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Abstract 

Background: The rapid expansion of genome wide profiling techniques offers the opportunity to utilize 

various types of information collectively in the study of human health and disease. Overexpression of 

Polo like kinase 1 (PLK1) is associated with oesophageal adenocarcinoma (OAC), however biological 

functions and molecular targets of PLK1 in OAC are still unknown.  

Objectives: Here we performed integrative analysis of two “omics” data sources to reveal high level 

interactions of PLK1 associated with OAC.  

Methods: Initially, quantitative gene expression (RPKM) was measured from transcriptomics data set of 

four OAC patients. In parallel alteration in phosphorylation levels was evaluated in the proteomics data 

set (mass spectrometry) in OAC cell line (PLK1 inhibited). Next two “omics” data sets were integrated 

and through comprehensive analysis possible true PLK1 targets that may serve as OAC biomarkers were 

assembled.  

Results: Through experimental validation small ubiquitin-related modifier 1 (SUMO1) and heat shock 

protein beta-1 (HSPB1) were identified as novel phosphorylation targets of PLK1. Consequently in 

vivo, in situ and in silico experiments clearly demonstrated the interaction of PLK1 with putative novel 

targets (SUMO1 and HSPB1).  

Conclusion: Identification of a PLK1 dependent biosignature in OAC with high confidence in two 

omics levels proven the robustness and efficacy of our integrative approach. 

Key words: Omics, PLK1, SUMO1, HSPB1, kinase assay, ELISA, co-IP, PLA, insilico. 

Introduction 
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Polo-like kinase 1 (PLK1) is a profound member of a serine-threonine kinase family with a kinase 

domain at the N-terminus and two polo-box domains involved in phosphopeptide-binding at the C-

terminus [1, 2]. The expression level of PLK1 changes during cell-cycle progression with a peak level at 

M phase. PLK1 is an imperative regulator of mitosis through its diverse cellular localization and its 

protein-binding and phosphorylation activity to several different targets [3-5]. Moreover, overexpression 

of PLK1 is associated with oncogenesis. Overexpression of PLK1 overrides mitotic checkpoints, and 

leads to immature cell division without proper chromosome alignment and segregation, resulting in 

chromosomal instability and aneuploidy, a hallmark of cancer [6]. Indeed, consistent with the role of 

PLK1 in proliferation, overexpression of PLK1 has been observed in various types of cancers, such as 

colon [7], breast [8], stomach [9], pancreas [10], head and neck [11], and ovarian cancers [12]. PLK1 is 

overexpressed in oesophageal cancer (EC) relative to normal organs and exhibited higher promoter 

activity in EC cells than in normal epithelial cells. Moreover overexpression of PLK1 is associated with 

apoptosis resistance and proliferation in oesophgeal cancer cells in vitro [13, 14 ]. 

 

Oesophageal cancer is ranked as the sixth most common cause of cancer death with poor prognosis and 

aggressive behavior as it tends to recur after surgery. The majority of oesophageal cancers are of the 

adenocarcinoma histological sub-type [15]. Survival of EC patients remains poor, due to late stage 

presentation of the disease, being approximately 10% for squamous cell carcinoma and 20% for 

adenocarcinoma [16, 17]. Therefore, to improve the survival of patients with this unmanageable cancer 

targeting of genes associated with progression of this cancer is being investigated. Recent attempts at 

identifying new prognostic markers for Oesophageal adenocarcinoma (OAC) have focused on using 

microarray analysis of mRNA expression patterns, and have led to the identification of two [18] and 

four [19] gene signatures which are of prognostic value. Thus, further analysis of gene expression 
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signatures, or the coordinated up regulation of components of molecular pathways might provide further 

advances in this area. Additionally proteins can be regulated on the proteome level both post-

transcriptionally and post-translationally, meaning proteomic analysis can add significant value to 

biomarker studies in OAC, especially considering many biomarker end-points are looking at protein 

levels rather than transcript levels, for example immunohistochemistry based methods.  

 

Cancer researchers have made considerable progress in identifying new cancer markers through 

genome-wide profiling technologies. Comprehensively identifying gene expression on both 

transcriptomic and proteomic levels in one tissue is a prerequisite for a deeper understanding of its 

biological functions and to characterize disease associated changes at various levels of genome function. 

Genomics, transcriptomics and proteomics data provide basically one snapshot from one angle that 

characterizes different aspects of cancer relevant genome regulation and function [20, 21]. Integrative 

transcriptomics and proteomics measurements characterize key players and biological processes, a 

fundamental step in the mechanistic characterization of disease and revealing promising molecular 

targets for therapeutic intervention of the disease [22, 23]. However, the lack of algorithmic 

implementations forms a bottleneck hampering integrative approaches. 

 

Here we demonstrated an integrative multi-omics approach to identify PLK1 regulated biomarkers in 

oesophgeal cancer. RNA-sequencing data from four oesophgeal patients and Mass spectrometry data 

from PLK1 inhibited oesophageal cell lines were integrated and through extensive downstream 

bioinformatics analysis promising hits were identified. Putative novel hits were experimentally validated 

through classical and robust molecular biology and biochemistry techniques. Hence in an effort to 

identify promising PLK1 targets in oesophageal adenocarcinoma we by-pass the bottleneck of 

integrative approach by integrating RNA-sequencing and mass spectrometry data set. 
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Materials and Methods 

 

Identification of PLK1 dependent cancer biomarker through integrative strategy 

For uncovering novel PLK1 regulated cancer biomarkers multiple biological information sources were 

assimilated and functioning premise was measured. We collected RNA sequencing data from four OAC 

patients (Patient ID; 23T, 26T, 27T and 45T) and similarly Mass Spectrometry (MS) data from PLK1 

inhibited oesophageal cell line (OE33). RNA sequencing data was processed and analyzed in CLC 

genomics and cancer workbench (http://www.clcbio.com/products/clc-genomics-workbench/) resulting 

in upregulated and downregulated clusters of 6080 and 2810 genes respectively.  

