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 28 

ABSTRACT 29 

 30 

The circadian and seasonal actions of melatonin are mediated by high affinity G-31 

protein coupled receptors (melatonin receptors, MTRs), classified into 32 

phylogenetically distinct subtypes based on sequence divergence and 33 

pharmacological characteristics. Three vertebrate MTR subtypes are currently 34 

described: MT1 (MTNR1A), MT2 (MTNR1B), and Mel1c (MTNR1C / GPR50), which 35 

exhibit distinct affinities, tissue distributions and signaling properties. We present 36 

phylogenetic and comparative genomic analyses supporting a revised classification 37 

of the vertebrate MTR family. We demonstrate four ancestral vertebrate MTRs, 38 

including a novel molecule hereafter named Mel1d. We reconstructed the evolution 39 

of each vertebrate MTR, detailing genetic losses in addition to gains resulting from 40 

whole genome duplication events in teleost fishes. We show that Mel1d was lost 41 

separately in mammals and birds and has been previously mistaken for an MT1 42 

paralogue. The genetic and functional diversity of vertebrate MTRs is more complex 43 

than appreciated, with implications for our understanding of melatonin actions in 44 

different taxa. The significance of our findings, including the existence of Mel1d, are 45 

discussed in an evolutionary and functional context accommodating a robust 46 

phylogenetic assignment of MTR gene family structure. 47 

  48 
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 49 

INTRODUCTION 50 

 51 

Melatonin is an ancient eukaryotic signalling molecule that regulates diverse 52 

biological functions. While best known as a regulator of biological rhythms in 53 

humans, this hormone also regulates energy balance, temperature, behavior, blood 54 

pressure, and seasonal reproduction. Melatonin is secreted by the pineal gland and 55 

targets the brain as well as peripheral tissues (Hardeland et al. 2011, Slominski et al. 56 

2012), but is also produced by several tissues, eliciting paracrine effects (Weaver 57 

and Reppert 1990). The actions of melatonin depend on the spatiotemporal 58 

expression of high-affinity melatonin receptors (MTR), representing a specific class of 59 

G protein-coupled receptor (GPCR).  60 

 61 

Three paralogous MTR family members have been characterized in jawed 62 

vertebrates, namely MT1 (Mel1a / MTNR1A), MT2 (Mel1b / MTNR1B), and Mel1c 63 

(MTNR1C / GPR50 in mammals) (Reppert et al. 1994, 1995a, 1995b). Despite 64 

showing overlap in expression, these different MTRs have evolved unique functions. 65 

MT1 has a higher affinity for melatonin than MT2 (Dubocovich and Markowska 2005), 66 

and in mammals, Mel1c has lost the ability to bind melatonin (Dufourny et al. 2008), 67 

though it does modulate melatonin signaling via its association with MT1 (Levoye et 68 

al. 2006). While MT1 associates with a range of G proteins to activate several distinct 69 

signalling pathways, eliciting wide-ranging cellular effects (Witt-Enderby et al. 2003), 70 

MT2 associates with a single G protein (Jockers et al. 2008). Owing to such 71 

functional divergence, different MTRs may have very distinct biological effects, even 72 

when expressed in the same cell types (e.g. Dubocovich and Markowska 2005).  73 

 74 
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A past study demonstrated melatonin binding in the brain of jawed vertebrates and 75 

lamprey, but not in hagfishes or amphioxus (Vernadakis et al. 1998). Thus, it is likely 76 

that high-affinity MTRs were present in the vertebrate ancestor, and were secondarily 77 

lost in some jawless fishes, as noted for several other traits (e.g. reduction of 78 

vertebrae-like elements - Ota et al. 2011; Dlx genes - Sugahara et al. 2013; reviewed 79 

in Kuraku 2013). MTR-like GPCR genes have also been discovered in urochordates, 80 

cephalochordates, hemichordates and echinoderms (Kamesh et al. 2008, Nordstrom 81 

et al. 2008, Krishnan et al. 2013), but their evolutionary affinity to the vertebrate 82 

MTRs remains ambiguous. The distinct MTRs of jawed vertebrates potentially 83 

originated during two rounds (2R) of whole genome duplication (WGD) at the stem of 84 

vertebrate evolution (e.g. Dehal and Boore, 2005), though this is yet to be 85 

established. Additional expansions in the MTR family of fishes (e.g. Shang & 86 

Zhdanova 2007; Hong et al. 2014) may owe to a further round of teleost-specific 87 

WGD (‘Ts3R’) in the common teleost ancestor, or additional lineage-specific WGD 88 

events in some lineages, e.g. the salmonid-specific 4R (‘Ss4R’) (Macqueen and 89 

Johnston, 2014; Lien et al. 2016), though, again, this has not been properly explored.  90 

 91 

The overarching goal of this study was to re-examine the evolutionary history of 92 

vertebrate MTRs, using data in publically-available sequence databases for robust 93 

phylogenetic and comparative genomic reconstructions. Our findings concretely 94 

demonstrate a fourth ancestral MTR (‘Mel1d’), along with teleost-specific expansions 95 

in MTR diversity, likely owing to Ts3R and Ss4R. With a new evolutionary framework 96 

in place we reinterpret findings on vertebrate MTR sequence divergence and 97 

expression from past studies. Overall, this study highlights substantial unexplored 98 

diversity in MTR signalling within vertebrates, pointing to new lines of investigation. 99 

 100 
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MATERIALS AND METHODS 101 

 102 

Sequence and phylogenetic analyses 103 

Amino acid sequences encoded by MTR or FAT protocadherin family member genes 104 

were collected from representative jawed vertebrate species with high-quality 105 

genome assemblies. Details of these sequences are given in Table S1 (MTR) and 106 

Table S2 (FAT), which include database accession numbers and nomenclature 107 

matching the findings of our phylogenetic analyses. As a start point for the analysis, 108 

