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Graph Signal Processing Based Imaging for
Synthetic Aperture Radar

Shahzad Gishkori and Bernard Mulgrew

Abstract—In this paper, we propose graph signal processing
based imaging for synthetic aperture radar (SAR). Our method
provides improved denoising and resolution enhancing capabil-
ities, along with a reduction in computational complexity, by
exploiting the concept of extended neighbourhood in SAR images.
We present a modified version of fused least absolute shrinkage
and selection operator (LASSO) to cater for graph structure
of the SAR image. It can also accommodate the compressed
sensing framework. We solve the optimisation problem via
alternating direction method of multipliers. Experimental results
on a backhoe target corroborate the validity of our proposed
method.

Index Terms—Graph Signal Processing, SAR imaging, Fused
LASSO

I. INTRODUCTION

Synthetic aperture radar (SAR) [1]–[3] is known to provide
high-resolution radar images via its different modes of opera-
tion. A large body of work is available to enhance the quality
of SAR images in terms of denoising and super-resolution (see
[4] and its references). Most of the proposed techniques have
been borrowed from optical imaging. Nonetheless, enhancing
the quality of a SAR image is a challenging task. One of
the reasons is the disparity between range and cross-range
resolutions, with latter generally being lower than the former.
This leads to an image spread over an irregular grid. Secondly,
radar returns from a target scene are heavily dependent upon
the aspect angles and/or position of the radar. Small variations
in the aspect angles or position can produce completely differ-
ent reflectivity pattern which results in a nonuniform image.
This can be challenging in imaging extended objects where
adjacent reflective points on the object may produce drastically
different reflectivities. Thus, a straightforward application of
general imaging techniques on SAR provides limited gains.
However, one of the qualities of SAR, that differentiates it
from other imaging sensors, is the availability of precise
ranging information. Exploiting this extra information can
potentially enhance the quality of a SAR image.
Graph signal processing (GSP) [5]–[7] has recently been pro-
posed as a technique which processes signals lying on specific
data structures defined by the graphs (see [8] for an earlier
context). This essentially means that all elements/samples of
the signal form vertices on a graph and the edge weights con-
necting these vertices provide a measure of similarity between

S. Gishkori and B. Mulgrew are with Institute for Digital Communications
(IDCOM), The School of Engineering, The University of Edinburgh, UK.
Emails: {s.gishkori, bernie.mulgrew}@ed.ac.uk

This work was supported by Jaguar Land Rover and the UK-EPSRC grant
EP/N012240/1 as part of the jointly funded Towards Autonomy: Smart and
Connected Control (TASCC) Programme.

them. Thus, a graph signal can assume any irregularity of
structure and it can get processed accordingly. In our case, the
disparity between range resolution and cross-range resolution
gives rise to an irregular grid structure of a SAR image, which
is further complicated by overlapping grids from different
aspect angles. Therefore, substantial gains can be obtained by
applying the GSP techniques to SAR imaging.
Fused least absolute shrinkage and selection operator
(FLASSO) [9] is known to provide element-wise sparsity
as well as smoothness. We have recently used FLASSO in
[10] for SAR imaging of an automotive scene for improved
azimuth resolution. In FLASSO, smoothness is achieved by
total variation (TV) [11]. TV is an edge-preserving norm and
it has been at the forefront of image denoising for many
years. The basic idea is to minimise the difference between
consecutive image pixels which results in noise reduction and
feature enhancement. TV can be related to a graph with unit
edge weights between adjacent pixels only. Recently, some
works have advocated the use of nonlocal neighbours, i.e., a
nonlocal TV (NLTV), for improved results, see, e.g., [12]–[14]
for general images and [15]–[17] for SAR imagery. Nonlocal
neighbourhood is defined in terms of similarity of patches
centred around different pixels over the complete image. The
edge weights are then a function of a Euclidean distance
between the patches (in terms of pixel intensities) of a coarse
estimate of the reconstructed image. NLTV provides good re-
sults. However, searching for neighbours and computing edge
weights is a computationally intensive process. Nonetheless,
in NLTV, apart from the computational complexity issues
of searching for nonlocal neighbours, edge weights are still
dependent upon pixel intensities. Given the nonuniform reflec-
tivity pattern of SAR images, generating edge weights based
on pixel intensities can provide only limited gains.
Contributions. In this paper, we propose extended neigh-
bourhood (EN) for SAR images. It essentially comprises of
all the pixels within a certain spatial proximity. Thus, the
weight function reflects the actual ranges and avoids the
exhaustive search for intensity based neighbours, causing a
drastic reduction in computational complexity. The rationale
is that, for an extended object, there is a high probability of
finding similar scatterers in close proximity. Also, given the
availability of precise ranging information in SAR images,
such an approach can be quite effective. In the light of above,
we combine the concept of GSP with EN and reformulate
the FLASSO cost function as graph fused LASSO with ex-
tended neighbourhood total variation (GFL-ENTV). We solve
our optimisation problem via alternating direction method of
multipliers (ADMM) [18], [19], which enjoys the benefits of
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Fig. 1: Spot-SAR Measurement Schematic

