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 2 

Abstract 

The potential to bioprint and study 3D bacterial biofilm constructs could have great clinical 

significance at a time when antimicrobial resistance (AMR) is rising to dangerously high levels 

worldwide. In this study, clinically relevant bacterial species including Escherichia coli, 

Staphylococcus aureus (MSSA), Methicillin-resistant Staphylococcus aureus (MRSA) and 

Pseudomonas aeruginosa were 3D bioprinted using a double-crosslinked alginate bioink to 

form mature bacteria biofilms, characterized by confocal laser scanning microscopy (CLSM) 

and fluorescent staining. Solid and porous bacteria-laden constructs were reproducibly 

bioprinted with thicknesses ranging from 0.25 to 4 mm. We demonstrated 3D bioprinting of 

thicker biofilms (>4mm) than found in currently available in vitro models. Bacterial viability 

was excellent in the bioprinted constructs, with CLSM observation of bacterial biofilm 

production and maturation possible for at least 28 days in culture. Importantly, we observed 

the complete five-step biofilm life cycle in vitro following 3D bioprinting for the first time, 

suggesting the formation of mature 3D bioprinted biofilms. Bacterial growth was faster in 

thinner, more porous constructs whilst constructs crosslinked with BaCl2 concentrations of 

above 10 mM had denser biofilm formation. 3D MRSA and MSSA biofilm constructs were 

found to show greater resistance to antimicrobials than corresponding two-dimensional (2D) 

cultures. Thicker 3D E.coli biofilms had greater resistance to tetracycline than thinner 

constructs over 7 days of treatment. Our methodology allowed for the precise 3D bioprinting 

of self-supporting 3D bacterial biofilm structures that developed biofilms during extended 

culture. 3D biofilm constructs containing bacterial biofilms produce a model with much 

greater clinical relevance compared to 2D culture models and we have demonstrated their 

use in antimicrobial testing.  
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 3 

Introduction 

Biofilms can be defined as 3D structured communities of bacterial cells enclosed in a self- 

produced polymeric matrix, attached to a solid surface or substratum [1]. Bacterial biofilm 

formation is crucial to establishing chronic infections including respiratory infection[2]. 

orthopaedic infection [3], heart valve infection (endocarditis) [4], and nosocomial infections 

[5]. In the case of acute infections, bacteria often exist in the planktonic (or free-swimming) 

state, allowing effective treatment with antimicrobials. However, once a biofilm develops 

infections are known to be 10-1000 times more resistant to antimicrobial agents, often 

rendering standard antimicrobial therapy ineffective without more invasive treatment such 

as surgery [6]. In the United States of America alone, there are 17 million new biofilm-

associated bacterial infections that lead to estimated health care costs of $94 billion and 

550,000 deaths each year [7]. According to the World Health Organization (WHO), urgent 

action is required to avoid a “post-antibiotic era”, in which common infections and minor 

injuries can once again kill; antimicrobial resistance is projected to result in 10 million deaths 

every year globally by 2050 [8]. Global concern about AMR is compounded by the fact that it 

has been 30 years since a new class of antibiotics was last introduced [9]. Therefore, 

increasing importance is being placed on drug screening, and in particular, antimicrobial 

susceptibility testing (AST), which requires suitable models that more closely resemble in vivo 

biofilm formation.  

The minimum inhibitory concentration (MIC) of antimicrobial agents (defined as the lowest 

concentration of an antimicrobial agent at which visible bacterial growth is inhibited after 

overnight incubation) is frequently calculated during AST to assess antimicrobial efficacy and 

bacterial resistance [10]. Methods to determine the MIC based on 2D planktonic cultures of 

bacteria are well established [11]. However, determining the minimal biofilm eradicating 

concentration (MBEC) in biofilm infections is much more challenging. This is primarily because 

in vivo biofilm formation is three dimensional (3D) in architecture, which differs to most 

currently available laboratory models that tend to involve 2D biofilm culture [12-14]. AST of 

planktonic bacteria therefore tends to give misleading results that do not reflect the increased 

resistance of bacteria living in a 3D biofilm [15, 16]. This has significant clinical implications; 

for example, antimicrobial agents are usually chosen on the basis of their efficacy against 2D 

planktonic cultures which are more sensitive to treatment than 3D biofilms. Clinically this is 

well demonstrated by cystic fibrosis patients, where treatment of P.aeruginosa infection with 

antibiotics originally developed against planktonic cultures often becomes ineffective once 

biofilm formation occurs [15]. To develop novel antimicrobials capable of disrupting biofilm 

formation and resistance in future, 3D in vitro biofilm models more representative of clinical 

infection are required.  

Most commonly used 2D biofilm culture methods attempt to simulate the nature of the in 

vivo environment by focussing on selected relevant factors such as materials, nutrients and, 

importantly, fluid flow including drip flow [16], rotating disk [17], microfluidics [18], and flow 

chamber architecture [19]. Unfortunately, none of these methods mimic the complexity of 
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 4 

the 3D microenvironment and host defence mechanisms [20] and unable to produce biofilm 

thicknesses beyond 100 µm [21, 22]. In contrast to the current in vitro models, in vivo biofilms 

can grow beyond 1000 µm in size and are often found embedded within a host’s extracellular 

matrix, leading to interactions with the host immune system which can further alter biofilm 

morphology and size [1, 23]. 

