
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cancer-derived exosomes loaded with ultrathin palladium
nanosheets for targeted bioorthogonal catalysis

Citation for published version:
Sancho-Albero, M, Rubio Ruiz, B, Perez-Lopez, A, Sebastian, V, Martin-Duque, P, Arruebo, M, Santamaria,
J & Unciti-Broceta, A 2019, 'Cancer-derived exosomes loaded with ultrathin palladium nanosheets for
targeted bioorthogonal catalysis', Nature Catalysis. https://doi.org/10.1038/s41929-019-0333-4

Digital Object Identifier (DOI):
10.1038/s41929-019-0333-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature Catalysis

Publisher Rights Statement:
*Acceptance of your manuscript is conditional on all authors' agreement with our publication policies (see
http://www.nature.com/natcatal/info/gta). In particular your manuscript must not be published elsewhere and
there must be no announcement of the work to any media outlet until the publication date (the day on which it is
uploaded onto our web site). If you have posted a preprint on any preprint server, please ensure that the preprint
details are updated with a publication reference, including the DOI and a URL to the published version of the
article on the journal website

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

https://www.research.ed.ac.uk/portal/en/persons/belen-rubio-ruiz(3dbd8ec2-1552-4842-aee5-cc37ddb81b8f).html
https://www.research.ed.ac.uk/portal/en/persons/ana-perezlopez(c024c37d-4d00-4084-9035-6c9e6b349946).html
https://www.research.ed.ac.uk/portal/en/persons/asier-uncitibroceta(01e9263f-6777-4d51-a287-5faed98d8368).html
https://www.research.ed.ac.uk/portal/en/publications/cancerderived-exosomes-loaded-with-ultrathin-palladium-nanosheets-for-targeted-bioorthogonal-catalysis(31163dc5-374f-4162-9507-fcf51f974354).html
https://www.research.ed.ac.uk/portal/en/publications/cancerderived-exosomes-loaded-with-ultrathin-palladium-nanosheets-for-targeted-bioorthogonal-catalysis(31163dc5-374f-4162-9507-fcf51f974354).html
https://doi.org/10.1038/s41929-019-0333-4
https://doi.org/10.1038/s41929-019-0333-4
https://www.research.ed.ac.uk/portal/en/publications/cancerderived-exosomes-loaded-with-ultrathin-palladium-nanosheets-for-targeted-bioorthogonal-catalysis(31163dc5-374f-4162-9507-fcf51f974354).html


 1

Cancer-derived exosomes loaded with ultrathin 

palladium nanosheets for targeted bioorthogonal 

catalysis  

María Sancho-Albero,1,2,# Belén Rubio�Ruiz,3,±,# Ana M. Pérez�López,3,# Víctor 

Sebastián,1,2,# Pilar Martín-Duque,4 Manuel Arruebo,1,2 Jesús Santamaría1,2,* and Asier 

Unciti-Broceta3,*  

1 Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of 

Zaragoza, Campus Río Ebro-Edificio I+D, c/Poeta Mariano Esquillor s/n, 50018 Zaragoza, Spain  

2 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-

BBN), 28029 Madrid, Spain 

3 Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, 

University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK 

4 Instituto Aragonés de Ciencias de la Salud// Fundación Araid// IIS Aragón. Centro de 

Investigaciones Biomédicas de Aragón, Avda San Juan Bosco 13, 50009 Zaragoza, Spain 

 

  



 2

ABSTRACT 

The transformational impact of bioorthogonal chemistries has inspired new strategies for the in 

vivo synthesis of bioactive agents through non-natural means. Among these, palladium (Pd) 

catalysts have played a prominent role in the growing subfield of bioorthogonal catalysis by 

producing xenobiotics and uncaging biomolecules in living systems. However, delivering 

catalysts selectively to specific cell types still lags behind catalyst development. Here we have 

developed a bio-artificial device consisting of cancer-derived exosomes loaded with Pd catalysts 

by a method that enables the controlled assembly of Pd nanosheets directly inside the vesicles. 

This hybrid system mediates Pd-triggered dealkylation reactions in vitro and inside cells and 

displays preferential tropism for their progenitor cells. The use of Trojan exosomes to deliver 

abiotic catalysts into designated cancer cells creates the opportunity for a new targeted therapy 

modality: exosome-directed catalyst prodrug therapy, whose first steps are presented herein with 

the cell-specific release of the anticancer drug panobinostat.  
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INTRODUCTION 

In recent years, transition metals conventionally confined to the chemistry lab (e.g. Pd, Ru, Au) 

have been shuttled into living cells, tissues and animals in pursuit of tools capable of catalysing 

first-in-life reactions.1-31 From organometallic complexes,1-13 artificial metalloenzymes14-16 and 

metal-loaded nanocarriers17-24 to larger-than-cells implantable devices,25-31 a selected number of 

agents have demonstrated catalytic activity and maintained their functional compatibility with 

the biological milieu. Although the development of effective intracellular catalysts based on 

abiotic metals remains challenging, various examples reported in the literature have tested the 

feasibility of this concept.4-9,16-24,32 One of the most exciting opportunities of this active field of 

research is, however, still in its infancy: the development of devices that not only display 

bioorthogonal catalytic activity but are also precisely delivered to specific anatomical locations, 

e.g. inside tumors.21,23,30 First attempts to achieve this have explored physical (EPR effect, 

magnetism)21,23 and surgical30 approaches, but intercellular trafficking pathways have not yet 

been investigated. In principle, natural cell-specific delivery vectors such as exosomes33 could be 

ideally suited to carry miniaturized catalytic reactors to individual cancerous cells.  