parallelisation and fast convergence. Our method can easily
accommodate the compressed sensing (CS) framework [20],
[21] as well. This is particularly useful in the case of insuffi-
cient SAR measurements. Therefore, we provide a composite
signal model, accordingly. Our proposed approach results in
enhanced spatial resolution and improved SAR imaging. For
a fair comparison, we cast NLTV in GFL framework, i.e.,
GFL-NLTV. We provide experimental results to prove the
effectiveness of our proposed method.
Notations. Matrices are in upper case bold while column
vectors are in lower case bold, (·)T denotes transpose whereas
(·)H denotes Hermitian, [a]i is the ith element of a and [A]ij
is the ijth element of A, â is the estimate of a, ∆

= defines an
entity, |A| denotes the cardinality of set A, and the `p-norm
is denoted as ||a||p = (

∑N
i=1 |[a]i|p)1/p.

II. SIGNAL MODEL

In this paper, we focus on spotlight mode SAR (Spot-SAR).
However, our proposed techniques are applicable for other
modes as well. In Spot-SAR, the target scene is illuminated
from different aspect angles θ, which form the synthetic
aperture. Depending on the range of aspect angles, synthetic
aperture can be narrow- or wide-angle. In contrast to the
wide-angle, a narrow-angle synthetic aperture assumes that the
target reflectivity is isotropic over all aspect angles. However,
a wide-angle synthetic aperture can be modelled to consist
of many narrow-angle synthetic apertures, named as sub-
apertures. Figure 1 shows the measurement schematic of such
a wide-angle Spot-SAR. The received signal (after some post-
processing) can be modelled as a spatial Fourier transform of
the target field reflectivity (see [4] and its references), i.e.,

r(γm, θ
l
k) =

N∑
n=1

s(xn, yn; θlk) exp
(
−j2πγmφln,k

)
+ν(γm, θ

l
k)

(1)
where φln,k

∆
= 2(xn cos θlk+yn sin θlk)/c, γm is the mth spatial

frequency, for m = 1, · · · ,M , θlk is the kth aspect angle,
for k = 1, · · · ,K, within lth sub-aperture, for l = 1, · · · , L,
s(xn, yn; θlk) is the reflectivity function of the nth spatial
location (xn, yn) in a Cartesian coordinate system, conditioned
on θlk, for n = 1, · · · , N and ν(γm, θ

l
k) is the model noise

corresponding to γm and θlk. Now, we can write (1) in the
following discrete form.