3D bioprinting has developed rapidly as a technique that can deposit living cells and 

biomaterials in user-defined patterns to build complex tissue constructs “from the bottom 

up” [24-27]. While there are elegant approaches on 3D bioprinting bacteria and their 

aggregates [28-32], there has been no report on demonstrating the formation of mature 

bacteria biofilms. However, the capacity to reliably and reproducibly 3D bioprint bacterial 

biofilms have several potential benefits.  Embedded bacteria have been shown to have 

increased metabolic activity, AMR and plasmid stability compared to bacteria grown in [33, 

34]. 3D bioprinted bacterial biofilms therefore could potentially mirror in vivo bacterial 

growth and behaviour more closely than traditional 2D models, increasing the potential to 

investigate critical bacterial quorum sensing (QS) and antimicrobial biofilm penetration [34, 

35]. 3D bioprinting also increases the potential to produce biofilm constructs with 

predesigned dimensions, with a high degree of control possible over biofilm thickness and 

dimensions. Other benefits of 3D bioprinting biofilm include the potential creation of 

microbial fuel cells [36], biosensors [37] and biotechnological applications [37-39]. 

In this paper, we present a novel 3D bioprinting biofilm technology and report the first 

investigation of the formation of mature bioprinted 3D biofilms and measure their responses 

to antibiotic drug tests, and drug penetration.  Mature biofilms with different thicknesses and 

structures were designed and bioprinted using a range of clinically relevant bacterial strains. 

In vitro AST was performed to compare the resistance of 2D cultures versus 3D printed biofilm 

constructs for the first time. Bioprinting of biofilm constructs with thicknesses greater than 

previously available in vitro models was also successfully performed.  
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Materials and Methods 

Bacteria-laden bioink preparation 

Brain Heart Infusion (BHI) broth (Sigma-Aldrich, UK) powder was dissolved in sterile deionized 

water to produce a 37 g/ L BHI Broth and then autoclaved. UV-sterilised sodium alginate 

powder (Protanal LF10/60FT, FMC Biopolymer, UK) was then dissolved in BHI Broth to 

produce a 4% (w/v) alginate solution. The alginate solution was subjected to magnetic stirring 

until reaching homogeneity and then sterilised through heating to boiling point (95°C) three 

times. Solutions consisting of 4% w/v sodium alginate and 0.4% w/v CaCl2 were then mixed 

with a volume ratio of 1:1 to create a partially cross-linked 0.2% CaCl2: 2% sodium alginate 

hydrogel in a 50 mL conical tube. The hydrogel solution was vortex mixed at room 

temperature at 1500 rpm for 5 min to produce a homogeneous, partially cross-linked alginate 

hydrogel. Alginate hydrogels were then stored at 4 °C prior to usage to prevent the growth of 

contaminants.   

Bacterial strains and growth media 

Bacterial strains were universally cultured in Brain Heart Infusion (BHI) broth at 37oC whilst 

shaking. Strains used included Escherichia coli (E.coli clinical isolate, ATCC 25922), 

Pseudomonas aeruginosa (P. aeruginosa, PAO1, wild type strain, ATCC 47085), Methicillin-

sensitive staphylococcus aureus (MSSA, clinical isolate, ATCC 29213) and Methicillin-resistant 

staphylococcus aureus (MRSA, clinical isolate, ATCC 700788). Chosen strains were routinely 

maintained on BHI agar (Sigma-Aldrich, UK) plates and stocks kept frozen in glycerol (50% v/v) 

at -80oC.  

Inoculum preparation  

Bacterial strains taken from glycerol stocks were streaked on to a BHI agar plate and 

incubated at 37oC overnight. The following day a single colony was inoculated into 5 mL of 

BHI broth and incubated overnight at 37oC, with 200 rpm shaking (Mini shaker, Cleaver). The 

overnight cultures were harvested in the stationary phase after 18 h cultivation. The bacteria 

were collected by centrifugation (3,000 rpm, 4oC, 5 min) and washed three times with 9% 

sodium chloride (NaCl) to remove the residual BHI medium. In all experiments, the 

concentration of bacteria was determined by optical density spectrometry (Eppendorf 

BioPhotometer) and inoculated to 1.0 at wavelength 600 nm (OD600nm=1.0). The inoculated 

suspension of each strain was prepared in 10 mL of 9% NaCl in a 50 mL centrifuge tube (Fisher 

Scientific, UK) and the cells harvested by centrifugation (3,000 rpm, 4oC, 5 min). Bacterial cell-

pellets were then re-suspended in 500 µL of 0.2% CaCl2: 2% sodium alginate hydrogel solution 

with a micropipette and dispensed into a 5 mL Luer-lock syringe (Fisher Scientific, UK). 