MTR/FAT proteins of human (i.e. MT1/MT2/Mel1c/GPR50 or FAT1/2/3) were used as 109 

queries in BLASTp (Altschul et al. 1997) searches to identify homologues within the 110 

NCBI database (https://www.ncbi.nlm.nih.gov/). We also used the Ensembl genome 111 

browser (https://www.ensembl.org/) to collect MTR family proteins from several 112 

species, using the EnsemblCompara method (Vilella et al. 2009).  113 

 114 

The sequences were aligned using MAFFT v.7 (Katoh and Standley, 2013) with 115 

default settings and subjected to quality filtering using GBlocks with default settings 116 

(Talavera and Castresana, 2007). Final alignments of 300 (MTR) and 2,540 (FAT) 117 

amino acid positions (Additional Dataset 1) were used for tree building, done using 118 

Bayesian (BY) and maximum likelihood (ML) (MTR) or just ML (FAT) methods. ML 119 

trees were generated using IQ-TREE (Nguyen et al. 2015) via the IQ-TREE 120 

webserver (Trifinopoulos et al. 2016), employing the best-fitting amino acid 121 

substitution model selected with ModelFinder (Kalyaanamoorthy et al. 2017) under 122 

the Bayesian information criterion. The best fit models were JTT+F+I+ G4 for MTR 123 

and JTT+G4+I for FAT, where ‘JTT’ is the general matrix of Jones et al. 1992, ‘+I’ 124 

includes empirical estimation of the proportion of invariant sites, ‘+F’ includes 125 

empirical estimation of amino acid frequencies and ‘+G4’ denotes estimation of the 126 
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gamma distribution parameter with 4 rate classes. The stability of branching in the 127 

ML trees was assessed using 1,000 ultrafast bootstrap replicates, (Hoang et al. 128 

2018). The BY analysis (MTR dataset) was done in BEAST v1.8.3 (Drummond et al. 129 

2012), employing an uncorrelated relaxed clock model (Drummond et al. 2005) and a 130 

Yule speciation prior (Gernhard, 2008), along with the best-fitting substitution model 131 

selected by IQ-TREE. A Markov chain Monte Carlo (MCMC) chain of 50 million 132 

generations was generated and sampled every 5,000 generations. Convergence of 133 

the MCMC chain was assessed using Tracer v1.7.1 http://beast.bio.ed.ac.uk/tracer). 134 

A maximum clade credibility tree was generated in TreeAnnotator (Drummond et al. 135 

2012) after removal of the first 10% sampled trees. 136 

 137 

Comparative genomic and sequence analyses 138 

Synteny analyses were performed using Ensembl genome browser annotations via 139 

the Genomicus platform (Nguyen et al. 2018). These analyses were supplemented 140 

with data from NCBI GenBank for species not available in Ensembl. Gene prediction 141 

and annotation for Lethenteron camtschaticum was performed using FGENESH 142 

(Soloyvev et al. 2006). Comparative analyses of MTR family amino acid sequences 143 

was done using the final alignment described above (note: the Gblocks filtering step 144 

served to remove flanking regions outside the transmembrane/loop regions, which 145 

were unaltered). The sequence similarity of the proposed vestigial MTR-like 146 

pseudogenes identified in our synteny analyses was established using BLASTx 147 

within the NCBI database. 148 

 149 

Data Availability 150 

Supplemental material described in the paper is available at Figshare: 151 

https://gsajournals.figshare.com/s/56f29e83cc0ec8748842. Fig. S1. ML phylogenetic 152 

http://beast.bio.ed.ac.uk/tracer
https://gsajournals.figshare.com/s/56f29e83cc0ec8748842
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analysis of MTRs in vertebrates. This analysis was done using IQ-TREE with a high-153 

confidence alignment of eighty MTRs (300 amino acid positions; Additional Dataset 154 

1) and the best-fitting amino acid substitution model (JTT+F+I+G4). Numbers on 155 

branches are bootstrap support values. Other details as in the Fig. 1 legend (see 156 

main text) Table S1 provides details of all protein sequences used for phylogenetic 157 

analyses of the vertebrate MTR family. Table S2 provides details of all sequences 158 

used for phylogenetic analyses of the vertebrate FAT protocadherin family 159 

Additional Dataset 1 is the MTR sequence alignment used for phylogenetic analysis 160 

and comparative sequence analysis. Additional Dataset 2 is the FAT alignment used 161 

for phylogenetic analysis.  162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 
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 179 

 180 

RESULTS 181 

 182 

Four MTRs are retained in jawed vertebrates  183 

We identified eighty unique MTR family member proteins in sequence databases 184 

representing a standardized set of eighteen jawed vertebrate lineages (see 185 

MATERIALS AND METHODS). A phylogenetic analysis was done using a BY 186 

method (Fig. 1) incorporating a relaxed molecular clock model, which allows 187 

estimation of the most plausible root location in the tree (Drummond et al. 2006; e.g. 188 

Macqueen and Wilcox 2014; Redmond et al. 2018). Four distinct MTR clades (Fig. 1) 189 

had strong statistical support (posterior probability, PP: >0.96), and each was 190 

represented by cartilaginous fish, as well as ray-finned and lobe-finned fish lineages, 191 

with branching patterns closely matching expected species phylogeny (Fig. 1). Three 192 

of these clades correspond to known ancestral vertebrate MTR family members (e.g. 193 

Dufourny et al. 2008). The fourth clade is hereafter named ‘Mel1d’. The same four 194 

clades were strongly supported in an unrooted ML phylogenetic analysis (bootstrap 195 

support: >96%) congruent with the BY tree (Fig. S1).  196 

 197 

These analyses indicate that four distinct MTRs existed in the jawed vertebrate 198 

ancestor. However, the phylogenetic affinity of the four MTRs remains equivocal in 199 

the BY analysis, with moderate support for Mel1d/MT1 (PP: 0.87) and MT2/Mel1C 200 