rlk = Φl
kslk + νl

k (2)

where rlk is an M × 1 vector of samples of r(γm, θlk), Φl
k is

an M × N matrix of the samples of exp(−j2πγmφln,k), slk

is an N × 1 vector of samples of field reflectivity function
s(xn, yn; θlk) and νl

k is an M × 1 vector of samples of noise
ν(γm, θ

l
k). Note, all the aforementioned samples are taken for

a given θlk. Now, a composite model of (2) can be written as

yl = Θlsl + nl (3)

where yl ∆
= Ψ[rl T1 , · · · , rl TK ]T is a KJ × 1 vector,

Θl ∆
= Ψ[Φl T

1 , · · · ,Φl T
K ]T is a KJ × N matrix, nl ∆

=
Ψ[νl T

1 , · · · ,νl T
K ]T is a KJ×1 vector and Ψ is a KJ×KM

random selection matrix [22], with J ≤ M . Note, the above
model is valid for narrow-angle sub-apertures, i.e., K is spread
over few degrees of angles, under the assumption that the
reflectivity function s(xn, yn; θlk) remains isotropic over all k
for a given l. Thus, sl = slk, ∀k. After obtaining an estimate
of sl, ∀l, in (3), a composite response to the field reflectivity
of the nth spatial location (xn, yn) can be obtained as

[s̃]n = max
l
|[ŝl]n|2 (4)

for n = 1, · · · , N , which has the interpretation of a gen-
eralised likelihood ratio test (GLRT) over the sub-apertures
(see [23] for more details). We solve (3) for each lth sub-
aperture and drop the superscript depicting sub-aperture in
subsequent sections, for notational simplicity. Note, instead
of (3), some authors, e.g., [24], [25] have also advocated a
2-D measurement model. Such models may also be employed
in connection with our proposed method.

III. GSP BASED SAR IMAGING

A graph can be defined as a tuple G ∆
= (V, w), where

V ∆
= {v1, · · · , vN} is a set of N vertices and w is a weight map

between each pair of elements in V , i.e., w(vn, vn′) ∈ R+,
where vn, vn′ ∈ V . Generally, w(vn, vn) = 0, i.e., no self-
loops. Note, in this paper, we consider undirected graphs, i.e.,
w(vn, vn′) = w(vn′ , vn). Two vertices are connected to each
other if their respective weight map is nonzero. For an nth
vertex, all its connected vertices define its neighbourhood Nn,
i.e., Nn

∆
= {vn′ ∈ V : w(vn, vn′) 6= 0}. The weight map w

can be described in the form of an N ×N adjacency matrix
W, where [W]nn′ = w(vn, vn′). An N ×N degree matrix D
is defined as, [D]nn =

∑
n′ w(vn, vn′), which is a diagonal

matrix. Then, the (combinatorial) graph Laplacian is defined
as, L = D−W.
As explained in Section I, radar signals can be processed
under the GSP framework. Thus, a radar graph signal s can be
defined as a map from graph vertices to complex-valued signal
samples, i.e., s : V → C, vn 7→ [s]n. Transforming a graph
signal by the graph Laplacian generates weighted smoothing
of the graph signal, i.e.,

[Ls]n =
∑

[s]n′∈Nn

[W]nn′ ([s]n − [s]n′) (5)

which shows that the GSP framework enables processing
variations of a signal spread over any kind of graph structure,
as determined by Nn. Now, in the context of GSP, our
proposed GFL optimisation problem can be written as

ŝ = arg min
s

1

2
‖y −Θs‖22 + λe‖s‖11 + λf‖Λs‖11 (6)
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where λe, λf > 0 are penalty parameters for element-
wise sparsity and graph fusion1, respectively, and Λ is the∑N

n=1 |Nn| × N graph difference matrix defined as Λ
∆
=

[ΛT
1 , · · · ,ΛT

N ]T , where Λn is an |Nn| ×N matrix such that

[Λn]ij =


+[W]n{Nn}i j = n

−[W]n{Nn}i j = {Nn}i
0 otherwise

(7)

where (with some abuse of notation) {Nn}i denotes the vertex
index of the ith element in set Nn, for i = 1, · · · , |Nn|, and
j = 1, · · · , N . From (7), we can see that Λn is in fact a
reshaped form of the nonzero elements of the nth row of L,
i.e., [L]n: −→ Λn. Thus, the fusion part of the GFL can be
expanded as