Connection to a further 5 mL Luer-lock syringe containing 4.5 mL 0.2% CaCl2: 2% sodium 

alginate hydrogel warmed to 37°C allowed repeated, gentle mixing to be carried out back and 

forth between syringes containing bacteria and hydrogel (100 mixes back and forth), 

producing 5 mL bioink with homogeneously distributed bacteria.  
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 6 

Construct design 

3D models consisting of a solid or lattice 10 mm x 10 mm square design with increasing 

vertical thicknesses (0.25 mm, 0.5 mm, 1 mm, 2 mm, 4 mm) were produced using Autodesk® 

Netfabb® software (Autodesk®, Inc, USA) and exported as an STL file.  Open-source slicer 

software (Sli3er, Version 1.2.9) was used to load the STL files and generate G-code files using 

the following settings for bioprinting: layer thickness, 0.1 mm; infill pattern, rectilinear; infill 

density, 25%; speed, 10 mm/s; extrusion multiplier 1.2. G-code files corresponding to solid 

and lattice constructs with differing vertical thicknesses were then loaded onto the bioprinter.  

Bioprinting  

A three-axis (X-Y-Z), single nozzle 3D cell printer developed in our laboratory was used for 

bioprinting bioinks laden with different bacteria. This bioprinter represents an adapted, 

extrusion-based version of a previously developed microvalve-based bioprinter used in our 

lab to bioprint human cells including induced pluripotent stem cells [26, 39, 40]. Briefly, the 

bioprinter produces 3D constructs by coordinating the motion of a mechanically-driven 

syringe. The dispenser deposits extrudate consisting of hydrogel on a stationary Z-platform. 

As successive layers of extrudate are deposited, the z-platform moves downwards allowing 

structures to be bioprinted from the bottom up, layer-by-layer. Prior to use, the bioprinter 

was sterilized via UV exposure and wiped down with 70% ethanol. Sterility was maintained 

during bioprinting by placing the bioprinter in a laminar flow cabinet. Sterile 5 mL Luer-lock 

syringes containing bacterial bioink were attached to 25G printing nozzles and loaded into the 

bioprinter, allowing bioprinting into sterile 6-well culture plates to occur.   

Secondary cross-linking of constructs 

Ethylenediaminetetraacetic acid (EDTA), calcium chloride (CaCl2) and barium chloride (BaCl2) 

powders (Sigma-Aldrich, UK) were sterilised with ultraviolet (UV) light (three 30 min cycles). 

Solutions of 0.4% w/v CaCl2, 10 mM BaCl2, 20 mM BaCl2, 40 mM BaCl2 and 110 mM EDTA 

(Sigma-Aldrich, UK) were prepared in sterile deionised water. All solutions were then 

autoclaved at 121 °C for 30 minutes prior to experimental usage. 

Following bioprinting, constructs were cross-linked by submersion in ionic solutions of either 

10, 20 or 40 mM BaCl2 for 2 mins. Cross-linked constructs were then rinsed in phosphate-

buffered saline (PBS) prior to incubation in BHI medium under standard culture conditions (37 

°C, 5% CO2, and 95% relative humidity). BHI media was replenished every second or third day 

and culture was performed atop a compact fixed-angle platform rocker (Grant Bio™ PMR-30 

Compact Fixed-Angle Platform Rocker, Fisher Scientific, UK), to increase flow of media around 

the bioprinted constructs.  

Fluorescence staining for biofilm viability 

A commercial Film TracerTM LIVE/DEADTM biofilm viability kit (Thermo Fisher) was used for the 

assessment of biofilm viability based on staining with the membrane potential sensitive dye 

propidium iodide (PI) (490 nm excitation, red emission) and the nucleic acid stain SYTO-9 (488 
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 7 

nm excitation, green emission). In principle, bacteria with intact cell membranes stain 

fluorescent green, whereas bacteria with damaged membranes stain fluorescent red. Cell 

viability staining of bacteria was carried out by incubating biofilm constructs concomitantly 

with SYTO-9 (6.7 µM) and PI (40 µM) in 35 mm glass bottomed imaging dishes (Ibidi) at room 

temperature (RT) for 45 min to allow stain penetration.  

Biofilm morphotype analysis  

In this study, a Leica Microsystems TCS SP8 CARS microscope utilising a 25x objective (HC 

FLUOTAR L 25x/0.95 W) was used for all confocal fluorescence imaging measurements.  To 

minimise or eliminate artefacts associated with simultaneous dual wavelength excitation, all 

dual labelled biofilms were sequentially scanned, frame-by-frame, first at 488 nm (Argon 

laser, 70 µW) then at 561 nm (DPSS laser, 80 µW). Line averaging (x2) was used to capture 

images with reduced noise. Fluorescence emission was then sequentially collected in the 

green and red regions of the spectrum respectively. Images were captured in a two-

dimensional (2D) projection. For analysing spatial separation in the z-direction (thickness), 

step sizes between 40-140 µm were used and 3D reconstructions were performed using Leica 

imaging software (LAS X).  Five image stacks were (typically 700 x 700 µm images over a depth 

of 40 - 140 µm) were acquired randomly from three independent constructs per BaCl2 

concentration per time point (15 stacks in total). The image stacks were then analysed using 

MATLAB 2016A software. 

Antibiotic susceptibility testing (AST) 

For all AST methods, inocula of the isolate tested were prepared according the inoculum 

preparation protocol described above. 

The methicillin stock solution of 20 mg/mL was prepared in sterile dH2O and diluted in BHI 

broth to obtain solutions with preliminary concentration in a range of 2.5 to 10 mg/mL. 