(PP: 0.53) being paralogues, which can be explained parsimoniously by 2R (Fig. 1).  201 

 202 

Evolutionary history of individual vertebrate MTRs 203 
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Expanding on the above findings, we reconstructed a more detailed evolutionary 204 

history for each ancestral MTR in jawed vertebrates, accommodating gene losses, in 205 

addition to gains resulting from WGD events in teleosts (summarized in Fig. 2).  206 

 207 

Mel1d was encoded by a single gene in all represented species (Fig. 1, Fig. 2a) 208 

including teleosts, consistent with the loss of any paralogues created during Ts3R 209 

and Ss4R. In lobe-finned fish, Mel1d was identified in a coelacanth, an amphibian, 210 

and two reptiles, but was not identified in the mammals and birds represented in our 211 

trees (Fig. 2a). As only a small number of bird and mammals were included, we 212 

decided to search more broadly for Mel1d orthologues. Hence, BLAST searches of 213 

the complete set of proteins stored in NCBI for mammals (~4.6 million) and birds 214 

(~2.8 million) were done using reptile Mel1d orthologues as the query. Though 215 

hundreds of bird and mammal genomes are available in NCBI with protein-level 216 

annotations (spanning the diversity of each lineage), the top mammal/bird hit for 217 

reptile Mel1D was always MT1/MTNR1A (not shown). Considering our current 218 

understanding of amniote phylogeny (e.g. Chiari et al. 2012), our data requires that 219 

independent losses of Mel1d occurred in the ancestors to birds and mammals. 220 

 221 

For all studied vertebrate species outside teleosts, we identified one copy of MT1, 222 

barring spotted gar, where MT1 was not identified (Fig. 1, Fig. 2b); its trace was 223 

retrieved in the genome after further analyses (see section below), representing a 224 

sequence annotated as a pseudogene. Several teleost species retain two or more 225 

ancestral MT1 copies (PP: 0.99, Fig. 1), which can be explained by Ts3R. These 226 

duplicates have been annotated in zebrafish as “Mtnr1aa” and “Mtnr1ab” (ZFIN 2008 227 

- ZNC nomenclature, cloned as ‘“ZMel1a1” and “ZMel1a3” by Shang & Zhdanova 228 

2007). Consequently, we maintained the same ‘a’ and ‘b’ nomenclature in all species 229 
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according to inferences of orthology with zebrafish (Fig. 1). The two teleost-specific 230 

MT1 paralogues were not present in all teleost lineages, with MT1b absent from the 231 

studied acanthopterygians (tilapia and pufferfish). Salmonid-specific paralogues of 232 

MT1a (MT1a1 and 1a2) were identified, ancestral to three salmonid species (PP: 1.0, 233 

Fig. 2b), consistent with retention from Ss4R, though only a single copy of MT1b was 234 

retained in the same three species, suggesting ancestral loss following Ss4R (Fig. 1, 235 

Fig. 2b). 236 

 237 

We identified one copy of MT2 in non-teleost vertebrate lineages, and evidence for 238 

teleost-specific paralogues (Fig. 2c). Two MT2 paralogues were identified in 239 

Ostariophysi members (zebrafish and Mexican cavefish) and northern pike 240 

(Protacanthoptergii); however, only one MT2 copy was identified in Acanthopterygii 241 

members (Nile tilapia and pufferfish) (Fig. 1, Fig. 2c). Branching patterns among 242 

these duplicates were not well resolved when considering species phylogeny. An 243 

ancestral teleost duplication event (e.g. Ts3R) predicts two paralogous MT2 teleost 244 

clades, each containing teleosts branching after expected species relationships (as 245 

seen for MT1a/b). However, a clade containing zebrafish “Mtnr1ba” (ZFIN 2008, 246 

“ZMel1b2” in Shang & Zhdanova 2007) branched outside other fish (including the 247 

non-teleost spotted gar) in both the BY and ML trees (Fig. 1 and S1). Internal to the 248 

spotted gar, there were two teleost MT2 clades, one containing zebrafish “Mtnr1bb” 249 

(ZFIN 2008, “ZMel1b1” in Shang & Zhdanova 2007) and other teleost lineages 250 

(northern pike and Acanthopterygii members), while the other contained a separate 251 

northern pike sequence and all MT2 sequences from salmonids. Given the strong 252 

support for the clade containing zebrafish “Mtnr1bb” (PP:1.0, Bootstrap support: 253 

100%), we considered all sequences therein to be orthologous, and named them 254 

MT2b (to maintain the zebrafish “b” nomenclature) (Fig. 2c). We named the 255 
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remaining teleost MT2 sequences as MT2a (Fig. 2c), under the hypothesis that 256 

orthology to zebrafish MT2a was obscured by a long-branch attraction artefact (note 257 

the long-branch length leading to Ostariophysi members for MT2a; Fig. S1). This 258 

scenario is parsimonious, as it allows for a single ancestral teleost duplication (e.g. 259 

Ts3R) rather than several lineage-specific MT2 gains. Accordingly, we propose that 260 

MT2a was lost in the ancestor to Oreochromis and Takifugu, while two salmonid 261 

duplicates of MT2a (MT2a1 and 2a2) were retained from Ss4R (Fig. 1 and S1, Fig. 262 

2c). No copies of MT2b were identified in salmonids, suggesting a loss in the 263 

common salmonid ancestor (Fig. 2c).  264 

 265 

As shown elsewhere (Dufourny et al. 2008), Mel1c and mammalian GPR50 proteins 266 

grouped together in a well-supported clade (Fig. 1). A single Mel1c copy was 267 

identified in all teleosts barring salmonids, which evidently lack Mel1c (Fig. 2d). This 268 

is consistent with a scenario where one Mel1c paralogue was lost early following 269 