Exosomes are membrane-enclosed vesicles released by cells to the extracellular space to 

mediate intercellular exchange of biomolecules and thereby regulate a variety of physiological 

functions.33-35 The biochemical composition of the exosomal membrane is reflective of the donor 

cell, thus conferring on the exosomes a preferential tropism for cells that are parented to their 

cell of origin.34,35 In the tumour microenvironment, exosomes are believed to play a fundamental 

role in the communication between cancer cells to orchestrate cancer progression, invasion, 

angiogenesis and immune regulation.35-37 Thanks to their long circulating half-life, small size, 

low immunogenicity and ability to preferentially target particular cell types, exosomes exhibit 

ideal characteristics as vectors to deliver a therapeutic cargo (such as drugs, biomolecules or 
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hyperthermia-capable nanoparticles) to specific cells.38,39 However, introducing large molecules 

or nanoparticles inside exosomes is challenging because the methods often used (e.g. 

electroporation, sonication, etc.) can disrupt the exosomal membrane and compromise their 

targeting ability. 

Here, motivated by the possibility of using exosomes as Trojan horses,34,38-41 we aimed to 

hijack this ancient intercellular communication system to protect and deliver a catalytic cargo 

into a specific type of cancer cells. To implement this strategy, a mild chemical methodology 

was first developed to enable the controlled assembly of Pd nanostructures directly inside cancer 

cell-derived exosomes without compromising their integrity and functionality. The resulting 

bioartificial vesicles (Pd-Exo) are highly catalytic under physiological conditions, capable of 

preferentially delivering their catalytic cargo to their target cells and activate an anticancer 

prodrug inside them by Pd-mediated dealkylation. The concept of using exosome-directed 

catalyst delivery into designated cell types to mediate bioorthogonal processes in the inner cell 

space opens up a plethora of possibilities in the fields of chemical biology and biomedicine. 

RESULTS  

Design, fabrication and characterization of Pd-Exo. The use of exosomes as drug delivery 

carriers has attracted increasing attention from academics and industry in recent years.42 Various 

methods have been developed to ship a diverse range of therapeutic agents inside exosomes, 

including small molecule drugs, proteins, RNA molecules, and more complex cargoes such as 

modified viruses and gene-editing tools.43-50 Rather than loading exosomes with a limited 

amount of a bioactive agent, we rationalized that the incorporation of transition metal-based 

catalysts into such a targeted delivery system could be used to build a deliverable nanoreactor 

able to direct a bioorthogonal catalytic payload towards cancer cells and facilitate amplified 

production of therapeutic agents directly at the cancer site. The first challenge was to develop a 



 5

method that allows loading a metal of choice into these vesicles without affecting the exosome 

targeting properties and preserves the metal’s catalytic activity, since current biophysical 

techniques for loading exosomes with metallic nanostructures51-55 can induce detrimental defects 

on the integrity of the exosome membrane.56,57 

Encouraged by prior success on the controlled growth of Pd nanosheets using carbon 

monoxide (CO) as a gaseous reducing agent under wet conditions,58,59 a chemical methodology 

was investigated to generate Pd nanostructures directly inside exosomes. Figure 1A illustrates 

the stepwise production of Pd-ExoA549 (see full procedure in the Methods). After purification by 

ultracentrifugation from non-small cell lung carcinoma (NSCLC) A549 cell culture (see Suppl. 

Fig. 1), cancer-derived exosomes ExoA549 were incubated with K2PdCl4 (water soluble Pd2+ 

reagent) in PBS at physiological conditions for 12 h. This was then followed by a second 

ultracentrifugation step (to remove extracellular Pd2+ species) and 40-min treatment under a CO 

atmosphere (6 bar) and gentle stirring at low temperature (30 °C, to prevent protein denaturation) 

to mediate the in situ reduction of Pd2+ to Pd0 and self-assembly into stable Pd nanostructures. 

Procedural conditions (temperature, incubation times, CO pressure, etc.) were optimized for each 

step of the protocol to enhance the diffusion of Pd2+ species and reductant gas through the 

exosome membrane, promoting Pd nanoparticle formation without causing functional defects to 

the exosomes. The choice of a mild antioxidant such as CO was addressed to minimize side 

reactions, since most reductants capable of reducing Pd2+ species can potentially react with 

functional groups present in most biomolecules, including proteins and lipids of the exosome 

membrane.  

Exosomes were characterized before and after treatment by different procedures, 

including physicochemical (transmission electron microscopy (TEM), cryo-TEM, high-

resolution scanning TEM-high angle annular dark field (HRSTEM-HAADF), inductively 

coupled plasma mass spectrometry (ICP-MS), X-ray spectroscopy, and zeta potential 
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nanoparticle tracking analysis (NTA)) as well as biological (Western Blot assays against 

different protein markers, total protein content) techniques. Rounded vesicles with an average 

diameter of 100-140 nm were observed from both samples, whereas dark nanostructures (Pd) 

with laminar shape were only visible inside Pd-ExoA549 (Figure 1B). Importantly, all Pd-ExoA549 

contained such nanostructures and minimal alterations were observed in the size and morphology 

of the vesicles. Due to the benefits of vesicle cryopreservation, cryo-TEM permitted 

visualization of the native spherical morphology of Pd-ExoA549 and identified the presence of 

numerous Pd-nanosheets that can be observed mainly clustered around the exosomal membrane. 