Investigation of the response of 3D biofilm constructs to methicillin was then made by initially 

culturing porous, 1 mm constructs containing MRSA or MSSA for 14 days to allow biofilm 

maturation to occur. The matured biofilm constructs were then transferred to sterile 

Corning 6-well microtiter plates (Sigma-Aldrich, UK). A 3 mL volume of each methicillin 

solution was dispensed into each well of the plate. Fresh BHI broth was then added without 

antibiotic into the positive control wells. The plates were sealed with an anaerobic film 

(Thermo Fisher Scientific, UK) and incubated under anaerobic conditions at 37oC for 24 h.  

2D Broth microdilution method  

Corning 96-well microtiter plates (Sigma-Aldrich, UK) were used for determining the MICs of 

the antimicrobial agents methicillin sodium salt (Sigma-Aldrich, UK). A methicillin 

concentration in a range of 0.02 to 5 mg/mL were used. The MRSA and MSSA inoculum plural 

(OD1.0) were prepared as described above. A 50 µL volume of each methicillin solution and a 

50 µL of inoculated suspension were dispensed into each well of the microtiter plates 

respectively. The 96-well plates were then sealed with an anaerobic film (Thermo Fisher 

Scientific, UK) and incubated under anaerobic conditions at 37oC for 24 hours. The optical 
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 8 

density of inoculated culture wells was then measured using a plate reader (Multiskan Go, 

Thermo Scientific). Subsequently, MICs were read as the lowest concentration of an 

antimicrobial agent at which visible growth was inhibited. 

3D Broth macrodilution method  

Methicillin stock solution of 20 mg/mL was prepared in sterile dH2O and diluted in BHI broth 

to obtain solutions with preliminary concentrations ranging from 2.5 to 10 mg/mL. 

Investigation of the response of 3D biofilm constructs to methicillin was then performed by 

exposing a series of porous, 1 mm MRSA or MSSA constructs to increasing concentrations of 

methicillin. MRSA and MSSA constructs were cultured for 14 days prior to methicillin exposure 

to allow biofilm maturation to occur. Mature MRSA and MSSA biofilm constructs were then 

transferred into sterile Corning® 6-well plates (Sigma-Aldrich, UK) and incubated in 3 mL 

volumes of either 2.5, 5 or 10 mg/mL methicillin solution. Positive-control wells containing 

fresh BHI broth, no methicillin and MRSA or MSSA constructs were also set up. The 6-well 

plates were sealed with an anaerobic film (Thermo Fisher Scientific, UK) and incubated under 

anaerobic conditions at 37oC for 24 hours. The optical density of inoculated culture wells was 

again measured using a plate reader (Multiskan Go, Thermo Scientific). 

Biofilm antimicrobial penetration test 

3D bioprinted E.coli biofilm constructs of 1mm and 2mm thickness and porous design were 

cultured for 5 days to allow significant biofilm formation to occur. Biofilm constructs were 

then washed x3 with phosphate buffered saline (PBS) solution to remove non-adherent 

bacteria. Antibiotic disks containing 30 µg tetracycline (Oxoid, UK) were then placed on top 

of E.coli biofilm constructs and incubated at 37oC for 7 days within BHI broth.  The tetracycline 

disks located on top of the biofilm constructs were replaced daily to maintain consistent 

delivery of antibiotic.   
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 9 

Results and discussions 

Developing long-term stability of bioprinted alginate hydrogels to allow observation of 3D 

biofilm formation 

The schematic presented below (Scheme 1) elucidates our general methodology of bacterial 

biofilm bioprinting using a biocompatible bioink [40, 41], extrusion bioprinting and a step-

wise ionic crosslinking process. Cultured bacteria were mixed into a partially-crosslinked 

hydrogel to produce a bioink with homogenous bacterial concentration. A home-built 

bioextrusion based bioprinter was then used to extrude the bioink to produce constructs with 

predesigned dimensions. Following bioprinting, secondary ionic cross-linking of the hydrogel 

was performed to increase construct stability, allowing prolonged culture and observation 

(up to 28 days).   

 
Scheme 1: Schematic of bacterial biofilm bioprinting process. Initial designs to be bioprinted 

were produced using computer-aided design (CAD) software. Following this, a partially cross-

linked hydrogel was produced by mixing sodium alginate and calcium chloride (CaCl2) 

together. Bacteria were then mixed into the hydrogel to produce a bioink with homogenously 

distributed bacteria. 3D bioprinting was then performed, using a custom-built bioprinter that 

uses mechanical force to extrude bioink from a syringe that is moved in the x-y-z plane. 

Bioprinted constructs of solid and porous design were then immersed in solutions of barium 

chloride (BaCl2) for 2 mins to secondary cross-link the constructs. Following bioprinting and 

immersion cross-linking, the constructs were cultured in bacterial growth media, allowing 

analysis to be performed at selected time points.   

The complex structure of 3D biofilms found in clinical infection take significantly longer to 

develop and mature than the simpler, 2D biofilm in vitro models which can be produced in 

overnight laboratory culture [3, 42]. Achieving sufficient stability in bioprinted bacterial 

construct was therefore essential to allow time for bacteria to associate, proliferate and 

deposit their own extracellular polymeric matrix to form a mature 3D biofilm structure. 