Tryptic Digest and Phosphoenrichment 

Three replicates of each condition, untreated, arrested, Cyc1 treated and arrested with Cyc1 treatment 

were digested with trypsin then enriched for phosphopeptides using titanium dioxide. For each 

sample 500 µg of cell lysate (Sodium deoxycholate lysis buffer) was reduced with 10 mM DTT at 50°C 

then alkylated in the dark at room temperature with 25 mM iodoacetamide before digesting overnight 

with Trypsin:Protein 1µg:20µg (Promega) at 37°C. After digestion lysates were acidified to a final 

concentration of 1% TFA, 80mg/ml glycolic acid, 5% acetonitrile to precipitate deoxycholate and 

undigested proteins and centrifuged at maximum speed for 2 min. Supernatant was transferred to a lo-

bind eppendorf tube. Titanium dioxide beads (10µm, Titansphere, GL Sciences) were washed once with 

5% acetonitrile, 1% TFA, 80mg/ml glycolic acid then added to sample (~5mg beads per 500µg protein). 

Sample was incubated with titanium dioxide beads with shaking for 30min-45mins. Using the batch 

method beads were centrifuged briefly and supernatant collected as non-phospho fraction. Beads were 

then washed three times with 200 µl 70% acetonitrile, 80mg/ml glycolic acid, 0.1% TFA, three times 
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with 80% acetonitrile, 0.1% TFA and phosphopeptides eluted with 80 µl 4% ammonia. Samples were 

acidified with 2µl 10% TFA, dried in a vacuum centrifuge and stored until LC-MS/MS 

analysis. Samples were resuspended in MS loading buffer (2% acetonitrile, 0.1% formic acid) and 

10 µl injected to a C18 column and eluted over a 180min gradient  (Eskigent NanoLC) to 

a 5600 TripleTOF (ABSciex) and spectra collected via a data dependent acquisition method.  

 

Data analysis  

MS data generated was processed with ProteinPilot v4.2 (ABSciex) to generate MGF peaklists which 

were used to search Mascot (Swissprot 2012 Homo sapiens database, 20232 entries). Mascot .DAT files 

were subsequently processed in Scaffold and Scaffold PTM (Proteome Software). Results were filtered 

for peptide identifications with a phosphorylation modification and identification confidence >95% to 

obtain a false discovery rate of >1%. Proteins were then assessed in Scaffold PTM generating a list of 

confidently (Ascore >95%) assigned phosphosites for each biological category (DMSO, Cyc1, Arrested, 

Arrested and Cyc1). To filter for peptides with changes in phosphorylation after 

drug phosphopeptides were only used which were identified with a confidence of 95%, had 

an Ascore value of >95% for phosphosite assignment and a spectral count >3 in either biological 

category.   

 

Plasmids and constructs 

Gateway cloning technology was used to make construct for list of selected candidates as follow: His-

Tagged full length constructs of human SUMO1 (301 bp), HSPB1 (601 bp), CDK1 (841 bp), SRRM1 

(270 bp), DKC1 (1501 bp), CAV2 (481 bp), MCM2 (2701 bp), SRRP1 (2100 bp), RBM39 (1561 bp), 

SRSF6 (1021 bp), TRA2B (841 bp), EIF3C (2701 bp), EFHD2 (721 bp) and PLK1-PBD (330-603) were 
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prepared in bacterial expression gateway vector pDEST17 and pDEST14. N-terminal and C-terminal 

tagged mammalian expression constructs of SUMO1 and HSPB1 were also prepared in Gateway 

mammalian expression vector pDEST53 and pDEST47. The mutant of SUMO1 S2A/S2D/S2E and 

HSPB1 S82A/S82D/S82E were prepared using QuickChange® II XL Site-Directed Mutagenesis Kit 

from Agilent technology. 

 

Purification of recombinant proteins 

Different His tagged wild type and mutant substrates candidates were expressed in E. coli strain BCL21 

DE3 and purified through Ni-NTA Agarose beads (#30230, QIAGEN technologies). First Ni-NTA 

agarose beads were washed with buffer I (20mM Tris-Hcl PH 8.0, 400mNaCl, 10mM Mgcl2*6H2O, 

0.1% Np40, 5mM Imidazol) and then clear lysates were loaded on to the beads and incubated with 

shaking at 4°C for 1 hour. Hexa-Histidine tail in the His tag proteins bind to the immobilized nickel ions 

with high specificity and affinity. The protein suspension was run through column and five washes were 

performed with different molar concentrations (6M, 4M, 2M, 1M) of buffer I and buffer II (20mM Tris-

Hcl PH 8.0, 400 mNaCl, 10mMMgcl2*6H2O, 0.1% Np40, 5mM Imidazol, 8M urea). After washing, 

His-tagged proteins were eluted in buffer III (20mM Tris-Hcl PH 8.0, 400mNaCl, 10mM Mgcl2*6H2O, 

0.1% Np40, 150mM Imidazol). Imidazole in elution buffer (buffer III bind strongly to the Ni-NTA 

beads and eluted the proteins. The eluted proteins were dialyzed using Zeba™ Desalt Spin Columns (# 

89891, Thermo Scientific) by standard protocol. 