Ts3R, and an additional loss occurred in the common salmonid ancestor (Fig. 2d). 270 

 271 

Synteny analysis supports phylogenetic assignment of vertebrate MTRs 272 

Next, to gain an independent line of evidence to support our phylogenetic 273 

reconstructions, we compared the genomic regions harboring MTR-encoding genes 274 

among a range of vertebrate lineages. The local gene neighborhood containing each 275 

MTR family member was more or less conserved across jawed vertebrate evolution, 276 

defining identifiable synteny groups specific to each ancestral MTR (Fig. 3), including 277 

teleost and salmonid-specific paralogues (Fig. 4). The genomic neighborhood 278 

containing the single MTR locus of lampreys did not conserve synteny with an 279 

equivalent region containing any single MTR gene in gnathostomes. Instead, the 280 

genes surrounding the single MTR locus of lampreys showed notable similarity to a 281 
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combination of genes located around the various gnathostome MTRs (Fig. 4e). This 282 

lends support to an ancestral origin of MTRs in the vertebrate lineage, but does not 283 

allow us to pinpoint the relationship of lamprey MTR to the four MTR family members 284 

of jawed vertebrates. One possible interpretation is that the duplications generating 285 

four gnathostome MTR genes occurred after the cyclostomes and gnathostomes 286 

split, with the lamprey genomic neighborhood reflecting a derived representation of 287 

the ancestral vertebrate state. However, the current consensus is that at least one 288 

round of WGD is shared by cyclostomes and gnathostomes (e.g. Kuraku et al. 2009, 289 

Stadler et al. 2004). In this scenario, conserved synteny between a single genomic 290 

region in the former to multiple blocks in the latter may be explained by one or more 291 

shared duplications followed by lineage-specific rediploidization, as proposed by 292 

Robertson et al. 2017. 293 

 294 

Genetic linkage between MTR and FAT genes 295 

Tandem-linked MTR and FAT protocadherin gene family members are strongly 296 

conserved in all vertebrates (Fig. 3, Fig. 4). Specifically, MT1, Mel1d, and MT2 were 297 

almost always in tandem with FAT1, 2, and 3, respectively (Fig. 3, Fig. 4). This 298 

association was absent for Mel1c, in addition to MTR co-orthologues from a sea 299 

squirt (Fig. 3f) and the Florida lancelet (not shown), defining this as a vertebrate-300 

specific feature. Past studies have noted genetic linkage between MTR and FAT 301 

genes. For example, the FAT3-MT2 locus is involved in diabetes risk, with several 302 

SNPs involved in disease located between the two genes, implying potential 303 

functional links (e.g. Prokopenko et al. 2009, Dupuis et al. 2010). While, the reason 304 

for co-evolution of these loci is yet to be determined, the tandem organization of FAT 305 

and MTR genes indicates selective pressure to maintain an association that may be 306 

underpinned by a conserved feature of vertebrate physiology. 307 
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 308 

FAT family sequences also provide an independent source of phylogenetic 309 

information that may help reconstruct the evolution of the genomic regions containing 310 

linked MTR genes. In an ML analysis performed with FAT proteins from 311 

representative vertebrate species, we observed three clades (FAT1, 2 and 3) that 312 

branched according to expected species relationships (Fig. 5). When the ML tree 313 

was midpoint rooted, FAT1 (linked to MT1) and FAT2 (linked to Mel1d) were sister 314 

groups (Fig. 5), consistent with the sister relationship of MT1 and Mel1d recovered by 315 

the MTR phylogeny. Further, the teleost duplications observed for MTR genes were 316 

clearly identifiable in the respective tandem FAT genes (Fig. 5). Finally, the well-317 

supported branching of salmonid FAT3a sequences with zebrafish FAT3a (i.e. linked 318 

to the MT2a gene, Fig 3c) adds weight to the hypothesis that salmonid/pike MT2 319 

sequences are orthologous to zebrafish MT2a (Fig. 2c).  320 

 321 

Synteny analyses support MTR losses  322 

The conservation of synteny across vertebrate taxa in genomic regions containing 323 

MTR genes provides useful information on MTR genes inferred to be absent in 324 

sequence databases. In this respect, we observed that the genomic regions 325 

containing Mel1d in reptiles, frogs and fishes have matched syntenic regions in the 326 

human and chicken genomes (Fig. 3d). Consequently, the regions predicted to 327 

contain Mel1d in human and chicken have been properly assembled and are 328 

otherwise well annotated, consistent with bone-fide genetic losses of Mel1d in these 329 

species. The same approach allowed us to detect a pseudogene likely to be a 330 

vestige of Mel1c in Atlantic salmon (LOC106568030) (Fig. 3d), and a gene annotated 331 

as ‘non-coding’ bearing similarity with MT1 (according to BLAST) at the predicted 332 

MT1 locus in spotted gar (LOC107077181) (Fig. 3a). Further, a second FAT2 333 
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paralogue was detected in Atlantic salmon, supporting our previous conclusion of an 334 

ancestral loss of one Mel1d copy following Ss4R. Similarly, a second FAT3 335 

paralogue was detected in Oreochromis, non-paired with an MTR2 gene (Fig. 3c), 336 

confirming the loss of MT2a in this species. 337 

 338 

Comparative sequence analysis of Mel1d with other MTRs 339 

Having established that Mel1d is an ancestral vertebrate MTR, we sought to compare 340 

the primary amino acid sequence of this molecule to other MTR family members, 341 

hoping to gain clues on its function considering existing literature (Fig. 6).  342 

 343 

We first examined the MTR transmembrane domains and ligand-binding residues, 344 

which have known functional importance. The characteristic seven transmembrane 345 

domain structure (TMDs) of all MTRs, critical for GPCR structure and ligand binding 346 