Alginate is a widely-adopted hydrogel for bioprinting and was chosen as the main component 
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of our bacterial bioink due to its biocompatibility, low toxicity, low cost and ease of use [25, 

43, 44]. 

In previous work we have developed the stability of alginate bioinks to allow the successful 

long-term 3D cell culture and differentiation of stem cells [25, 44]. This was achieved by 

double cross-linking alginate with calcium and then barium cations in a stepwise process [44]. 

We adapted this approach to produce double cross-linked bacterial bioink constructs with 

extended stability (>4 weeks) in culture. Other cations including strontium have been utilized 

elsewhere for this purpose; however, barium has been shown to give the strongest cross-

linking effect, optimizing construct mechanical stability [45]. Initial cross-linking of sodium 

alginate hydrogel with calcium chloride created a hydrogel with sufficient viscosity to allow 

successful bioprinting of free-standing structures of both solid and porous design, ranging in 

thickness from 0.25 mm to 4 mm (figure 1a). By performing alginate hydrogel cross-linking 

prior to bioprinting, rather than extruding alginate onto a calcium-coated culture surface as 

performed in other literature, homogenous hydrogel cross-linking was achieved; this is 

essential to achieve good printability [28]. Further cross-linking occurred following bioprinting 

by exposure to solutions of barium chloride which further helped to maintain construct 

stability, extending the stability of constructs from within a week (with calcium-only cross-

linking) to over 4 weeks in culture. (ESI, figure S1, figure S2). Bioprinting resolution with the 

hydrogel was sufficient to produce more intricate structures using a 32 g printing needle, 

corresponding to a 108 µm inner needle diameter (figure 1b).  

Confocal laser scanning microscopy (CLSM) was used to observe 3D bioprinted biofilm 

formation. Standard light microscopes often struggle to image biofilm of more than 3-4 µm 

thickness as biofilm material above and below the focal plane tend to scatter light and 

interfere with direct measurement [46]. Contrastingly, CLSM allows optical sectioning of 

biofilms and, with image analysis, 3D reconstruction is possible [47]. 

The extended hydrogel stability after bioprinting allows observation of 3D biofilm formation 

for several weeks. Previous attempts reported elsewhere in the literature to 3D bioprint 

bacteria only demonstrated bacterial viability up to a maximum of 7-9 days, with no attempts 

made to perform antimicrobial testing on 3D bioprinted bacterial constructs [28, 30, 31]. The 

stability in culture of the bioprinted hydrogel-bacteria construct achieved in our study is 

therefore significant, as it allows for extended observation of bacterial growth as well as 

offering the potential to perform antimicrobial studies and further analysis of biofilm 

formation in 3D.  Clinical biofilm infections are most often chronic in nature and develop over 

a period of weeks and even months; the stability of our bioprinted constructs may therefore 

facilitate greater potential to mirror clinical biofilms than currently available biofilm models 

[3, 7, 15, 48, 49]. 

Investigating the influence of construct design and thickness on biofilm formation 
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In order to mimic in vivo biofilms and to create an ideal in vitro 3D bioprinted biofilm model, 

solid and porous constructs were bioprinted in a range of thicknesses from 0.25 mm to 4 mm 

to investigate the ideal construct design and thickness for E. coli biofilm formation. 

E. coli biofilm formation (or bacterial density) was greater in thinner (0.25 mm to 1 mm), 

constructs compared to thicker (4mm) construct designs (p<0.001, ANOVA) (figure 1c). 

However, thinner constructs of 0.25 mm and 0.5 mm thickness were not robust enough to 

allow physical manipulation and CLSM imaging to be performed after 14 days culture. This 

was presumed to be due to leaching of cations (Ca2+ and Ba2+) from the thin, relatively high-

surface area constructs into surrounding culture media, resulting in decreased cross-linking; 

this is likely to have been exacerbated by regular media changes and culture atop a rocking 

device, increasing outwards diffusion of cations from the hydrogel-bacteria construct. In 4 

mm thick constructs, reduced biofilm formation was observed in solid compared to porous 

constructs (p=0.038, t-test) (figure 1c).   

We believe the porous construct design facilitates convective fluid transport through the pore 

channels, enhancing nutrient and oxygen diffusion processes in comparison to non-porous, 

solid constructs. This would explain why the aerobic bacteria E.coli failed to proliferate and 

produce significant biofilm in the thick, solid constructs, with the optimal structure for E.coli 

being a 1 mm porous construct. 
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Figure 1. Thickness, structure and cross-linking of bioprinted constructs influences biofilm 

formation. (a) Solid and porous constructs with vertical thicknesses increasing from 0.25 mm 

to 4 mm were sequentially bioprinted and cross-linked by exposure to 20 mM BaCl2. 

Measured thickness correlated well with designed vertical thickness after measurement with 

digital callipers (ESI, Table 1). (b) Hydrogel printability was such that intricate structures could 

be printed with a 32G, 0.108 µm inner needle diameter needle. (c) 3D reconstructed CLSM z-

stack images were acquired, allowing comparison of biofilm growth in solid and porous 

structures. Initial analysis at 5 days found that growth in solid constructs was slower than in 

corresponding porous constructs in all ranges of thicknesses. At day 14, 1 mm constructs 

appeared to have the greatest biofilm formation, whilst 0.5 mm and 0.25 mm constructs had 

insufficient mechanical stability to allow analysis. The sizes of the scale bars in the photograph 

and fluorescence images are 1 centimetre and 100 microns. 