 

Antibodies 

Following antibodies were used; anti PLK1 (ab 35-206 Abcam, ab Phospho T210 Abcam, ab 3G251 

Abcam), anti SUMO1 (ab 21C7 invitrogen) , antiHSPB1 (ab G3.1 abcam) and anti-6X His tag® (ab HIS 
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H8 abcam). Different concentrations were used for western blotting, ELISA, co-immunoprecipitation 

and immunoflorescence assays. 

 

Co-Immunoprecipitation 

Cells from A375 cell line were grown until confluency was reached. Cells were harvested and lysed in 

the co-immunoprecipitation buffer (50 mM HEPES-NaOH pH 7.2, 150 mM NaCl, 0.5% (v/v) Tween-

20, 1X protease inhibitor cocktail). Initially 1 mg of protein was precleared with protein G sepharose 

beads for 1 hour at 4°C. After quick centrifugation, supernatant was transferred to new tube and then 

incubated with appropriate antibody (2 μg/ sample) for 2 hours. The immune complexes were collected 

with protein A beads. Beads along with attached proteins were washed 3x with lysis buffer. Samples 

were fractionated by SDS-polyacrylamide gel electrophoresis for immunoblot analysis. 

 

Proximaty ligation assay 

Proximity Ligation Assay was performed using Duolink® in situe PLA kit (# DUO92101, Sigma) 

following the manufacturer’s protocol. Duolink anti-rabbit plus probe, anti-mouse minus probe were 

used, while antibodies against SUMO1, HSPB1 and PLK1 were used from different species. In each 

experiment a negative control using only one antibody of each pair was included. For each antibody 

pair, exponentially growing HTC116 and OE33 cells were seeded on cover slips and fixed for 

immunostaining as described in manufacturer's protocol. After overnight incubation with primary 

antibody at 4°C, samples were processed for the PLA assay. Imaging was performed using Olympus 

BX51 fluorescent wide field microscope equipped with a 100-W mercury lamp. we collected images 

using software embed in microscope and translated them into red, blue and green channel using ImageJ 

software (http://imagej.nih.gov/ij/) and further processed and analyzed. 
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Direct protein binding ELlSA 

ELISA 96-well plates (Beckman–Coulter) were coated with 20 to 50 ng of proteins 1 (His-tagged 

SUMO1 WT/S2A/S2D/S2E and His-tagged HSPB1 WT/S82A/S82/D/S82E)) made up to a final volume 

of 50 μL in coating buffer (0.1 M NaHCO3 pH 8.6). To block the unoccupied sites, wells were washed 

with PBST and then incubated with 200 μL of PBS plus 3% BSA for 1 hour. A titration of protein 2 (His 

tagged PLK1-PBD (330-603) was added to each well and incubated for 1hour at room temperature. To 

terminate the reaction, ELISA plates were washed 4 times with PBST. For detection of bound PLK1-

PBD, plates were incubated for 2 hours with 50 μL per well of anti-PLK1 antibody at a concentration of 

0.5 μg/ml. After washing the plates 5 times, 100 μL per well of HRP-conjugated secondary antibody 

(diluted 1:1,000 in blocking buffer) was added and plates were further incubated for 1 hour. After final 

washing, binding was measured by adding to each well 50 μL of a 1:1 mix of ECL solutions 1 (2.5 mM 

luminol, 0.4 mM p-coumaric acid, 0.1 M Tris pH 8.5) and ECL solution 2 (0.02% (v/v) H2O2, 0.1 M 

Tris pH 8.5). The luminescence produced was immediately detected with a illuminometer and analysed 

with Ascent software version 2.4.1. 

 

In Vitro kinase assay 

All  in vitro kinase assays were performed in kinase buffer (10 mM HEPES pH 7.4, 4 mM MgCl2, 1 

mM DTT, 2.5 mM EGTA, 10 mM β-glycerol phosphate) supplemented with 1 μL ATP mix (1/50 

dilution of γ32P ATP 3,000 Ci/mmol 10 mCi/ml EasyTide Lead (#NEG502A100UC, Perkin Elmer) in 2 

mM ATP (#A7699-5G, Sigma) in 25 mM HEPES pH 7.8) at 30°C for 30 min in the presence of 1.5 μg 
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of the indicated bacterially expressed His-tagged potential substrates proteins. Reactions were stopped 

by adding gel sample buffer and analyzed by SDS-PAGE and autoradiography.  

 

 

Western blotting 

After separation by SDS-PAGE, proteins were transferred to Hybond-C Extra 0.45 μm nitrocellulose 

membrane (#RPN203E, Amersham Biosciences, GE Healthcare) using transfer buffer (24 mM Tris, 191 

mM glycine, 20% (v/v) methanol) at 300 mA for 90 min. Membranes were blocked in 1X PBS (made 

from tablets, #BR0014G , Fisher) -0.1% (v/v) Tween-20 (PBST) containing 5% (w/v) non-fat dried milk 

(Marvel) for 1 hour at room temperature then incubated overnight at 4°C or several hours at room 

temperature with primary antibody. Then incubated with appropriate horseradish peroxidise (HRP)-

conjugated secondary antibody for 1 hour at room temperature, followed by washes with PBST. Proteins 

were finally detected by incubation with enhanced chemiluminescence (ECL) reagent: membranes were 

overlaid with ECL solution 1and ECL solution 2 mixed at a ratio of 1:1, for 1 min. 