(Baldwin 1994), were conserved in Mel1d, MT1, MT2 and Mel1c (Fig. 6). Indeed, 347 

most of the residues identified as key for melatonin binding are readily identifiable in 348 

the Mel1d transmembrane domains (Fig. 6), in particular TM3, 6 and 7 (Gubitz & 349 

Reppert 2000, Kokkola et al. 2003, Mazna et al. 2005, 2008, Chan & Wong 2013). 350 

The only notable difference in the TMDs was that several Mel1d orthologues had 351 

threonine replacements at position 254, specific to this MTR. This position is 352 

important for melatonin binding in MT2 (valine-291 on human MT2), which was not 353 

reported for MT1 (Mazna et al. 2005). Outside the TMDs, two additional melatonin 354 

binding residues (asparagine-102 of the conserved NRY motif and alanine-238) were 355 

conserved in Mel1d (Fig. 6). Interestingly, a mutation in the second extracellular loop 356 

of GPR50 linked to the loss of melatonin binding function in mammals (Clément et al. 357 

2017) was absent in Mel1d (Fig. 6).  358 

 359 
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Other key sites conserved in Mel1d included cysteine-78 and cysteine-155, 360 

responsible for a conserved disulfide bridge essential to MTR structure (Fig. 6). In 361 

addition, residues important for G protein activation and trafficking of MT1 (Kokkola 362 

et al. 2005) were all conserved in Mel1d (green arrows on Fig. 6). Putative 363 

palmitoylation site in MT1 and MT2 (cysteine-314 in MT1 and cysteine- 332 in MT2, 364 

Sethi et al. 2008) required for G-protein interaction (light blue arrow on Fig. 6) were 365 

either not identified (MT2 cysteine-332) in Mel1d or absent from most species (MT1 366 

cysteine-314). However a proximal conserved cysteine in position 294 of Mel1d (Fig. 367 

6) may fulfil a similar function. Several phosphorylation sites have been suggested in 368 

the C-terminal cytoplasmic tail of MT1 and MT2, which might be important for β-369 

arrestin-dependent receptor internalization (Ebisawa et al. 1994, Sethi et al. 2008, 370 

yellow arrows on Fig. 6). One of these sites is present on Mel1d, at position 288, 371 

however only in coelacanth and tetrapods. None of the other phosphorylation sites 372 

are present because of the shorter length of Mel1d, and this could be linked to 373 

differences in phosphorylation properties. 374 

 375 

Residue changes distinguishing Mel1d from other MTRs 376 

                                           377 

The above analyses confirm that Mel1d has most of the canonical residues for 378 

melatonin binding and MTR structure/function. We next sought to identify conserved 379 

differences between Mel1d and the other MTRs, as candidates to impart functional 380 

properties unique to Mel1d. 381 

 382 

Five extracellular or intracellular positions in Mel1d show substantial differences with 383 

either one or all other MTRs (Fig. 6). In most Mel1d orthologues, the first extracellular 384 

loop contains lysine (positive charged) at position 38, which is typically asparagine 385 
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(neutrally charged) in the other MTRs. At position 144, which is almost always fixed 386 

as glycine in MT1, MT2 and Mel1c, Mel1d orthologues retain glutamic acid or 387 

aspartic acid. This replacement is presumed functionally significant, as glycine 388 

provides high conformational flexibility (Betts and Russell 2003), while glutamic and 389 

aspartic acid are highly negatively charged. At position 246, MTRs usually conserve 390 

proline (except for the two derived GPR50 from mammals), but Mel1d shows a high 391 

diversity of residues with diverse functional properties, suggesting a distinct mode of 392 

selective pressure. In the same loop (position 242), a gap is observed in all Mel1d 393 

sequences at an amino acid position that is variable among the other MTRs. Finally, 394 

a notable difference between Mel1d and MT1 is observed in position 119, in the 395 

second intracellular loop. Most MT1 sequences have aspartic acid at this position, 396 

while Mel1d conserves asparagine or serine, leading to a major difference in charge. 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 
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DISCUSSION  412 

 413 

Our unequivocal demonstration of a new ancestral vertebrate MTR forces a revision 414 

of current models for the origin and diversity of MTRs, and has biological implications 415 

for vertebrate lineages conserving distinct MTR gene repertoires.  416 

 417 

It seems important to ask why Mel1d has previously been missed as a unique MTR, 418 

when the gene is readily detectable in sequence databases. This is likely partly due 419 

to a historic assumption that the MTR gene family structure of birds and mammals 420 

(i.e. MT1, MT2 and Mel1c) is representative for all vertebrates. Mel1d has high 421 

similarity with MT1, and has tended to be named ‘mtnr1a-like’ in genome databases. 422 

In addition, previous phylogenetic studies of MTRs have been based on small 423 

datasets (e.g. Reppert et al. 1995a; Mazurais et al. 1999; Park et al. 2006, 2007a,b; 424 

Shang & Zhdanova 2007; Hong et al. 2014), with biases in the taxa sampled, and 425 

could not by design distinguish Mel1d and MT1. A single past study noted a Xenopus 426 

MTR sequence that did not group with MT1, MT2 or Mel1c and concluded the 427 

existence of a novel MTR (Mel1d) (Shiu et al. 1996); correctly according to our 428 

findings. Our study benefits from a much broader survey of vertebrate MTR 429 

sequences, allowing us to conclude that Mel1d is at least 450 million years old, 430 

having been present in the jawed vertebrate ancestor.  431 

 432 

Our phylogenetic reconstruction of MTRs will help the field going forwards, as 433 

researchers can be certain of which family member (including teleost-specific 434 

paralogues) they are studying, allowing more reliable conclusions in comparative 435 

studies of function and gene expression. We show that teleost-specific paralogues of 436 