HRSTEM-HAADF was then employed to study the crystallinity of the Pd nanosheets inside 

exosomes (Figure 1D,E), revealing lattice fringes with d-spacing of 0.23 nm that match with 

metallic Pd (1 1 1)-surfaces.60 The Fast Fourier Transform spectrum generated from this image 

(see inset of Fig 1E) corroborated this observation. This agrees with the expected dual role of CO 

as an electron donor to reduce Pd2+ ions to Pd0 atoms and as a capping agent to control the 

confined growth of Pd structures into a planar shape due to its preferential adsorption to basal 

{111}.58 High resolution imaging showed the Pd nanostructures displayed an oriented 2D 

configuration (nanosheets) with a thickness of approximately 1.4 nm. The amount of Pd inside 

the vesicles was quantified by ICP-MS (ElanDRC-e, PerkinElmer) and normalized to the total 

protein amount of Pd-ExoA549, providing an average Pd content of 0.64 µg of Pd / µg of Pd-

ExoA549 protein. UV-VIS spectral analysis showed a maximal absorbance peak in the near 

infrared range (Supp. Fig. 3), which is characteristic of Pd nanosheets58, while energy-dispersive 

X-ray spectroscopy analysis (Suppl. Fig. 4) and X-ray photoelectron spectroscopy (XPS, see 

Suppl. Fig. 5)24 confirmed the presence of Pd0 inside the exosomes. Analysis of the atomic 

environment for N 1s detected no changes between ExoA549 and Pd-ExoA549, suggesting that the 

employed methodology does not alter protein composition. 
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To further study if membrane proteins had been altered during the chemical procedure, 

the presence of exosome-specific antigens CD9, CD63, CD81 and ALIX were characterized by 

western blot. As shown in Figure 1F, similar protein levels were observed before and after Pd 

loading, indicating that the mild reductive conditions employed to reduce Pd2+ species do not 

degrade membrane proteins. Under native (non-denaturing) conditions, same bands were 

observed for both samples, but their migration rate showed clear differences (see Suppl. Fig. 6). 

The protein bands from Pd-ExoA549 migrated at a reduced rate and slightly towards the left, 

indicating a change in charge and mass. This artefact may be consequence of the Pd-ExoA549 

lysing step during sample processing and attributed to coordination with free Pd species.61 The 

low impact of the process to the protein composition of the exosomes is further supported by the 

XPS data (Suppl. Fig. 6) and the zeta potential analysis (Suppl. Fig. 7). Also, bicinchoninic acid 

assay showed that the CO treatment did not affect total exosomal protein content. Protein 

concentrations of 101.45 and 102.95 µg/mL were respectively obtained for ExoA549 and CO-

treated ExoA549. 

The stability of this hybrid system was studied by analysis of particle size and zeta 

potential of ExoA549 and Pd-ExoA549 at different time points using a Nanosight NS500 (Malvern 

Instruments Ltd, UK) and a Zeta Plus (Brookhaven Instruments Corp., USA), respectively. As 

shown in Suppl. Fig. 7, average particle diameters of the exosomes before and after NP 

generation were equivalent (146.5 and 155 nm, respectively) and the size and zeta potential of 

Pd-ExoA549 remain relatively stable after 72 h at room temperature, indicating that Pd-loaded 

exosomes are sufficiently stable to perform reproducible in vitro and cell-based studies. 

Pd-ExoA549 as catalytic nanoreactors. The catalytic properties of Pd-ExoA549 were evaluated 

with the Pd-sensitive off-on sensor 1, which was designed to release the membrane-permeant 

red-fluorescent dye resorufin (2) upon a single O-depropargylation reaction (see Figure 2A). The 
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lipophilicity of both 1 and 2 facilitates back-and-forth diffusion across the exosome membrane 

before and after activation, thus facilitating reaction monitoring by fluorometric analysis of the 

reaction medium. Compound 1 was synthesized by reacting 2 with propargyl bromide and DBU 

in DMF at room temperature. As shown in Suppl. Fig 8, 1 shows negligible fluorescence 

emission under white LED excitation (>200-fold difference compared to that of dye 2 at 590 

nm), a consequence of blocking the electronic conjugation of the system by alkylation of the 

phenolic OH.  

Pd-ExoA549 were incubated at different concentrations (0.12, 0.16, 0.2 and 0.4 µg/100µL) 

with non-fluorescent compound 1 (100 µM) in PBS and 37 °C for 16 h. Note that, to be able to 

study and compare the activity of vesicles loaded or not with Pd, the concentration values used in 

the experiments are expressed as µg of exosome protein /100 µL. The fluorescence intensity of 

the samples was measured with a spectrofluorometer (Ex/Em: 540/590 nm) and values compared 

to that of 2 at 100 µM (= 100% conversion). Incubation of sensor 1 (100 µM) alone or in the 

presence of ExoA549 (0.2 µg / 100µL) were used as negative controls. Treatment of 1 with Pd-

ExoA549 resulted in a dramatic increase of fluorescent emission, with the top concentrations of 

0.2 and 0.4 µg / 100µL yielding near to complete conversion (>97% yield after 16 h, see Figure 

2B). In contrast, sensor 1 was stable on its own and in the presence of ExoA549 (no fluorescence 

detected). Time lapse imaging of the reaction illustrates the fast conversion rate of non-

fluorescent 1 into highly red fluorescent 2 in the presence of Pd-loaded exosomes (see Supp. 