 

Molecular structural modeling and docking  

Experimentally determined structure of PLK1 kinase domain, polo box domain (PBD) and SUMO1 

were retrieved from protein data bank (http://www.rcsb.org/pdb/) with PDB IDs; 3THB, 4LK1 and 1a5r 

respectively. While structure of HSPB1 was predicted through homology modeling and ab initio method 

using SWISSMODEL [25] and Muster [26] servers. 

Three dimensional model of HSPB1 and SUMO1 encompassing putative kinase phosphorylation and 

PBD docking motif were subjected to docking against experimental 3D structure of PLK1 kinase 

domain and PBD. AutoDock 4.0 [27], HADDOCK [28] flexible protein-protein docking server 
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SWARM dock [29] and GRAMXX [30] were used to cross over the biasness of docking algorithm and 

cross validation of docking conformation. Best docking cluster from each docking method was selected 

and thoroughly evaluated to monitor best docking poses and interactions of studied macromolecules 

using Chimera V1.7.1 [31] and DIMPLOT [32] 

Results 

Identification of novel PLK1 targets through Integrative omics approach 

By focusing the power and need of integrative analysis we used an integrative strategy of 

transcriptomics-proteomics analysis (Figure 1) to investigate the novel PLK1 targets and biomarkers in 

OAC. Initially, we assessed alterations in each dataset and then compared the results from both data 

sources to grasp common biosignatures of OAC targeted by PLK1. RNA-sequencing data from four 

patients with OAC phenotype was thoroughly analysed through CLC genomics and CLC cancer 

workbench (http://www.clcbio.com/products/clc-genomics-workbench/). In the first step sequencing 

reads were mapped to reference genome and after expression level quantification of samples, genes were 

grouped based on their calculated RPKM (read per kilo meter) [33] values. For both RNA-sequencing 

data and microarray data, we first log transformed the preprocessed expression data, next we did 

quantile normalization and transformed the sequence of real numbers into frequency representation. Sub 

groups of differentially expressed genes with greater than two fold of change in expression were 

selected and clustered as upregulated (6850 genes) and downregulated (2810 genes).  

PLK1 was observed upregulated in four patients with significant fold change. RNA sequencing reads 

mapped to PLK1 revealed higher expression of PLK1 in tumor sample in comparison with to their 

normal counterpart (Figure 2). Through in vitro studies elevated level of PLK1 in OAC has been 

suggested as a cause of cell proliferation and inhibition of apoptosis [13, 14].  
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As a robust strategy, we integrated the information from RNA sequencing or NGS and MS to identify 

PLK1 associated phosphorylation targets and possible OAC biomarkers. Consistent with the role of 

PLK1 in OAC and as attractive next generation antimitotic target, our aim was to identify novel 

molecular targets with related biological function of PLK1 in OAC 

Through synchronization of two omics data sources, reasonable number of  hits were extracted that were 

common in both datasets (Table 1) and subjected to downstream gene ontology (GO), interaction 

network and pathway analysis though multiple Bioinformatics tools and information sources.  

All possible direct and indirect interaction networks and pathway links between PLK1 and identified hits 

were extensively investigated to expose novel PLK1 associated targets. Interestingly, apart from some 

novel candidates, we observed many previously known PLK1 partners (CDK1, MCM2, TPX2 and 

TOP2A) in the shortlisted putative targets of PLK1. These findings further strengthened our predictions 

and cross validated the effectiveness of used strategy. 

 

In vitro PLK1 phosphorylation assay 

As a consequence of reduced PLK1 activity, phosphorylation sites on direct PLK1 substrates are 

expected to be downregulated in PLK1 inhibited cells. To corroborate a direct role of PLK1 in 

phosphorylation of identified putative direct targets, we performed PLK1 in vitro phosphorylation assay 

on a set of 8 candidates, selected throughout the ranked list on the basis of their common cellular 

localization and biological process association with PLK1 and availability of full length bacterially 

expressed proteins. ATP alone was used as negative control. The kinase assay revealed that 2 out of 8 

candidate substrates incorporated 32P on incubation with PLK1. In order to quantify the results and 

compare the amount of ATP incorporation between substrates, we normalized autoradiography band 

signal to exclude differences due to time of film exposure and amount of protein, which suggested that 
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SUMO1 and HSPB1 could be phosphorylation targets of PLK1. Overall, our experimental validation 

assay showed that 2 out of 8 candidate proteins were PLK1 substrates in vitro, however accuracy with 

individual phosphorylation site remains to be assessed.  

Since our in vitro assay showed that Ser2 of SUMO1 and Ser82 of HSPB1 were phosphorylated by 

PLK1, to further verify the phosphorylation sites we generated full length His-SUMO1 phosphomimic 

and phospho-dead mutants (Ser2A, Ser2D, Ser2E) and His-HSPB1 phosphomimic and phospho-dead 

mutants (Ser82A, Ser82D and Ser82E) and performed in vitro kinase assays with PLK1. There was a 

significant reduction in the phosphorylation signal of SUMO1 and HSPB1 mutants as compared to their 

wild type counterparts (Figure 3e). Hence these results confirmed that Ser2 of SUMO1 and Ser82 of 

HSPB1 are the true phosphorylation sites targeted by PLK1.  