MT1 are easily distinguished from Mel1d and provide a scheme to allow researchers 437 
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to match teleost MTRs formerly named under several nomenclature systems to a 438 

single phylogenetically-assigned naming system accommodating orthologues and 439 

paralogues (Table 1). 440 

 441 

Insights into Mel1d function: reinterpreting expression data in teleosts 442 

While not being previously recognized as a unique vertebrate MTR, Mel1d has 443 

already been studied in various teleosts (Table 1). These past studies demonstrate 444 

that the Mel1d transcript is abundantly expressed in a manner like other MTR family 445 

members, but showing differences that may underlie unique functions. A pattern 446 

seems conserved across multiple species, where Mel1d and MT1a expression is 447 

higher in brain and retina, respectively (e.g. Park et al. 2006, 2007a,b; Ikegami et al. 448 

2009: Confente et al. 2010; Hong et al. 2014). Mel1d tends to be more strongly 449 

expressed in brain regions associated with visual perception (e.g. Mazurais et al. 450 

1999; Gaildrat and Falcón, 2000; Shi et al. 2004; Confente et al. 2010; Hong et al. 451 

2014). Many peripheral tissues were reported to express Mel1d with species-specific 452 

differences and in a distinct manner to other MTRs (Park et al. 2006, 453 

2007a,b; Ikegami et al. 2009; Confente et al. 2010; Hong et al. 2014). Such data 454 

suggests involvement of Mel1d in photoreceptive processes, along with broader 455 

regulatory roles in the physiological functions of peripheral organs. 456 

 457 

Rhythmical oscillations in the expression of Mel1d have also been reported, with 458 

variations depending on species, organ and season. In zebrafish, a day/night 459 

oscillation of MTR brain gene expression (peaking at night) was noted for all six MTR 460 

paralogues, including Mel1d, with further expression upregulation in response to 461 

melatonin administration (Shang & Zhdanova 2007). In golden rabbitfish, MT1a, 462 

Mel1d and Mel1c expression was higher at night for brain and retina, with Mel1d 463 
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levels peaking at different times (Park et al. 2006, 2007a,b, 2014). In goldfish, Mel1d 464 

was the only MTR showing rhythmical oscillations in optic tectum expression, while 465 

the same was true for MT1a in retina, both peaking at the night-day transition 466 

(Ikegami et al. 2008). In a marine pufferfish, Mel1d, MT1a and Mel1c showed 467 

synchronous daily cycling of expression in the pineal gland with a nocturnal peak 468 

(Ikegami et al. 2015). Conversely, in golden rabbitfish pineal gland, oscillations were 469 

desynchronized for the same three MTRs (Park et al. 2006, 2007a,b). Daily 470 

rhythmicity in Mel1d expression has also been observed in peripheral tissues (liver 471 

and kidney) of golden rabbitfish, with higher expression during the day, opposite to 472 

the brain/retina (Park et al. 2006, 2007b). In addition to daily variation in regulation, 473 

Mel1d expression is regulated by other cycles, for example showing semilunar 474 

oscillation in the diencephalon of mudskipper (Hong et al. 2014) and ultradiurnal 475 

oscillation in a marine pufferfish, which may be circatidal (Ikegami et al. 2015). Mel1d 476 

expression in the Senegalese sole exhibited stronger day-to-night and seasonal 477 

variation than other MTR family members, with reciprocal differences recorded 478 

between retina and optic tectum (Confente et al. 2010). Therefore, past work shows 479 

that Mel1d is regulated during multiple biological cycles in teleosts, showing 480 

variations distinct from other MTRs, implying functional distinctiveness. 481 

 482 

Functional divergence between Mel1d and MT1? 483 

High protein-level similarity between Mel1d and MT1, taken with the conservation of 484 

all key residues in the MTR transmembrane domains, strongly implies that Mel1d 485 

binds melatonin. Notably, residues showing conserved replacements between Mel1d 486 

and MT1 are all located in extracellular or cytoplasmic loops, which is predicted to 487 

impact interactions with other proteins, in particular signalling partners, rather than 488 

melatonin. Strikingly, one of these sites corresponds to a documented human MT1 489 
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mutation studied in vitro (Chaste et al. 2010). The replacement of glycine-144 (MT1) 490 

with glutamic acid or aspartic acid corresponds to a G166E mutation in human MT1, 491 

associated with impaired activation of cAMP signalling, despite retention of strong 492 

melatonin binding (Chaste et al. 2010). The elephant shark retains glutamic acid at 493 

this position in both MT1 and Mel1d, suggesting this represents the ancestral state, 494 

with functional divergence arising in the common ancestor to lobe and ray-finned 495 

fishes. It is also intriguing to observe that Mel1d of two tetrapods have apparently 496 

reverted to glycine in this position, indicating selection towards the ancestral residue.  497 

 498 

Why was Mel1d lost in mammals and birds? 499 

Further work will be needed to establish the extent of conservation in Mel1d function 500 

and regulation across different vertebrate lineages. This should focus on reptiles and 501 

amphibians, where the function of this gene has not been studied experimentally. 502 

Such studies may help explain the specific biological requirements for Mel1d, and 503 

reveal why the gene was lost independently in mammals and birds. It is notable that 504 

mammals and birds stand out from other vertebrates when considering their 505 

melatonin-dependent light detection and clock systems. Mammals have lost 506 

extraocular light perception and relocated control of their biological clock away from 507 

melatonin-producing pinealocytes to the suprachiasmatic nucleus (Falcón et al. 508 

2009). Birds have both the ancestral pineal clock and melatonin production system, 509 

but also independently developed a clock system in the homologue of the 510 

suprachiasmatic nucleus and use retinal detection (Cassone 1991, Falcón et al. 511 

2009). Another distinguishing feature specific to both groups is homeothermy, with 512 

modulatory effects of melatonin on body temperature regulation reported in humans 513 

(Cagnacci et al. 1992; Viswanathan et al. 1990) and Japanese quail (Underwood and 514 