‖Λs‖11 =

N∑
n=1

∑
[s]n′∈Nn

[W]nn′ ‖([s]n − [s]n′)‖11 (8)

which creates parsimony over the weighted absolute difference
of the neighbouring spatial samples. Thus, GFL encourages
sparsity both in the individual elements of s as well as
in neighbouring pairs of the elements of s. This problem
formulation results in increased resolution of the target scene
as well as improved imaging of the extended targets. We solve
the GFL problem via ADMM. Thus, (6) can be re-written as

[ŝ, û, ẑ] = arg min
s,u,z

1

2
‖y −Θs‖22 + λe‖u‖11 + λf‖z‖11

s.t. u = s, z = Λs (9)

where u and z are N × 1 and
∑N

n=1 |Nn| × 1 auxiliary
variables, respectively. Now, the cost function in (9) can be
written in the following unconstrained form.

L(s,u, z,ρu,ρz) =
1

2
‖y −Θs‖22 + λe‖u‖11 + λf‖z‖11+

ρH
u (u− s) +

cu
2
‖u− s‖22 + ρH

z (z−Λs) +
cz
2
‖z−Λs‖22

(10)

where ρu and ρz are Lagrange multipliers, and cu and cz
are positive constants. An iterative solution of (9), for the tth
iteration can be obtained by minimising (10) over s, u and
z, one-at-a-time, while keeping other variables fixed. Thus, a
closed-from estimate of s can be written as

ŝ[t] =
(
ΘHΘ + cuI + czΛ

TΛ
)−1

×
(
ΘHy + ρ̂[t−1]

u + cuû[t−1] + ΛT ρ̂[t−1]
z + czΛ

T ẑ[t−1]
)
.

(11)

Note, the matrix inversion in (11) does not depend on iteration
index t. Therefore, its off-line calculation can save substantial
amount of computation. An estimate of u can be written as

û[t] = η

([
ŝ[t−1] − ρ̂[t−1]

u

cu

]
,
λe
cu

)
(12)

1Note, in the case of complex valued signals, some authors, e.g., [26],
suggest fusing/smoothing only the magnitude part out, instead of both real
and imaginary parts, since the phase is assumed to be random [27]. However,
in our view, the random phase is a constraint of the measurement system
and not necessarily a requirement of fusing complex values. Therefore, in the
present paper, we fuse both the real and imaginary parts. Future extensions
of the work may include the random phase constraints as well.

where η(s, λ) = sign(s)(|s| − λ)+, with sign([s]n)
∆
=

[s]n/|[s]n|, and an estimate of z can be written as

ẑ[t] = η

([
Λŝ[t−1] − ρ̂[t−1]

z

cz

]
,
λf
cz

)
. (13)

The Lagrange multipliers can be updated as

ρ̂[t]
u = ρ̂[t−1]

u + cu(û[t] − ŝ[t]) (14)

ρ̂[t]
z = ρ̂[t−1]

z + cz(ẑ[t] −Λŝ[t]). (15)

Now, the weights in the adjacency matrix are generally ob-
tained from a Gaussian kernel [5], i.e.,

[W]nn′ =

exp

(
−∆2

nn′

2σ2

)
if ∆nn′ ≤ D

0 otherwise
(16)

where σ2 is the variance and ∆nn′ is a function of physical
or feature space distances between nth and n′th vertices.
In NLTV, ∆nn′ is the Euclidean distance between image
patches of certain dimension, centred around the neighbouring
vertices. Generally, a coarse estimate of the reconstructed
image is used to find these weights. It is defined as

∆NL
nn′

∆
=
∥∥ŝIn − ŝIn′

∥∥
2

(17)

where In is a set of indices corresponding to the pixels in
image patch centred around vertex [s]n. Thus, ŝIn contains
elements of ŝ corresponding to In only. In case of radar, actual
ranges of different scatterers on the target scene are available.
Therefore, we propose to use these ranges in defining EN.
Thus, ∆nn′ can be defined as