Bioprinting of thick, anaerobic 3D biofilm constructs 

Whilst the aerobic bacteria E. coli had limited growth in thicker bioprinted constructs (figure 

1c), presumably due to limited diffusion of nutrients and oxygen, anaerobic bacteria have 

greater potential to thrive in oxygen-deplete conditions. As an opportunistic, nosocomial 

pathogen of immunocompromised individuals, the anaerobic strain Pseudomonas aeruginosa 

(P. aeruginosa) is well known for infecting the thick, oxygen-depleted mucus in the airways of 

cystic fibrosis (CF) patients, producing robust in vivo biofilms [2]. The culture conditions 

provided by the thick respiratory mucus in CF patients is somewhat analogous to those 

provided by our thick, non-porous hydrogel constructs. To investigate this, in vitro biofilm 

formation of P. aeruginosa (figure 2) was examined in non-porous, thick (2 mm and 4 mm) 

constructs (figure. 2).  

 

Figure 2. Pseudomonas aeruginosa (PAO1) formed anaerobic biofilms in thick constructs. 

(a) Photo images of 3D bioprinted PAO1 biofilm at day 0 (white colour) and matured biofilm 

at day 14 (blue-green colour). (b) 3D reconstructed CLSM Z-stack in 2D-projection and 3D 

reconstructed images (1:1 aspect ratio in x, y & z axes) of matured PAO1 biofilm formed at 2 
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mm and 4 mm thickness at day 14. The sizes of the scale bars in the photograph and 

fluorescence images are 1 centimetre and 100 microns. 

P.aeruginosa was observed to undergo extensive colonisation and aggregation in 2 mm and 

4 mm thick, non-porous structures, forming an extremely dense layer of biofilm (figure 2b). 

In contrast, much more limited bacterial growth and biofilm formation was observed via CLSM 

in 2 mm and 4 mm constructs inoculated with the aerobic bacteria E. coli (figure 1c). Strong 

blue-green pigmentation was also seen to form in 2 mm and 4 mm P.aeruginosa constructs 

over 14 days of culture (figure 2a); this is likely related to the expression of  two metabolites, 

pyocyanin (blue) and pyoverdine (green), which is known to occur in P.aeruginosa to facilitate 

anaerobic respiration [50]. The prevalence of multidrug-resistant (MDR) anaerobes, including 

P. aeruginosa, is increasing worldwide with limited current therapeutic options [51, 52].  The 

extensive growth of P.aeruginosa and associated biofilm formation seen within our 3D 

bioprinted constructs therefore offers a novel and highly promising in vitro method of 

studying anaerobic bacterial biofilm infection. 

Capturing the in vitro life cycle of biofilm in 3D 

Biofilm formation is reported to occur in a five-step lifecycle (figure 3a), which begins with 

the attachment of planktonic cells to a biological or inert surface and culminates in mature 

biofilm formation[53]. However, due to factors including limited biofilm thickness, current in 

vitro models are unable to readily facilitate observation of the five-step process and complex 

microarchitecture development that occurs during biofilm formation [54].  

As illustrated in figure 3a, Initially, ① free swimming planktonic bacteria were attached on 

the surface, ② Soon after, bacteria began to divide and aggregate together in small 

microcolonies and secrete quorum signals ③, which initiated up-regulation of various genes 

and virulence factors on a community-wide basis. Bacteria cells forming an extracellular 

biofilm matrix ④ by secrete copious polymers including polysaccharides, proteins and 

oligonucleotides. Biofilm continues to accumulate and consuming ambient nutrient and QC 

acceptors. As results of increased in shear stress and other cell signalling events, portions of 

biofilm started detaching or slough off ⑤ entirely. Dispersed cells can quickly revert to their 

planktonic form to colonise other sites, whilst retaining properties such as AMR [54].  

The influence of BaCl2 cross-linking concentration on bacterial growth was also analysed over 

28 days by exposing porous, 1 mm constructs containing MRSA to a range of BaCl2 

concentrations (ESI, figure S3). Growth within all constructs was initially strong; however, it 

was perceptible that bacteria had a greater tendency to leach from constructs exposed to 10 

mM BaCl2, with greater biofilm formation seen in 20 mM and 40 mM constructs (figure 3c). A 

custom designed image processing algorithm, implemented in MATLAB2016a, was used to 

apply further statistical analysis to quantify biofilm formation (ESI, figure S4, figure S5). It was 

found that 10 mM of BaCl2 provided less favourable conditions for biofilm formation 

compared to 20 mM and 40 mM constructs between days 4 and 23 (p<0.001, ANOVA). This 
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was presumed due to reduced cation (Ba2+) cross-linking density allowing greater leaching of 

bacteria.  