Edmonds 1995). Extrinsic temperature variation appears a less important zeitgeber 515 
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for the circadian clock of homeotherms relative to poikilotherms (Rensing and Ruoff, 516 

2002), which are known to use melatonin to regulate behavioral thermoregulation 517 

(Lutterschmidt et al. 2003). In addition, birds and mammals are the only vertebrates 518 

that have evolved (through convergent mechanisms) stereotypical slow wave and 519 

rapid eye movement sleep phases, linked to melatonin regulation in mammals (Lesku 520 

et al. 2011). Such changes in the physiological role of melatonin and consequent re-521 

organization of melatonin response pathways, may have been the ultimate driver for 522 

Mel1d redundancy and gene loss through relaxation of purifying selection.   523 

 524 

Another melatonin-associated function that is present in vertebrate lineages retaining 525 

Mel1d (in addition to lamprey), but lost in both mammals and birds, is the negative 526 

regulation of pigmentation development in the dark, known as the “body-blanching 527 

response” (Hamasaki and Eder 1977, Norris and Carr 2013). In fishes, melatonin is 528 

thought to regulate chromatosome aggregation in different kinds of chromatophores 529 

(Fujii 2000); Mel1d is expressed in the skin of mudskipper (together with MT1 - Hong 530 

et al. 2014), the goldfish (together with MT2 and Mel1c - Ikegami et al. 2008) and the 531 

sole (together with MT2 - Confente et al. 2010). In addition, in sole skin, Mel1d is the 532 

only MTR to be up-regulated at night. It is therefore possible that Mel1d is involved in 533 

skin physiology and pigment regulation in fish chromatophores. 534 

 535 

Expansion of the MTR repertoire of teleosts 536 

Contrary to mammals/birds, there has been a trend towards evolutionary expansion 537 

in the MTR repertoire of teleosts, as observed in many gene families with paralogues 538 

retained from Ts3R (Glasauer and Neuhauss, 2014) and Ss4R (Houston and 539 

Macqueen, 2019). Interestingly, not all MTR family members were affected equally. 540 

While we identified multiple paralogous copies of MT1 and MT2 - presumed to have 541 
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been retained from Ts3R and Ss4R - Mel1c and Mel1d were always single copy, 542 

requiring repeated losses of paralogues generated during gene duplication or WGD 543 

events. This is compatible with a hypothesis where the functions or expression-level 544 

regulation of MT1 and MT2 can be divided among paralogous copies, following the 545 

well-established subfunctionalization model, or potentially reflects fixation of new 546 

adaptive functions among MT1/MT2 paralogues (Stoltzfus 1999 and Force et al. 547 

1999). In this respect, we observed several amino acid substitutions between MT1a 548 

vs. MT1b and MT2a vs. MT2b (Fig. 6), consistent with protein-level functional 549 

divergence. Conversely, selection has operated in a distinct manner for Mel1c and 550 

Mel1d, with any duplicates generated being quickly purged by selection for reasons 551 

that remain to be established, but potentially linked to dosage constraints, or a 552 

mechanism of regulation that cannot be divided across distinct loci.  553 

 554 

CONCLUSIONS 555 

 556 

Mel1d is one of four ancestral vertebrate MTRs that shows a wide phylogenetic 557 

distribution but has been lost in mammals and birds. Compared to MT1, MT2 and 558 

Mel1c, Mel1d has many conserved, but also divergent characteristics, both in terms 559 

of protein sequence and spatio-temporal expression patterns of relevance to 560 

chronobiological traits. Additional work is needed to characterize the functional 561 

distinctiveness of Mel1d compared to other MTRs and to explain why unique MTR 562 

repertoires have been conserved in different vertebrate lineages.  563 
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FIGURE LEGENDS 916 

 917 

Fig. 1. Bayesian phylogenetic tree of MTR family evolution in jawed vertebrates. The 918 

analysis was done using BEAST with a high-confidence alignment of eighty MTRs 919 

(300 amino acid positions; Additional Dataset 1), an uncorrelated relaxed molecular 920 

clock model and the best-fitting amino acid substitution model (JTT+F+I+G4). 921 

Numbers on branches are posterior probability support. Three WGD events in 922 

vertebrate evolution are shown (2R - ancestral to vertebrates; Ts3R - ancestral to 923 

teleosts; Ss4R - ancestral to salmonids). A ML tree was performed using the same 924 

data and is provided in Fig. S1. 925 

 926 

Fig. 2. Proposed evolutionary history of each MTR family member, considering (a) 927 

Mel1d, (b) MT1, (c) MT2m, and (d) Mel1c. Species inferred to have lost all copies of 928 

a MTR gene are highlighted in dark red. Teleost species inferred to have lost 929 

paralogues of MTR genes arising from the Ts3R and Ss4R events are highlighted in 930 

light red. 931 

 932 

Fig. 3. Conserved synteny between the genomic neighbourhood containing MTR 933 

orthologues of different lineages, shown for (a) jawed vertebrate MT1, (b) jawed 934 

vertebrate Mel1d, (c) jawed vertebrate MT2, (d) jawed vertebrate Mel1c, (e) 935 

comparing MTR from two lamprey species with jawed vertebrates, and (f) comparing 936 

a urochordate with vertebrates.  937 

 938 

Fig. 4. Conserved synteny between the genomic neighbourhood containing MTR 939 

paralogues retained from Ts3R and Ss4R, shown for (a) MT1a, (b) MT1b, (c) Mel1d, 940 

(d) MT2a, (e) MT2b, and (f) Mel1c. 941 
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 942 

Fig. 5. ML phylogenetic analysis of FAT atypical protocadherins in jawed vertebrates. 943 

The analysis was done using IQ-TREE with a high-confidence alignment of thirty-five 944 