Movie 1). 

To further study the kinetics of the process, three concentrations of substrate 1 (25, 50 

and 100 µM) were treated with Pd-ExoA549 (0.2 µg / 100 µL) at the same conditions and the 

formation of dye 2 monitored by fluorometry at different timepoints. As shown in Figure 2C, the 

rate of product formation followed a classical Michaelis Menten growth curve and all reactions 

were completed before 24 h. Kinetic parameters were calculated by plotting the natural log of the 



 9

concentration of substrate ([1]) versus time (Suppl. Fig. 9), displaying pseudo first-order kinetics 

with a K = 0.1228 ±0.0049 s-1 and half-life of 5.64 h at the range of concentrations used. These 

results agree with the O-depropargylation rate found for previously-reported Pd-based 

heterogeneous catalysts.25-30 The reusability of Pd-ExoA549 was then tested by recycling 

(centrifugation) the vesicles after reaction with 1, followed by re-treatment with 1. Repetition of 

this process 3 times verified the recyclability of these catalytic vesicles (Supp. Fig. 10), although 

a moderate reduction of activity (45% and 20% reduction yield in cycles 2 and 3, respectively) 

was observed after each cycle, which we attribute to a loss of material due to incomplete 

recovery by the centrifugation process.  

Pd-ExoA549 biocompatibility and intracellular entry. The tolerability of human cells to 

exposure to Pd-loaded exosomes was determined by incubating increasing quantities of Pd-

ExoA549 with lung cancer A549 cells for 5 d. Cell viability assays showed that Pd-ExoA549 induce 

minimal effect on cell proliferation even at the top dose of 0.6 µg / 100µL (see Supp. Fig. 11).  

Next, the internalization of Pd-ExoA549 into their parental cells A549 was studied by 

confocal microscopy in search for the optimal incubation time to perform intracellular catalytic 

experiments. After treating A549 cells with Pd-ExoA549 under standard cell culture conditions, 

cells were fixed and labelled with phaloidin-488 (actin fibres) and Draq5 (nuclei). Due to the 

inherent reflective optical properties of the Pd nanosheets, clusters of Pd-ExoA549 were directly 

observed by reflection of the incident light in the confocal microscope at 488/490 nm 

excitation/emission wavelengths (identified in Figure 3 as red dots). Representative images from 

A549 cells after treatment with Pd-ExoA549 for 1, 2, 4 and 6 h are shown in Figure 3 (see study at 

24 h in Suppl. Fig. 12). Quantitative analysis of the red fluorescent signal confirmed that the 

highest cytoplasmic presence of Pd-loaded vesicles was reached after 6 h incubation of cells with 

Pd-ExoA549 (Suppl. Fig. 13). Z-stack sections of the images at 6 h confirmed the intracellular 
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localization of Pd-ExoA549 aggregates (Figure 3), while co-localization studies revealed that the 

majority of Pd-nanosheets were not in lysosomal compartments at that time point (Suppl. Fig. 

14). 

Targeted intracellular prodrug activation mediated by Pd-ExoA549. The pan-histone 

deacetylase (HDAC) inhibitor panobinostat (3) received clinical approval to treat multiple 

myeloma in 2015,62 and is currently in clinical trials for the treatment of a variety of cancers 

including NSCLC. Despite its broad activity against many cancer types, dose-limiting systemic 

toxicities including diarrhoea, cardiac ischemic events, arrhythmias and myelosuppression, limit 

the use of panobinostat and other HDAC inhibitors against solid tumours. Selective delivery and 

localized activation of this class of epigenetic targeting drugs at cancer sites have been proposed 

to enhance their clinical tolerability and antitumor efficacy, with different prodrug strategies for 

medically-used vorinostat and belinostat being recently showcased in the literature.63,64 However, 

prodrugs of 3 have not yet been reported, perhaps due to its higher structural complexity. 

At this point of the investigation, Pd-ExoA549 had shown to be catalytic under 

physiological conditions, harmless to cells and capable of entering A549 cells. To further 

challenge the multifunctional capacities of the nanodevices, it was essential to determine if Pd-

ExoA549 were also able to mediate the bioorthogonal uncaging of a bioactive substance inside 

their target cells. To test this, a Palladium-activatable prodrug of 3 was developed (see Figure 

4A). Given the essential role of the Zn-chelating hydroxamate group of 3 in its cytotoxic mode 

of action,64 the O-alkyl hydroxamate derivative 4 was designed to reduce its capacity to inhibit 

HDACs while, at the same time, making it sensitive to Pd chemistry.  

Direct attempts to alkylate the OH group of 3 with p-(propargyloxy)benzyl bromide64 

were unsuccessful due the presence of various nucleophilic groups in the molecule. 

