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Abstract. Parasites are a major component of all animal populations. Males and females
often differ in their levels of parasite prevalence, potentially leading to sex differences in the
impact of parasitism on fitness, with important implications for the evolution of parasite and
host traits including resistance, tolerance, and virulence. However, quantitative measures of the
impact of parasitism under free-living conditions are extremely rare, as they require detailed
host demographic data with measures of parasite burden over time. Here, we use endoscopy
for direct quantification of natural-parasite burdens and relate these to reproductive success
over 7 yr in a wild population of seabirds. Contrary to predictions, only female burdens were
associated with negative impacts of parasitism on breeding success, despite males having signif-
icantly higher burdens. Female reproductive success declined by 30% across the range of natu-
ral parasite burdens. These effects persisted when accounting for interannual population
differences in breeding success. Our results provide quantitative estimates of profound sub-
lethal effects of parasitism on the population. Importantly, they highlight how parasites act
unpredictably to shape ecological and evolutionary processes in different components of the
same population, with implications for demography and selection on host and parasite traits.

Key words:  breeding success; endoparasites; fitness; life history; macroparasites; maternal; nematodes;
parasitism, paternal; reproduction, sex differences; trade-off.

at the population level. There has been particular inter-
est in whether parasitism may operate differently
between the sexes: In mammals and birds, for example,
males are often more susceptible to parasites and have
higher burdens than females, and in invertebrates the
opposite relationship tends to be true (Schalk and For-
bes 1997, Thompson et al. 2017). This could potentially
lead to differential selection by parasitism on males and
females, resulting in different levels of resistance and tol-
erance between sexes (Grossman 1985, Poulin 1996,
Schalk and Forbes 1997, Zuk and Stoehr 2002, Duneau
and Ebert 2012, Thompson et al. 2017). These effects
can lead to different ecological and evolutionary out-

INTRODUCTION

Understanding the key drivers of demographic pro-
cesses is crucial in predicting population growth and per-
sistence (Agnew et al. 2000). Parasites can be one such
driver: They are ubiquitous and impact on both survival
and reproduction via a suite of lethal and sublethal
effects on host behavior, immunity, and resource compe-
tition (Lochmiller and Deerenberg 2000). However, indi-
viduals may vary in their responses to parasites, and
quantifying which components of the population are
most affected is key to modeling the effects of parasitism
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comes in different components of a population for a
given level of infection (Sheldon and Verhulst 1996,
Lochmiller and Deerenberg 2000).
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Parasitism can also affect individuals to a different
extent because of interactions between extrinsic and
intrinsic variables. Levels of individual parasite burdens
may interact synergistically with environmental condi-
tions, with impacts of parasitism often more apparent
when animals are operating under greater pressure in
more marginal conditions (Laaksonen et al. 2002,
Tompkins et al. 2011, Granroth-Wilding et al. 2014).
Such interactions may be particularly important during
reproduction, because parasites can affect the condition,
behavior, and energy use of the host (Sheldon and Ver-
hulst 1996, Binning et al. 2012, Hicks et al. 2018a),
thereby limiting the resources available for breeding. It is
therefore important to quantify the impact of parasitism
on individual reproductive success and how this may
interact with varying environmental conditions.

Estimating the impact of parasitism on demographic
rates has been challenging, and most studies have
employed an experimental approach (Watson 2013).
These studies have suggested a significant negative effect
of parasitism on host fitness across species with a mean
combined effect size g of 0.49, though these effects tend
to be lower or more difficult to detect in relatively long-
lived species. However, although experimental studies
are valuable in untangling effects of parasitism from
other covariates such as individual quality, they do not
tell us about the relative impact of parasitism between
individuals parasitized within the range of natural para-
site burdens in the wild. Here we use endoscopy to quan-
tify parasite burdens directly in individuals in a
population of European shags (Phalacrocorax aris-
totelis), and relate this to their concurrent breeding suc-
cess. Endoscopy more accurately reflects absolute
parasite burdens than traditional indirect techniques of
quantifying parasite load, such as fecal egg counts,
which only capture the reproductively active subset of
the parasite population (Granroth-Wilding 2015).
Repeat sampling of individuals over time allows the
impact of a given parasite burden to be related to breed-
ing success within and between individuals. The study
was conducted across a 7-yr period encompassing a
range of environmental conditions, and therefore
allowed us to quantify the impact of parasitism on the
breeding success of male and female components and
age classes of the population.

Specifically, we ask: (1) Does natural parasite load
negatively impact individual breeding success? (2) Does
parasite load and the effects of parasitism differ between
the sexes? (3) Do environmental conditions alter the
impact of parasitism on host breeding success?