 

Protein-protein interaction experiments 

To determine in vivo interaction of SUMO1 and HSPB1 with PLK1, we performed immunoprecipitation 

assay in A375 cell lines. In reverse immunoprecipitation experiments, we observed that endogenous 

SUMO1 and HSPB1 were co-precipitated with PLK1 (Figures 4 f and g), thereby suggesting in vivo 

interaction among them. We also performed reverse co-immunoprecipitation assay to further validate 

our in vivo interaction. Furthermore, we looked for possible protein-protein interactions of PLK1 with 

SUMO1 and HSPB1 to demonstrate their involvements in common signaling network. Therefore we 

performed an in situ proximity ligation assay (PLA) in HCT116 and OE33 cells. The 

immunofluorescence signal against PLK1-SUMO1 and PLK1-HSPB1 in two different PLA experiments 

showed well defined protein-protein interactions (Figures 4a and b). Images were collected and analysed 

in ImageJ software. We multiplied the readings in green and blue channels with inverse value of red 

channel. Similarly, we multiplied values in blue channel with values in green channel. Prominent 
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fluorescence spots detected through in situ PLA experiments revealed that SUMO1 and HSPB1 are 

novel interacting partners of PLK1.  

 

In agreement to the previous studies which suggest that PLK1 stably interacts with its targets via its 

PBD, we performed direct binding ELISA to substantiate the direct protein-protein interaction between 

PLK1-PBD and identified putative hits (SUMO1 and HSPB1). Against a buffer control, SUMO1 and 

HSPB1 were shown to bind significantly to PLK1-PBD in a dose dependent manner (Figure 5.4d). 

ELISA test was also carried for phospho-mutant forms of SUMO1 (Ser2Ala, Ser2Glu and Ser2Asp) and 

HSPB1 (S82Ala, S82Glu and S82Asp) proteins in comparison to wild type proteins against PLK1-PBD. 

Results indicated binding of WT and mutant proteins (SUMO1 and HSPB1) with equal affinity to 

PLK1-PBD (Figures 4 d and e) hence suggesting that Ser2 of SUMO1 and Ser82 of HSPB1 were 

phosphorylation sites of PLK1, however the identified phosphorylation sites were not involved in 

binding to PBD of PLK1 as mutant and wild type proteins bound with equal affinity 

 

Next we asked whether SUMO1 and HSPB1 carry PBD docking sites along with putative 

phosphorylation site identified in the present study. Interestingly, we found that SUMO1 and HSPB1 

held previously identified PBD docking consensus S[pS/pT]X [1, 34], which is thought to be critical for 

binding with PBD prior to phosphorylation of putative site by kinase domain.  Furthermore, to map the 

PBD binding motif and to characterize the binding of identified targets with PLK1, we performed 

detailed structural analysis through structural bioinformatics approaches. 

 

Structural bioinformatics approach to investigate interaction of SUMO1 and HSPB1 with PLK1 
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Putative novel PLK1 targets (SUMO1 and HSPB1) were subjected to molecular modeling and docking 

assays to characterize their mode of interaction and site of interaction with both domains of PLK1. The 

3D structure of small ubiquitin like modifier (SUMO1) was retrieved through protein data bank having 

PDB ID: 1a5r.A. Due to lack of experimentally determined full length HSPB1/HSP27 structures, we 

used homology modeling and ab initio structure prediction approach to determine the 3D structures for 

ongoing interaction mapping experiments. SWISSMODEL [25] and Muster [26] servers were used to 

predict HSPB1 three dimensional structure, followed by model refinement and geometry optimization 

through Wincoot [35] and UCSF chimera 1.7.1 [31] tools.  

Ramachandran plot indicated that approximately 95% residues of predicted models lie in the allowed 

regions. Moreover, parameters like peptide bond planarity, non-bonded interactions, Ca tetrahedral 

distortion, main chain H-bond energy and overall G-factor for the modeled structures lie within 

favorable range. 

PDB determined three dimensional structure of SUMO1 (PDB ID: 1a5r) and predicted 3D model of 

HSPB1 were docked against the experimentally known structure of PLK1 kinase domain (PDB ID: 

3THB) and PBD (PDB ID: 4LK1) through multiple docking algorithm (AutoDock 4.0 [27], HADDOCK 

[28] SWARM dock [29] and GRAMXX [30]). Deep structural analysis was performed on set of most 

promising docked complexes (SUMO1-PLK1 and HSPB1-PLK1) selected from each methods to 

configure mode and site of bindings between studies macromolecules. Structure based interaction 

measurement and binding site characterization of SUMO1 with PLK1 revealed that N-terminal part of 

SUMO1 a loop region encompassing putative phosphorylation site (S2) was in fine docking pose to be 

phosphorylated by kinase domain. While the C-terminal part of SUMO1 encompassing PBD binding 

consensus S[pS/pT]X [1, 34] was observed in tight interaction with critical substrate binding residues of 

PBD (TRP414, ASN416, HIS489, PHE535, HIS538 and LYS540) [1] (Figure 5). Surprisingly the 
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docking pose adopted by SUMO1 and PLK1 (both domain) was consistent in all docking algorithms 

used in the present study.  