Consequently, compound 4 was prepared by total synthesis following the scheme summarized in 
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Figure 4B. Briefly, p-(propargyloxy)benzyl bromide (5) was reacted with N-hydroxyphthalimide 

in the presence of HNa to afford intermediate 6, which was converted into hydroxylamine 7 by 

hydrazinolysis. β-Substituted-acrylic acid 9 was prepared by reductive amination of 3-(4-formyl-

phenyl)-acrylic acid methyl ester with 2-methyltryptamine (8)65 followed by basic hydrolysis. 

Carbodiimide-mediated coupling of 7 and 9 resulted in the generation of prodrug 4 in moderate 

yield. 

To evaluate the efficiency of the masking strategy, the antiproliferative properties of 

prodrug 4 and unmodified drug 3 were assessed against NSCLC A549 and glioblastoma U87 

cells. Cells were treated for 5 d with compounds at concentrations ranging from 0.003 to 100 µM 

and cell viability determined with the PrestoBlue reagent. Comparison between the dose 

response curves of 3 and 4 evidenced that the alkylation of the hydroxamate group leads to a 

significant reduction of the bioactivity of the compound in both cell lines (see Suppl. Fig. 15). 

Next, a cell-based assay was performed to determine if the devices have preferential 

tropism for their progenitor cells66 by comparing their capacity to mediate bioorthogonal 

uncaging reactions in different cell types. Two cell lines were used for the experiment: the 

parental cancer cells A549 (target cells) and unparented glioblastoma cells U87 (non-target 

cells). To maximise cell entry, A549 and U87 cells were incubated with Pd-ExoA549 for 6 h at 

0.4 or 0.53 µg / 100µL, respectively. Note that higher Pd-ExoA549 concentration was used for 

U87 cells to normalise the quantity of vesicles per number of seeded cells. After several washing 

steps to remove non-internalised vesicles, cells were treated with prodrug 4 for 5 d (0.2 µM; 

activation assay), aiming to observe a reduction in cell viability resulting from the bioorthogonal 

release of cytotoxic 3 in cells containing catalytically-active Pd-ExoA549. Cells separately treated 

with 4 (0.2 µM) or Pd-ExoA549 were used as negative controls, and treatment with 3 (0.2 µM) 

used as positive control. As observed in Figure 4C, A549 cells sequentially treated with Pd-

ExoA549 and 4 exhibited significantly lower cell viability than the negative controls, evidence of 
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the generation of cytotoxic levels of 3 inside cells and, therefore, of the presence of catalytically-

active Pd-ExoA549. Additional negative controls further confirmed that the observed cytotoxic 

activity was driven by Pd mediated drug uncaging (Suppl. Fig. 16 and 17). In contrast, no effect 

was observed on the viability of U87 cells after the same treatment, indicating that the lower 

uptake or the reduced catalytic activity of Pd-ExoA549 in U87 cells results in insufficient 

intracellular production of drug 3.  

To study if the reverse situation was also true, i.e. superior uptake of catalytically-active 

Pd-ExoU87 by U87 cells relative to A549 cells leads to higher prodrug-into-drug conversion 

levels and cell death, Pd-ExoU87 were generated from U87 cells following the methodology 

described before. After ICP-MS analysis and testing their catalytic properties in vitro (see Suppl. 

Fig. 19), A549 and U87 cells were sequentially treated with Pd-ExoU87 and 4 using the same 

conditions and controls above described, and cell viability measured at day 5. As shown in Fig 

4D, results followed the opposite trend to those found with Pd-ExoA549, further supporting that 

the preferential tropism of exosomes for their cancer cells of origin is important to deliver 

sufficient Pd nanosheets into cells and produce bioactive concentrations of drug 3.   

Additionally, this study was carried out in a third cell line: the monocyte/macrophage-

like cell line RAW 264.7. These phagocytic cells were independently treated with Pd-ExoA549 or 

Pd-ExoU87, followed by treatment with 4. Suppl. Fig. 20 shows that both Pd-Exo / 4 

combinations were capable of reducing cell proliferation in this cell line, evidence of in situ drug 

3 synthesis, although at lower levels than those achieved in their cell of origin, even if RAW 

264.7 cells are much more sensitive to 3. It is important to note that while the higher Pd-Exo 

internalisation levels would be consistent with the results observed, they are not the only factor 

in play. Thus, differences in intracellular trafficking routes could also have a significant effect in 

the exosome-mediated delivery of catalytically-active Pd nanostructures into progenitor cells.   
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Last, in situ production of 3 was further confirmed by studying intracellular target 

displacement of coumarin–SAHA, a blue-emitting fluorescent inhibitor of HDAC proteins 

whose fluorescent properties are quenched when bound to their targets.64 Displacement from 

their targets by other competitive inhibitor results in an increase of intracellular fluorescence 

intensity that can be measured by flow cytometry (λex/em = 405/450 nm) and thereby be used as 

evidence of in situ drug synthesis and target engagement. As shown in Suppl. Fig. 21, cells pre-

treated with coumarin-SAHA and Pd-ExoA549 followed by washing and treatment with prodrug 4 

resulted in significantly higher fluorescent intensity than in the absence of Pd-ExoA549, further 

corroborating the intracellular generation of biologically-effective levels of 3 by Palladium 

chemistry. 