METHODS

Measuring parasite load and breeding success

The study was carried out on the Isle of May National
Nature Reserve, southeast Scotland (56'11'N, 2733'W),
during chick rearing in the breeding seasons of
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2011-2017. One hundred and one adult European shags
were endoscoped to determine natural parasite load of
gastrointestinal nematodes Contracaecum rudoliphii, a
generalist parasite infecting a large number of seabirds.
Seabirds can act as the definitive host to C. rudolphi,
which is transmitted via fish prey (Hoberg 2005). Once
consumed by the host, the worms establish in the
proventriculus, where they molt to the reproductive
adult form (Burthe et al. 2013). Fifty-two adult host
shags were endoscoped in at least 2 yr, giving a total
sample size of 220 observations (106 male, 114 female;
see Appendix S1: Table S1 for details of sampling struc-
ture). Consistent with previous work, endoscopy
revealed all adults were parasitized, but that burdens
varied both between individuals and within individuals
across years, which implies that there is potential to sep-
arate out the effects of parasite burdens from variations
in individual quality. Worm burdens were counted visu-
ally, using video images from the endoscope (for details
see Burthe et al. 2013, Hicks et al. 2018a, b). This
method provides a more representative measure of bur-
den than indirect methods, such as fecal egg counts,
which significantly underestimate levels of parasitism, as
they only detect sexually mature adult worms that are
producing eggs (Granroth-Wilding et al. 2016). One
measure of parasite load was taken for individuals
within each year, which has been shown to be repeatable
across the breeding season (Burthe et al. 2013). All indi-
vidual shags were uniquely marked with a metal ring as
chicks (therefore of known age) and sexed by vocaliza-
tion (Snow 1960). In shags both the male and female
take turns incubating the eggs and provisioning the
young, and breeding success, number of chicks fledged
per pair, was recorded for all individuals. All endoscopy
was performed by trained personnel (S. Burthe) holding
a personal license operating under a project license
issued by the U.K. Home Office under the Animals (Sci-
entific Procedures) Act 1986. We used mean population
productivity as an annual proxy for environmental con-
ditions (as in Reed et al. 2008), Granroth-Wilding et al.
2014, Bogdanova et al. 2014). This was calculated as the
average number of fledged young per incubated nest in a
series of unmanipulated, long-term monitoring plots
completely independent of the birds included in the par-
asite study (see Newell et al. 2015 for monitoring meth-
ods). This long-term monitoring program also allowed
us to estimate mean population lay date. The span of
data collection beyond the dates of the present study
also allowed us to include lag mean population produc-
tivity in some analyses.

Statistical analysis

All models were linear mixed models or generalized
linear mixed models (GLMMs), and were fitted using
the Ime4 package in R (Bates et al. 2014, R Core Team
2015). We controlled for variation between birds and for
repeated sampling by including individual as a random
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effect in all models. P values were calculated using likeli-
hood-ratio tests, as implemented in R using the ‘anova,’
function and are provided for all analyses.

To test for a difference in parasite loads between sexes
(Q2) we compare linear mixed models describing para-
site load (worm count) with and without the term sex
using a likelihood-ratio test, while accounting for the
explanatory variables age, a quadratic effect of age and
year (as a categorical variable). After carrying out a pre-
liminary analysis on the relationship between parasite
load and body mass, it was not included as an explana-
tory variable in these models; see Appendix S2 for
details. These models assumed that parasite load was
normally distributed, which was the best approximation
for the complex empirical distribution of these data.

In all other models, the response variable was the
number of chicks fledged, relative to the maximum num-
ber of eggs laid, representing “fledging probability per
egg,” which was assumed to have a binomial distribution
(with logit link function). For these analyses, we fitted
models for males and females separately, because of
nonindependence of nest pairs, to quantify the impact of
parasitism on the breeding success of both sexes directly.
Preliminary analysis showed no correlation between
male and female parasite load from the same nest in the
same year (r = 0.083, n = 34).

To answer Ql, that is, whether natural parasite bur-
dens negatively impact the breeding success of their
hosts, we used a likelihood-ratio test to compare a model
containing explanatory variables that may affect breed-
ing success: age, quadratic effect of age (Daunt et al.
1999, Jaeger et al. 2014), and year (as a categorical vari-
able), which accounted for known interannual variabil-
ity, against the same model with the addition of
individual parasite load. To answer Q3, that is, whether
parasite load interacts with extrinsic variables to impact
breeding success, we considered a null model that con-
tains age, quadratic effect of age, and variables that rep-
resent the extrinsic environment: mean population
productivity, mean lay date, and lag mean population
productivity. We then used likelihood-ratio tests to cal-
culate the P values associated with adding interactions
between each of these variables and parasite load to the
null model.