  

Likewise, binding analysis of most consistent and significant docked complex of HSPB1 and PLK1 

exposed important structural twist. N-terminus of HSPB1 carrying putative PLK1 phosphorylation site 

was observed to be pointed towards the kinase domain of PLK1, while HSPB1 region encompassing β3 

and small loop (Pro106-Gly116) was observed having strong interactions with critical residues of PBD 

involved in substrate binding (Figure 6).  

 

Discussion 

The integration of transcriptomics (data from next generation sequencing) and proteomics (data from 

mass spectrometry) or multi-omics provides a comprehensive overview of the biological features that 

drive cancer than analysis of individual dataset alone. Such analysis helps in the identification of the 

most important targets for cancer detection and intervention. 

In recent years, despite increased understanding of PLK1 pleiotropic functions [36-39], many of its 

identified substrates do not alone explain all its physiological functions. In line with this, we used an 

integrative omics approach to uncover the unexplored PLK1 targets and to extend our knowledge of 

PLK1 signaling. Our transcriptomics and proteomics profiling led to the identification of SUMO1 and 

HSPB1 as novel phosphorylation targets of PLK1. Integration of RNA sequencing data from four OAC 

patients (23T, 26T, 27T, 45T) with PLK1 dependent mass spectrometry data from OE33 cell line treated 

with PLK1 inhibitor allowed us to quickly eliminate a number of candidate genes which were significant 

in RNA sequencing data, but were not present in phosphoproteomic data (possible direct PLK1 targets). 
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Even though it is tough and challenging to integrate and amalgamate two different technologies due to 

different sensitivity and accuracy, multiple bioinformatics approaches may make it possible. Here 

through integration of information from two data sources our focus was to perform a high throughput 

analysis to have a good coverage and promising results that would not have been reached with 

individual data type. Post-translational modification data which is highly relevant when studying kinases 

was also only available via proteomics methods, as this information is not present in transcriptomic data. 

Combination of the two datasets leads to especially robust targets for future development. 

Our integrative approach resulted in the identification of many proteins that have previously been 

associated with PLK1. It has been known that PLK1 co-immunoprecipitates with members of the 

minichromosome maintenance MCM2-7 protein complex, having important roles in DNA replication 

and contributes in initiation and elongation of replication [40]. In the present study, MCM2 was 

observed to be have a phosphosite downregulated with >2 fold reduction in phosphorylation signal upon 

PLK1 inhibition. Similarly, Van Vagurt in 2010 reported that mitotic phosphorylation feedback network 

connects Cdk1, PLK1, 53BP1 and Chk2 to inactivate the G(2)/M DNA damage checkpoint [41]. In our 

results, we identified reduction in Cdk1 phosphorylation level upon PLK1 inhibition apart from up-

regulation in four OAC patients. TPX2 and TOP2A were previously known to interplay with PLK1 in 

cell cycle [42-43] and interestingly filtered out in our shortlisted candidates set. These results further 

strengthened the prediction accuracy and soundness of our strategy. In addition to the proteins discussed 

above that have previously been associated with PLK1, several novel PLK1 interacting proteins that 

share ontology with PLK1 were also identified in present study. 

Small ubiquitin-like modifier (SUMO1) is found in all eukaryotes and becomes covalently conjugated to 

other cellular proteins [44-47]. SUMO, pathways play critical roles in several aspects of mitosis 

including cell cycle progression, chromosome structure, kinetochore function, cytokinesis and cell 
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division [48]. SUMOylation also controls transcription, DNA repair, DNA recombination and mitotic 

chromosome segregation [49-54]. Biological knowledge between PLK1 and SUMO1 suggests some 

common functionalities and dynamic localization of these key players throughout in mitosis. In current 

study, we identified phosphorylation dependent interaction of SUMO1 and PLK1. MS data revealed 

phosphorylation of SUMO1 by PLK1 at Ser2 which was validated through our in vitro PLK1 

phosphorylation assay. Phosphorylation of Ser2 of SUMO1 was detected in yeast, drosophila and 

human through mass spectrophotometry, signifying evolutionary conserved function for this 

modification [55]. Binding of SUMO1 with PLK1 was further validated through protein-protein 

interaction mapping assays. Through our in silico deep structural analysis, we mapped docking sites of 

SUMO1 with kinase domain and PBD of PLK1 which clearly revealed  interaction of SUMO1-PBD 

binding consensus with PBD (PLK1) and putative phosphorylation motif with kinase domain (PLK1). 

We are tempting to speculate that our findings open a room for cancer research through the functional 

interplay between PLK1, SUMO1 and tumor suppressor protein p53. The p53 is modified by SUMO1 at 

single phosphorylation site (Lys386) and acts as a potential regulator of p53 response [56]. Recently it 

has been reported that p53 physically interacts with PLK1 and is necessarily and specifically binds to 

PLK1 promoter and suppresses the endogenous level of PLK1 expression [57-58]. Once the intertwined 

relationship of PLK1, SUMO1 and p53 is established and evaluated, this could be a novel and 

interesting area for cancer therapeutic development. This is also a broader mechanism of regulation of 

SUMO, which is increasingly identified as a post-translational modification of important proteins such 

as DNA repair proteins. The post-translational modification of a post-translational modification leads to 

intriguing new levels of complexity in cellular signaling pathways. 

