burst Buffer Guide.” [Online]. Available: https://slurm.schedmd.
com/burst buffer.html

[19] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu, “Trio: Burst Buffer
Based I/O Orchestration,” in 2015 IEEE International Conference on
Cluster Computing. IEEE, 2015, pp. 194–203.

[20] B. Dong, S. Byna, K. Wu, H. Johansen, J. N. Johnson, N. Keen
et al., “Data elevator: Low-contention Data Movement in Hierarchical
Storage Systems,” in 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC). IEEE, 2016, pp. 152–161.

[21] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar,
“Stacker: An Autonomic Data Movement Engine for Extreme-scale Data
Staging-based in-situ Workflows,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis. IEEE Press, 2018, p. 73.

[22] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2003, pp. 44–60.

[23] A. Shoshani and D. Rotem, Scientific data management: challenges,
technology, and deployment. Chapman and Hall/CRC, 2009.

[24] B. Dong, X. Li, L. Xiao, and L. Ruan, “A new file-specific stripe size
selection method for highly concurrent data access,” in Proceedings of
the 2012 ACM/IEEE 13th International Conference on Grid Computing.
IEEE Computer Society, 2012, pp. 22–30.

[25] P. Braam, “The Lustre Storage Architecture,” Cluster File Systems
Inc. architecture, design, and manual for Lustre, 11 2002. [Online].
Available: http://www.lustre.org/docs/lustre.pdf

[26] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters.” in FAST, vol. 2, no. 19, 2002.

[27] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in International Conference on High Performance Comput-
ing for Computational Science. Springer, 2010, pp. 1–25.

[28] EPCC, The University of Edinburgh, “ARCHER national
supercomputing service.” [Online]. Available: https://www.epcc.ed.
ac.uk/facilities/archer

[29] “HPC IO Benchmark Repository.” [Online]. Available: https://github.
com/hpc/ior

[30] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the IO performance
of petascale storage systems,” in SC’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1–12.

[31] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in SC’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, 2012, pp. 1–11.

[32] A. Kougkas, H. Devarajan, X.-H. Sun, and J. Lofstead, “Harmonia:
An Interference-Aware Dynamic I/O Scheduler for Shared Non-Volatile
Burst Buffers,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 290–301.

[33] Y. Hashimoto and K. Aida, “Evaluation of performance degradation in
hpc applications with vm consolidation,” in 2012 Third International
Conference on Networking and Computing. IEEE, 2012, pp. 273–277.

[34] J. Lofstead and R. Ross, “Insights for exascale io apis from building a
petascale io api,” in SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2013, pp. 1–12.

[35] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[36] “Protocol Buffers.” [Online]. Available: https://developers.google.com/
protocol-buffers/

[37] J. Soumagne, D. Kimpe, J. A. Zounmevo, M. Chaarawi, Q. Koziol,
A. Afsahi, and R. B. Ross, “Mercury: Enabling remote procedure call for
high-performance computing,” in 2013 IEEE International Conference
on Cluster Computing (CLUSTER), Indianapolis, IN, USA, September
23-27, 2013, 2013, pp. 1–8.

[38] EPCC (The University of Edinburgh), Intel, Fujitsu, Barcelona
Supercomputing Center, Technische Universität Dresden, Allinea,
ECMWF, ARCTUR, “Next Generation I/O for the Exascale.” [Online].
Available: https://www.nextgenio.eu

[39] J. J. Dongarra, M. A. Heroux, and P. Luszczek, “Hpcg benchmark
: a new metric for ranking high performance computing systems,”
Knoxville, Tennessee, Tech. Rep. UT-EECS-15-736, November 2015.

[40] H. Jasak, “Openfoam: Open source cfd in research and industry,”
International Journal of Naval Architecture and Ocean Engineering,
vol. 1, no. 2, pp. 89 – 94, 2009. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S2092678216303879

[41] Andrejašič, Matej and Veble, Gregor and Bat, Nejc, “Cloud-
based Simulation of Aerodynamics of Light Aircraft.” [Online].
Available: https://hpc-forge.cineca.it/files/CoursesDev/public/2015/
Workshop HPC Methods for Engineering/cloud based aircraft.pdf

[42] M. Weiland, A. Jackson, N. Johnson, and M. Parsons, “Exploiting
the performance benefits of storage class memory for hpc and hpda
workflows,” Supercomputing Frontiers and Innovations, vol. 5, no. 1,
2018. [Online]. Available: http://superfri.org/superfri/article/view/164

[43] P. Fernando, A. Gavrilovska, S. Kannan, and G. Eisenhauer, “Nvstream:
Accelerating hpc workflows with nvram-based transport for streaming
objects,” in Proceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’18.
New York, NY, USA: ACM, 2018, pp. 231–242. [Online]. Available:
http://doi.acm.org/10.1145/3208040.3208061

[44] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible io and integration for scientific codes through the adaptable
io system (adios),” in Proceedings of the 6th International Workshop

on Challenges of Large Applications in Distributed Environments, ser.
CLADE ’08. New York, NY, USA: ACM, 2008, pp. 15–24. [Online].
Available: http://doi.acm.org/10.1145/1383529.1383533

[45] D. Kimpe, K. Mohror, A. Moody, B. Van Essen, M. Gokhale, R. Ross,
and B. R. de Supinski, “Integrated in-system storage architecture for
high performance computing,” in Proceedings of the 2nd International
Workshop on Runtime and Operating Systems for Supercomputers.
ACM, 2012, p. 4.

[46] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan, “Scalable I/O forwarding framework
for high-performance computing systems,” in 2009 IEEE International
Conference on Cluster Computing and Workshops. IEEE, 2009, pp.
1–10.

[47] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski, V. Nefe-
dova, I. Raicu, T. Stef-Praun, and M. Wilde, “Swift: Fast, reliable,
loosely coupled parallel computation,” in 2007 IEEE Congress on
Services (Services 2007). IEEE, 2007, pp. 199–206.

[48] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[49] IBM, “IBM/CAST - Cluster Administration and Storage Tools.”
[Online]. Available: https://github.com/IBM/CAST

[50] J. M. Schopf, “A general architecture for scheduling on the grid,” Special
issue of JPDC on Grid Computing, vol. 4, 2002.

[51] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Enabling par-
allel simulation of large-scale hpc network systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 28, no. 1, pp. 87–100, 2016.

[52] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
M. Livny, “Explicit control in the batch-aware distributed file system.”
in NSDI, vol. 4, 2004, pp. 365–378.

[53] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the i/o of hpc applications under congestion,” in 2015 IEEE
International Parallel and Distributed Processing Symposium. IEEE,
2015, pp. 1013–1022.

[54] S. Herbein, D. H. Ahn, D. Lipari, T. R. Scogland, M. Stearman,
M. Grondona, J. Garlick, B. Springmeyer, and M. Taufer, “Scalable i/o-
aware job scheduling for burst buffer enabled hpc clusters,” in Proceed-
ings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing. ACM, 2016, pp. 69–80.

[55] F. Isaila, J. Carretero, and R. Ross, “Clarisse: A middleware for data-
staging coordination and control on large-scale hpc platforms,” in 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2016, pp. 346–355.