 

Figure 3. 3D reconstructed confocal laser scanning microscopy (CLSM) Z-stacks of 3D 

bioprinted biofilm images (a) The 5-step process of biofilm formation in 2D correlated with 

(b) cross-sectional and side-on CLSM images of 3D bioprinted biofilm formation. (c) Growth 

of MRSA in 1 mm, porous scaffolds exposed to increasing concentration of BaCl2 from 10 mM 

to 40 mM was examined over a 28 day period. Schematic (a) adopted from V. E. Wagner et al 

[2]. The sizes of the scale bars in the photograph and fluorescence images are 1 centimetre 

and 100 microns. 

CLSM studies demonstrated superior biofilm formation in 10 mM, 20 mM and 40 mM 

constructs, with significant biofilm formation evident after 5 days. Initially, ① individual 

planktonic bacteria were homogenously distributed in bioink at day 0 (figure 3c, Day 0). 

Although some bacteria may have left the construct, a high density remained and likely 

adhered to the bioink scaffold using cell surface displayed adhesin molecules.  ② soon after, 

bacteria began to divide and aggregate together in small microcolonies (figure 3c, Day 1-2) 
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with in the construct, which merged into larger communities (figure 3c, Day 3-5); ③ 

progressive deposition of an EPS matrix also occurred, ④ leading to mature biofilm formation 

(figure 3c, Day 14). Eventually, ⑤ regions of biofilm were seen to spontaneously disperse 

between days 23 and 28 as bacteria enzymatically dissolved the extracellular matrix [55], 

weaken the biofilm structure and release microbial cells spread and leak out of the construct 

(figure 3c, Day23-28) into surrounding culture media (where new biofilms can be formed). It 

is important to observe that 3D bioprinted alginate constructs remains largely intact while the 

bacteria escaped from constructs (ESI, Figure S2) after day 23. This further confirms that the 

lower microbial cell density observed from Day 23-28 was consistent with the final stage of 

the biofilm lifecycle where bacteria leak out of the biofilm and spread rather than the 

degradation of the 3D alginate constructs. 

To the best of our knowledge, we have demonstrated for the first time the processes involved 

in mature 3D biofilm formation in vitro over a 28-day period using bioprinting (figure 3c). This 

allows direct correlation to the 5-step process governing biofilm formation in 2D to be made 

(figure 3a). 

Comparison of 2D vs 3D in vitro antimicrobial susceptibility testing (AST) 

To compare the susceptibility of 2D and 3D bacterial cultures to treatment, we utilised 3D 

bioprinted biofilms as an in vitro model with comparison made to 2D bacterial cultures. 

Staphylococcus aureus (S. aureus) was chosen for investigation as a major human 

pathogen[56]. Although most commonly associated with skin and soft tissue infections, S. 

aureus is also responsible for a range of serious invasive infections, including osteomyelitis, 

necrotising pneumonia, endocarditis and bacteraemia [56]. Infections caused by S. aureus are 

increasing worldwide, with over 52% of intensive care unit (ICU) infections reported to be 

caused by S.aureus [57]. Most strains of S.aureus, including methicillin-susceptible S.aureus 

(MSSA), are sensitive to β-lactam antibiotics and are responsive to treatment.  However, there 

is a growing worldwide prevalence of methicillin resistant S. aureus (MRSA) infections, which 

have repeatedly been associated with a worse patient outcome compared to infections 

caused by methicillin sensitive S. aureus (MSSA) [58]. Furthermore, the efficacy of first-line 

treatments for MRSA such as vancomycin is dwindling [59]. Antibiotic resistance studies are 

therefore essential to allow the development of novel anti-biofilm therapies against MRSA 

and MSSA biofilms.  

The broth microdilution method was used to determine the lowest concentration (MIC) of 

methicillin antibiotic that prevented visible growth of MRSA and MSSA in 2D culture (figure 

4a). The broth macrodilution method was then used to determine the minimal biofilm 

eradicating concentration (MBEC) in 3D bioprinted MRSA and MSSA biofilm culture models 

(figure 4c). The MIC and MBEC were determined by a visual inspection of culture wells and 

correlated with measurements of absorbance of light through treated culture wells in both 

cases (figure 4b & 4d). Due to resistance to methicillin, MRSA had a higher MIC than MSSA in 

2D (figure 4a) and a higher MBEC than MSSA in 3D culture as expected (figure 4c). However, 

for both MRSA and MSSA, the MBEC calculated in 3D culture was significantly higher than the 
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MIC for 2D culture. Whilst 0.16 μg/mL methicillin prevented visible growth of 2D MSSA 

culture, the MBEC for MSSA in 3D culture appeared to be at least 15 times higher at 2.5 

mg/ml. Similarly, although 1.25 μg/mL methicillin appeared to prevent 2D growth of MRSA, 

growth of MRSA in 3D culture still occurred with greater than 10 mg/ml methicillin. Therefore, 

for both MRSA and MSSA, a far higher dose of methicillin was required to treat biofilm growth 

than was required to treat 2D infection. This result is in keeping with previous reports 

suggesting that biofilm formation can cause a 10 to 1,000-fold increase in bacterial tolerance 

to antimicrobial treatment compared to 2D, planktonic cultures [33, 55].  