REsSULTS

Parasite loads included in these analyses ranged from
2 to 40 worms, though these distributions differed
between the sexes—males mean: 23, SD + 11.0, females
mean: 16, SD + 9.2—likelihood-ratio test: ;(2 =17.93;
P =<0.001. Despite males being more heavily para-
sitized, we found that individual fledgling success was
negatively related to parasite load in females but not
males. For females, the addition of parasite load to the
model significantly improved the fit of the model
(> = 4.56; P =0.03) and led to predicted breeding suc-
cess values that were 30% lower at the highest observed
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parasite loads than at the lowest observed loads, equiva-
lent to a loss of 0.7 chicks per adult (see Fig. 1). For
males, the addition of parasite load did not improve the
model (¢* = 0.15; P = 0.70) and although there was evi-
dence for a significant quadratic effect of age on the
number of chicks fledged (;*> = 7.46; P =0.01; see
Appendix S1: Table S3) there was no interaction
between age and parasite burden on breeding success
(see Appendix S1: Fig. S2).

There was no interaction between parasitism and the
prevailing environment in driving breeding success for
either females or males, as including interactions
between parasitism and any of the environmental vari-
ables did not improve the model fit (see Tables 1 and 2).
This suggests that for females, the negative effect of par-
asitism on fitness is persistent across all conditions expe-
rienced by birds in the study.

DiscussioN

We found parasite burden had a significant impact on
the reproductive success of female free-living shags.
However, despite having significantly higher burdens,
the same relationship was not found in males. We found
no evidence of the environment mediating the effects of
parasitism in either sex. This suggests that the negative
fitness effects of parasitism are additive rather than

3 cessess ss se s ese e . .

N
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fledged / nest

-
.
.

0 10 20 30 40
Parasite load

Fic. 1. The effect of parasite load on breeding success
(number of chicks raised per nest) in female European shags.
Lines represent predicted lines from the best supported model
(solid lines). Gray lines represent the predicted lines for each
year of the study, which vary in the mean population productiv-
ity (a proxy for environmental conditions). The black line repre-
sents the predicted line under the mean environmental
conditions with 95% confidence intervals (dashed). Points are
shaded based on density for ease of interpretation of the under-
lying data.
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interactive with environmental conditions and operate
even under favorable conditions.

It is unusual to be able to show such clear fitness
impacts of natural parasite burdens (though see
Hayward et al. 2014), with most studies having taken an
experimental approach (e.g., see Watson 2013, Hudson
et al. 1998, Albon et al. 2002, including this study sys-
tem, Reed et al. 20084). However, we found a 30%
decline in host fledgling success across the natural range
of parasite load, which is important, as it shows that nat-
ural ranges of parasitism existing in wild populations
are exerting significant sublethal fitness effects. This
effect is particularly notable given that relatively long-
lived species, such as shags, tend to display lesser effects
of parasitism than short-lived hosts (Watson 2013). The
costs were only detected in females, contrary to the pre-
diction that males, due to their higher parasite burdens,
pay a greater cost of parasitism than females (Grossman
1985, Poulin 1996, Zuk and Stoehr 2002, Duneau and
Ebert 2012, Thompson et al. 2017). However, the find-
ings are consistent with the idea that selection may act
differently on the sexes to influence traits that affect the
ability to cope with a given level of parasitism. Different
levels of exposure or sex-specific physiology may lead to
differences in the strength of selection or the traits upon
which selection may act, resulting in differing levels of
resistance or tolerance for a given parasite load between
the sexes (Duneau and Ebert 2012, Thompson et al.
2017).

Although our analysis is necessarily correlative in
order to measure the impact of parasitism within the
range of natural variation, our results combined with
previous experimental studies support the effect of para-
sitism as being a causal factor of poor reproductive per-
formance: First, repeat sampling of the same individuals
across years allows us to test the impact on the same

TaBLE 1. The relationship between breeding success, parasite
load, and extrinsic variables in female European shags.