FAT proteins (2,540 amino acid positions; Additional Dataset 2) and the best-fitting 945 

amino acid substitution model (JTT+G+I). Numbers on branches are bootstrap 946 

support values. Other details are as in the Fig. 1 legend. 947 

 948 

Fig. 6. Alignment used to compare amino acid positions among vertebrate MTR 949 

proteins (matching to the alignment used for phylogenetic analysis; Additional 950 

Dataset S1). Species abbreviations: Ac = Anolis carolensis (green anole lizard); Am 951 

= Astyanax mexicanus (Mexican cavefish); Bt = Bos taurus (cattle); Cm = 952 

Callorhinchus milli (elephant shark); Dr = Danio rerio (zebrafish); El = Esox lucius 953 

(northern pike); Gg = Gallus gallus (chicken); Hs = Homo sapiens (human); Lc = 954 

Latimeria chalumnae (coelacanth); Lo = Lepisosteus oculatus (spotted gar); Oa = 955 

Ornithorhynchus anatinus (platypus); On = Oreochromis niloticus (Nile tilapia); Ps = 956 

Pelodiscus sinensis (Chinese softshell turtle); Tr = Takifugu rubripes (tiger pufferfish); 957 

Xt = Xenopus tropicalis (western clawed frog). Detailed annotation of sequences 958 

flagged up in the main text are provided within the figure. 959 

 960 

Table 1. Phylogenetic assignment of teleost MTRs to a standardized nomenclature 961 

system. 962 
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Table 1. Phylogenetic assignment of teleost MTRs to a standardized nomenclature system. 
 

Species 

Receptors attributed from literature vs orthology group assignment from this study 

References MT1 MT2 
Mel1c Mel1d 

MT1a MT1b MT2a MT2b 

Dr Danio rerio  
(zebrafish) 

Z1.7 
(U31822.1)   Z2.6 

(U31824.1)  Z1.4 
(U31823.1) 

Reppert et al. 
1995(b) 

zMel1a1, 
Z1.7-4, 

mtnr1aa  
(NM_131393.1) 

zMel1a3  
(XM_6889

89.6) 

zMel1b2, Z6.2, 
Mel1b-19, 
mtnr1ba  

(NM_131395.1) 

zMel1b1, 
Z2.6-4, 

mtnr1bb 
(NM_131394.1) 

zMel1c, Z2.3, 
mtnr1c 

(NM_001161484.1) 

zMel1a2, Z1.4, 
mtnr1al 

(NM_001159909.1) 

Shang & 
Zhdanova 

2007 

Om 
Oncorhynchus 

mykiss 
 (rainbow trout) 

R1.7  
(AF156262.1) 

= MT1a2 
    R1.4 

(AF178538.1) 

 
Mazurais et al. 

1999  

 

El Esox lucius 
 (northern pike)   P2.6  

(AF188871.1)   P1.4 
(XM_010903666.1) 

Gaildrat and 
Falcón, 2000 

Oke Oncorhynchus keta  
(chum salmon) 

mel1a 
(AY356364.1) 

= MT1a2 
    mel1b 

(AY356365.1) 
Shi et al. 2004 

Sg Siganus guttatus 
 (golden rabbitfish) 

Mel1a 
(DQ768087.1)    Mel1c 

(DQ768088.1) 
Mel1b 

(DQ522314.1) 
Park et al., 

2006, 2007a,b, 
2014 

Ca Carassius auratus  
(goldfish) 

Mel1a1.7 
(AB378058.1)   Mel1b 

(AB378059.1) 
Mel1c 

(AB378060.1) 
Mel1a1.4 

(AB378057.1) 

Ikegami et al. 
2009 

G1.7 
(AB481372.1)  G6.2 

(AB481374.1) 
G2.6 type1 
(AB481373.1) 

Mel1c 
(AB481375.1) 

G1.4 
(AB481371.1) 

Saito, 
unpublished 

Dl Dicentrarchus labrax  
(sea bass) 

dlMT1 
(EU378918.1)   dlMT2 

(EU378919.1) 
dlMel1c 

(EU378920.1)  

Sauzet et al., 
2008 

Herrera-Pérez 
P et al., 2010 

Sse Solea senegalensis 
(Senegal sole)    ssMT2 

(FM213464.1) 
ssMel1c 

(FM213465.1) 
ssMT1 

(FM213463.1) 

 Confente et al. 
2010 

On Oreochromis niloticus 
 (Nile tilapia) 

mel1a 
(AY569971.1)      

Jin et al., 2013 

Ec 
Epinephelus coioides 

 (orange-spotted 
grouper) 

MT1  
(JX524508.1)   MT2 

(JX524509.1)   
Chai et al., 

2013 

Bp 
Boleophthalmus 

pectinirostris  
(mudskipper) 

Mtnr1a1.7 
(KC622030.1)   Mtrn1b 

(KC622031.1) 
Mtnr1c 

(KC622032.1) 
Mtnr1a1.4 
(KC622029.1) 

Hong et al. 
2014 

Tn Takifugu niphobles  
(grass puffer) 

mel1a1.7 
(AB492764.1)   mel1b 

(AB492765.1) 
mel1c 

(AB492766.1) 
mel1a1.4 

(AB492763.1) 

 Ikegami et al. 
2015 

Pn 
Porichthys notatus 

 (plainfin midshipman - 
“singing” fish) 

mtnr1A1.7 
(HQ007044)  Mel1b 

(KT878765.1)   mtnr1a1.4 
(HQ007045) 

Feng & Bass, 
2016,  
Feng 

unpublished 

Amel 
Amphiprion 
melanopus  

(cinnamon clownfish) 

MT-R1 
(HM107821.1)      

Choi et al., 
2016 

 

Phylogenetic assignment according to findings of this study; previous publications using distinct nomenclature systems are 
provided. Sequences in red signal a significant change in assignment. 
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