In our study, we also identified HSPB1, a heat shock protein as a novel phosphorylation target of PLK1. 

HSPB1 is ubiquitously expressed in all human tissues [59-60] and increased expression level of HSPB1 
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was detected in many types of tumors [61-64], while its decreased expression level was measured in 

oesophageal adenocarcinoma and adrenal adenoma [63, 65]. Interestingly, HSPB1 was also 

downregulated in four oesophageal patients in present study. In response to growth factor and heat 

shock, HSPB1 is known to be phosphorylated in vivo at multiple sites like Ser15, Ser78 and Ser82. 

Clerk et al in 1998 identified MAPAK2 as major enzyme involved in phosphrylation HSPB1 at Ser82 

[66]. Through our mass spec screen we observed 2.6 fold reductions in phosphorylation signal of 

HSPB1 upon PLK1 inhibition. Through extensive investigation by using in vivo, in vitro, in situ and in 

silico approaches we demonstrated that Ser82 of HSPB1 is phosphorylated by PLK1. It has been known 

that upon phosphorylation, HSPB1 forms different oligomers and phosphorylation affects the chaperon 

activity of HSPB1 [67-68]. HSPB1 is involved in signal transduction and prevent apoptosis by inhibiting 

capases [69]. Role of HSPB1 and PLK1 is needed to be investigated to have a clear picture of 

mechanism regulated by these two proteins. PLK1 has also been shown to phosphorylate HSp70 another 

heat shock protein [70]. HSP90 is also a heat shock protein known to regulate mitosis through its 

association with PLK1 [71]. Thus identification of HSPB1/HSP27 as novel PLK1 substrate suggests 

additional relation of PLK1 with family of heat shock proteins.   

In summary our high throughput analysis using two omics information extends the knowledge of PLK1 

interactions and novel signaling cascade in OAC. In vitro PLK1 phosphorylation assay revealed 

SUMO1 and HSPB1 as phosphorylation targets of PLK1. Consequently, the interaction of SUMO1 and 

HSPB1 with PLK1 was characterized by conducting comprehensive set of in vivo, in situ and in silico 

assays that clearly demonstrated the interaction of PLK1 with putative novel targets (SUMO1 and 

HSPB1). The clinical relevance of PLK1 dependent modification in OAC remains to be explored. 

Owning to the emerging role of PLK1 in OAC proliferation, identification of PLK1 dependent 

phosphorylation targets suggested that PLK1 is a promising molecular target for the treatment of OAC. 
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Figure 1: Integrative approach schematics. Transcriptomics and proteomics data types were 

integrated for high throughput investigation of PLK1 targeted biomarkers of OAC. Each data 

type was analyzed individually; information from both data type was amalgamated and later on, 

by downstream Bioinformatics analysis putative direct PLK1 target was selected for 

experimental validation. 
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Figure 2: Overexpression of PLK1 in RNA sequencing data from four patients with OAC 

phenotype. PLK1 gene (a) normal tissue (b) tumor tissue. Reads are mapped for each exon. Number of 

mapped reads is higher for tumor sample in comparison to normal counterpart which clearly indicates 

overexpression of PLK1 in OAC. 
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Figure 3: Cloning, protein purification and in vitro validation of identified hits. (a) Substrates were 

cloned in bacterial expression Gateway cloning vector and (b) expressed in E. coli  BL21 DE3 cell line 

and proteins for 10 putative candidate substrates including SUMO1 (11 kDa), SRSF6 (39kDa) HSPB1 
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(27kDa), EIF3C (105kDa), TRA2B (33kDa), PKP2 (97kDa), BOD1 (19kDa), CAV2 (18kDa), RBM39 

(59kDa) and DKC1 (57kDa) were purified and analyzed through immunoblotting. (c) PLK1 

phosphorylation assays were performed on potential substrates from the candidate list. Precipitated 

proteins were mixed with PLK1 or only buffer in the presence of 32P-ATP, then separated by SDS-

PAGE and stained with coomassie brilliant blue. Incorporated 32P was visualized by autoradiography. 

Exposure time of the autoradiographs was adapted for each substrate to allow the visualization of 32P 

incorporation. (d) To confirm the site of phosphorylation, mutant constructs were generated for SUMO1 

(Ser2A/Ser2D/Ser2E) and HSPB1 (Ser82A/Ser82D/Ser82E) with subsequent purification of proteins 

separated by SDS-PAGE. (e) Upon Phosphorylation with PLK1, reduced signal was observed through 

autoradiography for mutant proteins in comparison to wild type.  
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Figure 4: Protein-protein interaction experiments. Proximity ligation assay (PLA) was performed 

using primary antibodies directed against (a) SUMO1, (b) HSPB1 and PLK1. Red labeled particles [a 

(iv), b (iv)] represent interaction of PLK1 with SUMO1 and HSPB1. The hybridization probe is labeled 

red, cytoplasm is labeled green and nuclei blue. (c) If two proximity probes come closer to each other, 

then subsequently added linear connector oligonucleotide are guided to form a circular structure which 

is covalently joined by enzymatic DNA ligation. After ligation, hybridization of fluorescent labeled 

oligonucleotide complementary to a tag sequence can be detected. (d) Direct protein binding ELISA of 

SUMO1-WT and its mutant proteins with PLK1-PBD. (e) Binding analysis of HSPB1-WT and its 

mutants proteins with PLK1-PBD through direct protein binding ELISA. Mutant and WT of SUMO1 
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and HSPB1 showed binding to PLK1-PBD with equal affinity in comparison to buffer control. (f)                                

Co-immunoprecipitation of endogenous HSPB1 with PLK1 in A375 cell line. (g) Co-

immunoprecipitation of endogenous SUMO1 with PLK1 in A375 cell line. The lanes are: Input lane 

represents whole cell extract, control lane represents cell extract without any antibody and finally lane 2 

represents immunoprecipitated proteins.   