CONCLUSIONS 

The nanoscale bio-hybrid system developed in this work brings together the targeting capabilities 

of exosomes, a robust intercellular trafficking pathway evolved in nature across millions of 

years, and the bioorthogonal concept developed by Bertozzi and others67-69 in the last two 

decades. Cell-targeting catalytic devices can be generated from cancer-derived exosomes using a 

methodology based on CO-mediated reduction at low temperature to generate ultrathin Pd 

nanosheets directly inside the vesicles. The mildness of the protocol yielded catalytically active 

Pd nanostructures that maintained the targeting capabilities of the exosomes. This methodology 

can be considered —in its own right— as a bioorthogonal process suitable to load metallic 

structures into biological vesicles.  

The development of Pd nanodevices that can perform uncaging chemistries inside cells 

require robust vectors able to enter cells with high efficacy and compatible with the complex 

intracellular environment (redox, pH, etc.). Herein we show that Pd-Exo not only display the 

capacity of entering the cancer cells from where they originated and perform bioorthogonal 
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uncaging reactions, but also the ability to discriminate over other cell types. The intracellular 

catalytic properties of Pd-ExoA549 were demonstrated by the in situ activation of the anticancer 

drug panobinostat in lung cancer A549 cells, but not in U87 (a glioma cell line), indicating 

preferential tropism for their progenitor cells. Opposite results were observed in the reverse 

situation, i.e. Pd-loaded exosomes originated from U87 cells displayed superior drug-mediated 

cytotoxic effect in U87 cells than in A549 cells. This proof-of-concept study illustrates the 

therapeutic potential of combining exosome-mediated delivery of catalysts and bioorthogonal 

uncaging chemistries to activate bioactive substances in a spatiotemporal selective manner.  

METHODS 

ExoA549 purification and characterization. A549 cells (kind gift from Dr S. Wilkinson; ATTC, 

CCL-185) or glioma U87 cells (a kind gift from Dr N. Gammoh; ATTC, HTB-14) were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % fetal bovine serum 

(FBS), 1 % penicillin/streptomycin and 1 % amphotericin, under normoxic conditions. Neither 

A549 nor U87 cell lines are included in the register of misidentified cell lines (source: ICLAC 

database v9, updated on October 2018). Cells were checked for mycoplasma before use. 

Ultracentrifuged serum (Ultracen medium, 100,000 g, 8 h, 4 ºC) was employed to guarantee 

exosomes free medium. Exo were collected and purified by successive ultracentrifugation cycles 

from supernatants of cell culture at confluency (see detailed protocol in the Supplementary 

Methods).  

Preparation of Pd-Exo. The purified exosome fraction was then dispersed in a PBS solution 

and treated with K2PdCl4 (0.06 mM) at 40 °C for 12 h to maximize the internalization of Pd2+ 

ions. The mixture was subsequently ultracentrifuged at 35,000 g and 4ºC for 2 h to discard non-

internalized Pd species and avoid contamination with extra-exosomal metal nanoparticles during 

the reduction step. Pd2+-Exo were resuspended in PBS and treated for 40 min to a 6 bar CO 
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atmosphere using a high-pressure Teflon lined autoclave under gentle stirring and 30 °C to 

reduction of Pd2+ species into Pd0. A light dark colour was immediately observed after CO 

treatment, inferring formation of Pd nanoparticles. After treatment, CO was desorbed with air to 

keep the resulting Pd-Exo in a neat environment.  

Characterization of ExoA549 and Pd-ExoA549. Phosphotungstic acid (3 %) was used as contrast 

agent to evaluate the morphology, size and shape of ExosA549 and Pd-ExoA549 by TEM operated 

at 200 kV with a LaB6 electron source fitted with a SuperTwin® objective lens allowing a point-

to-point resolution of 2.4 Å. Analysis of the content specific exosome surface protein was 

performed by western blot. In brief, 10 µg of exosomes were lysed in RIPA buffer and the 

protein fraction precipitated with cold acetone (1:1 w/w) at -20 ºC for 2 h. The precipitated 

fraction was resuspended in Laemmly buffer and boiled at 90 ºC for 10 min. Subsequently, 

proteins were separated by 12 % SDS-polyacrylamide gel electrophoresis at 100 V for 2 h and 

transferred to a nitrocellulose membrane at 4 ºC for 4 h. Blots were blocked overnight with TBS-

5% milk at 4 ºC and incubated with CD9; 1:2000 (Abcam, UK), CD63; 1:1000 (BD Bioscience, 

United States), CD81; 1:500 (Santa Cruz Biotechnology, United States) and ALIX; 1:1000 (Cell 

Signaling Technologies, United States) for 1.5 h. Membranes were washed 3 times with TBS-

Tween (TTBS) followed by incubation of the secondary antibody (anti-HRP, Sigma Aldrich). 

Last, membranes were washed extensively and imagined by chemiluminescence. 