 

Figure 4. In vitro antimicrobial susceptibility testing (AST). (a) The MICs were determined by 

broth microdilution methods. An MIC of methicillin of 0.16 μg/mL was required to prevent 

visible growth of MSSA, whilst for MRSA the MIC of methicillin was 1.25 μg/mL (figure 4a). (b) 

Optical density measurement of the methicillin-containing culture. No significant change in 

absorbance was observed when methicillin concentrations were increased beyond the MIC 

calculated for MRSA or MSSA in 2D. (c) The MBECs were determined by broth macrodilution 

method. MBECs appeared to be at least 2.5 mg/mL for MSSA, and greater than 10 mg/mL for 

MRSA on inspection. (d) Measurement of the light absorbance of the culture broth 

surrounding the MRSA and MSSA constructs supported these findings, with far higher doses 

of methicillin required to reduce bacteria growth and therefore the measured broth light 

absorbance than in 2D cultures. 

Biofilm thickness influences response to treatment 
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AST methods such as MIC calculation do not distinguish between bactericidal and 

bacteriostatic effects of antibitoics, and crucially do not provide information on the degree of 

antimicrobial biofilm penetration or eradicaiton [1, 4, 50, 60-64]. Utilising 3D bioprinted 

biofilms as an in vitro model, we sought to investigate the relationship between bacterial 

biofilm thickness and susceptibility to antimicrobial treatment. Sensitivity of E. coli to 

tetracycline was first confirmed in 2D culture (ESI, figure S6). Bioprinted E.coli constructs of 1 

and 2 mm thickness were then grown for 5 days to allow biofilm maturation, before exposure 

to 30 µg tetracycline discs which were changed every 24 h for seven days, mimicking a course 

of clinical antimicrobial treatment (figure 5a). It was apparent that 2 mm constructs remained 

opaque whilst 1 mm constructs became increasingly transparent in response to tetracycline 

exposure (figure 5a). CLSM imaging of the constructs after 7 days of tetracycline exposure 

demonstrated that E.coli biofilms had greater viability in 2 mm constructs, whilst bacteria 

located below the tetracycline disc in 1 mm constructs had largely been destroyed (figure 5b).  

As discussed previously, current methods of studying antimicrobial biofilm penetration and 

eradication suffer significant limitations. However, 3D bioprinted biofilms could offer hope 

for a novel and reproducible method of studying antimicrobial biofilm penetration and 

eradication in 3D. In the clinical environment 3D bioprinted biofilms could feasibly be 

generated from bacterial samples taken from patients in a similar manner to our experiment; 

this would allow antimicrobials to be selected on the basis of their ability to achieve biofilm 

penetration and eradication in patient-specific infections. Furthermore, it is recognised that 

3D cultures (such as our 3D bioprinted biofilm) more closely resemble the in vivo biofilm, 

when compared to traditionally used 2D in vitro cultures [15, 64-66]. 
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Figure 5. Biofilm thickness determines response to treatment (a) 1 mm and 2 mm thick 

constructs containing E.coli were bioprinted and allowed to mature for 14 days before 30 µg 

tetracycline discs were placed directly on top of them. Discs were changed every 24 h to 

maintain a high dose of tetracycline delivery to the constructs. Over a 7 days period, visible 

clearing of biofilm occurred within the 1 mm construct below the area of tetracycline 

exposure. (b) CLSM Z-stack images of the 1 mm and 2 mm constructs was performed after 

exposure to tetracycline discs. Whilst the majority of bacteria were found to be dead below 

the area of tetracycline disc exposure in the 1 mm construct, greater evidence of biofilm 

survival in the 2 mm construct was observed. The sizes of the scale bars in the photograph 

are 1 centimetre. 

Conclusions 

In conclusion, mature bacterial biofilm constructs were reproducibly 3D bioprinted for the 

first time using clinically relevant bacteria. By deploying a methodology originally developed 

to enable 3D culture and differentiation of bioprinted stem cells [25], we have been able to 

demonstrate for the first time 3D bioprinted mature biofilm formation, dispersal and 

morphology over 28 days, as well as the antibiotic tolerance of clinically relevant bacterial 

biofilms in 3D. Our methodology also significantly prolongs the viability of bacteria cultured 

in 3D bioprinted constructs compared to previous studies. Future ability to investigate 

clinically relevant bacterial biofilms in a biocompatible, cost-effective 3D model that more 

closely resembles in vivo conditions than traditional 2D culture methods is therefore 

increased.  

Page 19 of 23 AUTHOR SUBMITTED MANUSCRIPT - BF-101917.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 20 

A high degree of control was achieved over biofilm construct thickness and design, with the 

production of biofilms thicker (>4 mm) than currently available in vitro models also achieved. 

We observed that anaerobic bacteria continued to thrive in constructs of greater than 4 mm 

thickness, demonstrating the potency of these infections. To our best knowledge, the 4 mm 

thick aerobic bacteria biofilm formation is the thickest 3D bioprinted in-vitro biofilm construct 

ever reported, allowing easy observation of antimicrobial biofilm penetration.  

We observed that 3D biofilm constructs had greater resistance to antimicrobial treatment 

than 2D cultures, underlining the significance of biofilm formation in clinical infection. Thicker 

biofilms were also seen to have greater resistance to antimicrobial therapy than thinner 

biofilms, even over a prolonged period of treatment.  

With rising worldwide antimicrobial resistance, 3D bioprinted biofilm technology could 

become a key weapon to aid the discovery of novel therapeutic targets and increase the 

understanding of biofilm formation.  
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