Effect
Explanatory variable Pvalue size  +SE  Question
Parasite load 0.04 —-0.22  0.11 Q1
Parasite load 0.03 —-0.23 0.10 Q3
Parasite load x mean 0.30 0.12  0.12
productivity
Parasite load x lag prod 0.93 0.03 0.10
Parasite load x lay date 0.28 —-0.16 0.12
Parasite load x age 0.45 —0.08 0.11
Parasite load x age’ 0.67 0.05 0.09

Notes: Models predicting individual-level breeding success
(number of chicks fledged per nest), with response variables
parasite load, mean population productivity, mean lag popula-
tion productivity, mean lay date, and adult age, and the interac-
tions between these variables and parasite load. Estimates from
generalized linear mixed models of effect sizes and estimates are
presented for all effects. P values were calculated using likeli-
hood-ratio tests. Statistically significant terms are indicated in
bold.
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TaBLE 2. The relationship between breeding success, parasite
load, and extrinsic variables in male European shags.

Effect
Explanatory variable Pvalue size +SE  Question
Parasite load 0.70 —-0.04 0.11 Ql
Parasite load 0.44 —0.08 0.11 Q3
Parasite load x mean 0.22 —0.13  0.11
productivity
Parasite load x lag prod 0.86 0.02 0.10
Parasite load x lay date 0.79 0.03 0.10
Parasite load x age 0.56 —-0.07 0.11
Parasite load x age? 0.82 —-0.04 0.16

Notes: Models predicting individual-level breeding success
(number of chicks fledged per nest), with response variables
parasite load, mean population productivity, mean lag popula-
tion productivity, mean lay date, and adult age, and the interac-
tions between these variables and parasite load. Estimates from
general linear mixed models of effect sizes and estimates are
presented for all effects. P values presented were calculated from
likelihood-ratio tests between models with and without the term
of interest.

individual with different parasite loads and second,
experimental removal of parasitism improves both for-
aging and breeding performance (Reed et al. 2008a).
Our results are also consistent with previous work in this
species, showing the energetic and behavioral costs of
natural parasitism in females but not males (Hicks et al.
2018a, b).

Considering these results from an energetic perspec-
tive can help to elucidate potential mechanisms by which
parasites negatively affect the host. Highly parasitized
female shags are known to experience higher resting
metabolic rates and higher flight costs, meaning foraging
and crucially provisioning costs are more energetically
demanding (Hicks et al. 2018a, b). This could lead to
the reduced breeding success we see in more highly para-
sitized individuals, given the increased cost to raising
young efficiently. Female shags also experience a larger
effect of wind on their year-round foraging behavior
than males, and highly parasitized females experience
increased flight costs, suggesting they are more suscepti-
ble to extrinsic drivers than males, conceivably the rea-
son there are measurable effects of parasitism to females
and not males (Lewis et al. 2015, Hicks et al. 2018a).

We also found sex-specific age effects; males showed a
quadratic relationship between age and breeding success
(with the highest breeding success occurring at interme-
diate ages, and lower breeding success in the youngest
and oldest birds), but females did not. This occurs in a
number of wild vertebrate populations and is well docu-
mented in seabirds (Daunt et al. 1999, Froy et al. 2017,
Clay et al. 2018). The effect of age on breeding success
found in males could be in part linked to their response
to parasitism. Males may bear the cost of parasitism
rather than invest in an immune response, but this may
cause long-term somatic damage (Hasselquist and Nils-
son 2012), contributing to their decline in breeding
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success in later life. Crucially these differing effects of
parasitism on males and females may have significant
implications for selection and population processes.

Effects of parasitism are often context and host-condi-
tion dependent, with effects expected to be more appar-
ent in bad conditions (Bustnes et al. 2006, Bize et al.
2010, Granroth-Wilding et al. 2014). Previous experi-
mental work with this system found that for chicks, the
effects of parasite removal were more pronounced in
years of poor productivity (Granroth-Wilding et al.
2014). Yet we found no evidence for an interaction
between parasitism and environmental conditions in
their effects on reproduction in adults. This suggests that
parasitism will not just impact individuals under poor
conditions as predicted, but substantially reduce repro-
ductive output across all years, and hence have a greater
impact on population dynamics than previously
thought. However, it is important to note that over the
study, conditions were always relatively good when com-
pared to long-term data from this population, suggest-
ing our estimates of impact may be conservative.

In conclusion, our results demonstrate that although
parasite burden may be associated with differences in
breeding success within the population, the direction or
strength of this relationship can differ between sexes.
They also highlight that although one sex may be more
heavily parasitized than another, this does not translate
directly into parasitism impacts. Differences between the
sexes may have led to different selective pressures affect-
ing the ability of individuals to tolerate a given level of
infection (Duneau and Ebert 2012, Thompson et al.
2017) leading to differences in how demographic traits
are affected. Integrating these differences into demo-
graphic models will be essential in calculating the likely
impact of parasitism of populations.
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