Elemental analysis of Pd-ExoA549 was assessed with an EDS (EDAX) detector which allows 

performing EDS experiments in the scanning mode (FEI Inspect F30). The amount of Pd inside 

the vesicles was quantified by ICP-MS (ElanDRC-e, PerkinElmer) and normalized to the total 

protein amount of Pd-ExoA549. For that, samples were digested with 10 % Aqua regia (HNO3 + 

3HCl) in 1.5 mL of distilled water. Digestion was performed at rt for 1 h. Calibrations were carried 

out using Pd standards in 10 % Aqua regia ranging from 0 to 10 ppm. Characterization of the 

absorbance properties of Pd-ExoA549 was determined by UV-VIS spectroscopy (Jasco V670) to 
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identify the characteristic plasmon at the NIR range of Pd nanosheets. For Cryo-TEM imaging, 

the grid preparation of cryogenically immobilized Pd-ExoA549 samples required an extremely rapid 

sample freezing to achieve a vitreous state. A thin film vitrified specimen was prepared with 

Vitrobot (FEI) in melting ethane. Afterwards, the sample holder with the specimen grid was 

maintained under cryogenic conditions with liquid nitrogen. Cryo-TEM observations were carried 

using a T20-FEI microscope with a LaB6 electron source fitted with a SuperTwin® objective lens 

allowing a point-to-point resolution of 2.4 Å. Total protein amount of native ExoA549 and ExoA549 

treated with CO was quantified by Pierce BCA protein assay (Thermo Fisher Scientific, USA) 

following manufacturer instructions. 

Fluorogenic studies. 0.6, 0.8, 1 and 2 µg of Pd-ExoA549 were added to a 500 µL solution of 

reagent 1 (100 µM) in PBS, to obtain a final concentration of 0.12, 0.16, 0.20 and 0.40 µg of Pd-

ExoA549/100 µL, respectively. The mixtures were shaken at 700 rpm and 37 °C in a 

Thermomixer, and reactions were monitored after 16 h using a PerkinElmer EnVision 2101 

multilabel reader (Ex/Em: 540 /590 nm). Sensor 1 alone (100 µM) or in the presence of ExoA549 

(1 µg of exosomes in 500 µL of PBS; 0.20 µg of ExoA549/100 µL) were used as negative controls 

and fluorescent dye 2 at 100 µM as reference control. Reactions were done in triplicates and the 

conversion % calculated according to the reference control.  

Time-lapse imaging. The Pd-ExoA549–mediated activation of 1 into 2 was also visualized in real 

time by time lapse microscopy with a 20x objective (Ex/Em: 560/630 nm, Leica AF6000 LX, 

Germany), using non-fluorescent 1 alone as negative control and resorufin 2 alone as positive 

control. 0.5 µg of Pd-ExoA549 were added to a 20 µM solution of 1 in PBS (0.5 mL) in a 24-well 

plate and incubated for 24 h. Frames were taken every 15 min for 24 h in DIC mode and under 

fluorescence emission. Movies were created using ImageJ software. 
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Reusability study. After performing the reaction above described, Pd-ExoA549 were recovered by 

centrifugation (13,000 rpm, 30 min) and a fresh solution of 1 (100 µM) in PBS added to the 

recovered fraction of Pd-ExoA549. The mixtures were shaken at 700 rpm and 37 °C in a 

Thermomixer, and reactions monitored after 16 h using a PerkinElmer EnVision 2101 multilabel 

reader (Ex/Em: 540 /590 nm). This cycle was repeated 3 times in total.  

Study of Pd-ExoA549 biocompatibility. A549 cells were cultured in DMEM supplemented with 

10 % of FBS and L-glutamine (2 mM) and maintained in a tissue culture incubator at 37 °C and 

5% CO2. Experiments were performed in DMEM supplemented with exosome-depleted FBS 

(Gibco™) and L-glutamine (2 mM). A549 cells were seeded in a 96-well plate format (at 1,500 

cells / well) and incubated for 24 h before treatment. Each well was then replaced with a 

suspension of Pd-ExoA549 in culture media depleted of exosomes at 0.2, 0.4 and 0.6 µg per 100 

µL and incubated for 6 h. Cells were then washed with PBS buffer and fresh media added. After 

5 d, PrestoBlueTM cell viability reagent (10 % v/v) was added to each well and the plate 

incubated for 90 min. Fluorescence emission was detected using a PerkinElmer EnVision 2101 

multilabel reader (Ex / Em: 540 / 590 nm). Experiments were performed in triplicates.  

Confocal microscopy study of Pd-ExoA549 cell internalization. A549 cells were seeded at a 

density of 1.5 x 104 onto 20 mm cover slips (in a 24-well plate) and incubated under standard 

culture conditions for 24 h. 1 µg of Pd-ExoA549 was then added to each well and incubated for 1, 

2, 4, 6 and 24 h. Cells were fixed with 4 % paraformaldehyde and stained with phalloidin-

Alexa488 (Invitrogen) and Draq-5. Cells were imaged by confocal microscopy (Spectral 

Confocal Microscope Leica TCA SP2) with a 63x oil immersed N.A. 1.40 objective.  Reflection 

of the incident light at 488/490 was used to directly visualized Pd-ExoA549. Z-stack orthogonal 

projections were also carried out to enable visualization of exosomes inside cells cytosol. 