 

Figure 5. In silico interaction mapping of SUMO1 and PLK1. Interaction of SUMO1 was mapped 

with PBD (light gray ribbon) and kinase domain (dim gray ribbon) of PLK1. The interacting residues of 

both PLK1 domains are shown in pink sticks. SUMO1 is represented in golden ribbons, its N-terminal 

region with putative phopshorylation site (Ser2) which is pointed towards kinase domain and showed 

interaction of its C-terminal part with key residues (Trp414, His538, Lys540, Phe535 and His489) of 

PBD. Architecture of SUMO1 is shown along with phosphorylation sites mapped on it. Information 

about phosphorylation site was gained from phosphositeplus (http://www.phosphosite.org/) and 
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phosphoELM (http://phospho.elm.eu.org/). Phosphorylation site targeted by PLK1 (identified in present 

study) is highlighted in red color. 

 

Figure 6: In silico interaction mapping of HSPB1 and PLK1. Interaction of HSPB1was mapped 

with PBD (light gray ribbon) and kinase domain (dim gray ribbon) of PLK1. The interacting residues of 

both PLK1 domains are shown in pink sticks. HSPB1 is represented in golden ribbons; its N-terminal 
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region with putative phosphorylation site (Ser2) is shown to bind with kinase domain while its (HSPB1) 

C-terminal part showed interaction with key residues (Trp414, His538, Lys540, Phe535 and His489) of 

PBD. Architecture of HSPB1 is shown along with predicted phosphorylation sites mapped on it.  

 

Table 1: List of candidates shortlisted through integration of two omics data sources. 

OVEREXPRESSED/PHOSPHO-UP 
 

UNDEREXPRESSED/PHOSPHO-DOWN 

23T 26T 27T 45T 23T 26T 27T 45T 

CAV2 CAV2 CAV2 CAV2 ANXA2 ANXA2 ANXA2 ANXA2 

DDX21 CCDC6 BAG3 CDK1 BAG3 BAG3 BIN1 BAG3 

DKC1 CDK1 CDK1 COPA CCDC6 DKC1 CDC37 CCDC6 

DOCK5 COPA COPA DDX21 HSPB1 HSPB1 HSPB1 HSPB1 

DSG2 DDX46 CTR9 DDX46 CDK1 EIF3C LAD1 CDC37 

EFHD2 DOCK5 DDX21 DKC1 COPA FLNA MYL9 EIF3C 

FLNB DSG2 DDX46 DOCK5 CTR9 LAD1 NAF1 HMGA1 

HDGF EFHD2 DKC1 DSG2 DDX46 LMNA NEMF LAD1 

CDK1 FLNB DSG2 EFHD2 EIF3C MFAP1 PTRF MAP4 

MCM2 MCM2 MCM2 MCM2 G3BP1 MYL9 RBM14 MFAP1 

MYH9 HDGF EFHD2 FLNB HN1 NEMF RTN4 NEMF 

NOLC1 HN1 EIF3C HDGF LAD1 NOC2L SCRIB PA2G4 

NOP2 LIMA1 HDGF LIMA1 LIMA1 NOP2 STMN1 PCDH1 

NOP58 MCM2 HN1 MYH9 LMNA NOP56   RBM14 

NSUN2 MYH9 LIMA1 MYL9 MFAP1 PA2G4   RTN4 

PA2G4 NOP58 MYH9 NOLC1 MYL9 PCDH1   SF3A1 

PKP2 PAK2 NOLC1 NOP56 NEMF PLEC   SLTM 

PTRF PKP2 NOP2 NOP58 NOP56 RTN4   SRRM2 

RBM39 PTRF NOP56 PKP2 PAK2 SRRM2   SRSF9 
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SRRT RBM39 NOP58 PTRF PCDH1 STRN   STRN 

SRSF6 SF3A1 PA2G4 RBM39 RABL6     TMX1 

SRSF9 SLTM PAK2 SNW1 RTN4     TOP2B 

SSFA2 SNW1 PKP2 SRRM1 SLTM       

SSRP1 SRRM1 RBM39 SRSF6 SNW1       

SUMO1 SRRT SLTM SSFA2 SRRM1       

TOP1 SRSF6 SNW1 SSRP1 SRRM2       

TOP2A SRSF9 SRRM1 STMN1 STMN1       

TPX2 SSFA2 SRRM2 SUMO1 STRN       

TRA2A SSRP1 SRSF6 TOP1 TMX1       

  STMN1 SSFA2 TOP2A TOP2B       

  SUMO1 SSRP1 TPX2 TRA2B       

  TMX1 TMX1 TRA2A         

  TOP1 TOP1           

  TOP2A TOP2A           

  TOP2B TOP2B           

  TPX2 TPX2           

  TRA2A TRA2B           
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