Cell viability study: 4 vs 3. Antiproliferative activity of 3 and 4 was compared by performing 

dose-response studies against A549 and U87 cells. Both cell lines were seeded in a 96-well plate 
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format (at 1,500 cells / well for A549 and 2,000 cells / well for U87) and incubated for 24 h 

before treatment. Each well was then replaced with fresh media, containing compounds 3 and 4 

(0.003-100 µM). Untreated cells were incubated with DMSO (0.1 % v/v). After 5 d of 

incubation, cell viability was determined as described above. All conditions were normalized to 

the untreated cells (100 %) and curves fitted using GraphPad Prism using a sigmoidal variable 

slope curve. Experiments were performed in triplicates. 

Intracellular prodrug activation study. A549 and U87 cells were seeded in a 96-well plate 

format (at 1,500 cells / well for A549 and 2,000 cells / well for U87) and incubated for 24 h 

before treatment. The corresponding wells were then replaced with a suspension of Pd-ExoA549 

or Pd-ExoU87 in culture media depleted of exosomes (at 0.4 µg / 100 µL for A549 and 0.53 µg / 

100 µL for U87, in order to normalize exosome quantity per number of seeded cell). After 6 h of 

incubation, these wells were washed with PBS buffer to remove extracellular vesicles and treated 

with fresh media containing either DMSO (0.1% v/v) or 4 (0.2 µM). Cells treated with 3 and 4 at 

0.2 µM were used as positive and negative controls, respectively. After 5 d of treatment, cell 

viability was determined as described above. Experiments were performed in triplicates. 

The data that support the plots within this paper and other findings of this study are available 

from the corresponding author upon reasonable request.  
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FIGURE 1. Preparation and characterization of Pd-functionalised exosomes. (a) Overview 

of the step-wise protocol to generate Pd-ExoA549 from A549 cells. (b) Representative TEM 

images of ExoA549 and Pd-ExoA549 at different magnifications. (c) Representative cryo-TEM 

images of Pd-ExoA549 at two magnifications. (d) HRSTEM-HAADF image of a representative 

Pd-ExoA459. (e) HRSTEM-HAADF zoomed-in image showing highly-crystalline Pd 

nanostructures with a lattice spacing of 0.23 nm, which correspond to Pd (1 1 1)-surfaces. Inset 

shows the FFT spectrum generated from the image. (f) Western blots of exosome-specific 

biomarkers ALIX, CD63, CD81 and CD9 of ExoA549 and Pd-ExoA549.  

 

 

FIGURE 2. Study of the catalytic properties of Pd-ExoA549. (a) Conversion of non-fluorescent 

1 into highly red-fluorescent resorufin 2 mediated by Pd-ExoA549 under biocompatible 

conditions (37 °C, PBS, pH 7.4, isotonicity). (b) Conversion efficiency after 16 h incubation of 1 

(100 µM) with Pd-ExoA549 (0.12, 0.16, 0.2 and 0.4 µg / 100 µL). Conversion values (%) were 

calculated from fluorescence intensity measurements at λex/em= 540/590 nm using the 

fluorescence intensity of 2 (100 µM) as 100 %. Negative controls: 1 (100 µM) with or without 

ExoA549 (0.2 µg/100 µL). Error bars: ±SD, n=3. (c) Kinetic study of the reaction of Pd-ExoA549 

(0.2 µg/100µL) with different concentrations of 1 (25, 50 and 100 µM) in PBS at 37 °C. 

Concentration values of product 2 were calculated from fluorescence intensity measurements at 

λex/em= 540/590 nm. Curves fit: non-linear exponential equation. Error bars: ±SD, n=3.  
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FIGURE 3. Confocal study of Pd-ExoA549 internalization in A549 cells. Merged confocal 

images of A549 cells after treatment with Pd-ExoA549 for 1 h (a), 2 h (b), 4 h (c) and 6 h (d). 

Actin fibres (phaloidin-488) are shown in green, cell nuclei (Draq5) in blue and clusters of Pd-

ExoA549 in red. Scale bar= 50 µm. The middle and right images show the amplified and z-stacks 

sections, respectively.  

 

 

FIGURE 4. Design and synthesis of prodrug 4 and targeted intracellular activation 

mediated by Pd-ExoA549 and Pd-ExoU87 in A549 and U87 cells. (a) Intracellular Pd-ExoA549-

mediated conversion of prodrug 4 into clinically-approved HDAC inhibitor 3. (b) Total synthesis 

of compound 4. (c) Pd-ExoA549-mediated uncaging of 4 inside cells. A549 and U87 cells were 

incubated for 6 h with 0.4 and 0.53 µg / 100 µL, respectively. Cells were thoroughly washed to 

eliminate extracellular vesicles followed by addition of prodrug 4 (0.2 µM). Controls: Pd-

ExoA549 only (–ve control, grey); prodrug 4 only (–ve control, purple); 3 (+ve control, green). 

Cell viability was measured at day 5 using PrestoBlue. Error bars: ± SEM, n = 3. (d) Pd-ExoU87-

mediated uncaging of 4 inside cells. A549 and U87 cells were incubated for 6 h with 0.4 and 

0.53 µg / 100 µL, respectively. Cells were thoroughly washed to eliminate extracellular vesicles 

followed by addition of prodrug 4 (0.2 µM). Controls: Pd-ExoU87 only (–ve control, grey); 

prodrug 4 only (–ve control, purple); 3 (+ve control, green). Cell viability was measured at day 5 

using PrestoBlue. Error bars: ± SEM, n = 3. 
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