∆EN
nn′

∆
=

∥∥∥∥(xnxn′

)
−
(
yn
yn′

)∥∥∥∥
2

(18)

where (xn, yn) and (xn′ , yn′) correspond to spatial locations
of vertices [s]n and [s]n′ , respectively. Comparing (17) and
(18), we can see that the adjacency matrix W needs to be
updated for each sub-aperture due to the former, whereas, W
is calculated only once, due to the latter.
Computational Complexity. The computational complexity of
a standard ADMM based FLASSO for L sub-apertures is,
CFLASSO = O(LIFLN2) [28], where IFL denotes the number
of iterations. Now, the computational complexity of updating
W in NLTV is, O(LN2). Thus, the computational complexity
of GFL-NLTV is, CGFL−NLTV = O(LINLN2 +LN2), where
INL denotes the total number of iterations. In case of ENTV,
the computational complexity of updating W is, O(N2),
which is already less than NLTV. Nonetheless, the weights
in ENTV are computed off-line and they do not add to the
run-time complexity. Thus the computational complexity of
GFL-ENTV can be written as, CGFL−ENTV = O(LIENN2)
where IEN denotes the total number of iterations. Thus, we
can see that the computational complexity of GFL-ENTV is
comparable to FLASSO but much less than GFL-NLTV.

IV. EXPERIMENTAL RESULTS

For experiments, we consider the dataset of a backhoe target
[29]. The dataset has been synthetically generated as a dome
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over the target at an elevation angle of 30◦, for the angular
range θ ∈ [−10◦, 100◦], with a bandwidth of 5.9 GHz centred
at a frequency of 10 GHz. Figure 2a shows the target. We
divide the complete angular range into L = 22 sub-apertures
where each lth sub-aperture covers an angular range of 5◦

comprising of K = 70 angular samples. Instead of using
the complete frequency bandwidth, we restrict ourselves to
a bandwidth of 0.5 GHz which generates M = 44 frequency
samples and a range resolution of 0.3 m. We reconstruct the
target scene as an equidistant grid of 128 × 128 cells/pixels,
which generates N = 16384 spatial image samples. We
compare the performance of a number of methods for SAR
imaging. In this respect, we reconstruct the target scene for
each sub-aperture and then use (4) to construct the final image.
Note, the maximum intensity value in all images has been
normalised to unity and a common threshold has been applied
to make the smaller values zero.
The most common method of SAR imaging is back-projection
(BP) [3]. Since the signal model (1) maps the spatial locations
directly into the measurements, a BP solution essentially
reduces to a matched filtering solution. Figure 2b shows the
result of BP based imaging. We also consider the method of
[30] for comparison. For a fair comparison, we consider an
`1-norm in [30] for both element-wise sparsity as well as the
fusion. This essentially makes the method of [30] the same
as FLASSO. Figure 2c shows the result of FLASSO based
imaging. We also compare the performance of NLTV. For a
fair comparison we have used the GFL framework, i.e., (11)-
(15). The weights of the adjacency matrix have been obtained
via (17) in (16). Parameter D in (16) has been selected so that
the neighbourhood search window for each pixel is 21 × 21
and set In in (17) has been designed to represent indices of a
3×3 image patch centred around the nth pixel. For each sub-
aperture, we use a BP based image as an estimate of s in (17).
Figure 2d shows the result of GFL-NLTV based imaging. For
GFL-ENTV, the weights of the adjacency matrix have been
obtained via (18) in (16). These weights are considered fixed
for all of the sub-apertures. Note, the spatial parameters of
the Gaussian kernel are the same as GFL-NLTV. The SAR
image is obtained by iterating over (11)-(15). Figure 2e shows
the result of GFL-ENTV based imaging. Thus far, we have
considered J = M (see (3)). Note, even then, (3) reprsents an
under-determined system of equations, in the context of our
experimental setup, since KJ < N . We show the performance
of GFL-ENTV with a reduced number of randomly selected
frequency samples, i.e., J < M . Figure 2f shows the result
of GFL-ENTV based imaging with 50% (i.e., J = 0.5M )
of frequency samples. Note, for all of the above methods
(except for BP), an update tolerance of 10−4 has been used
as a stopping criterion for the iterations. This resulted in the
average iterations of, IFL = 576 (for FLASSO), INL = 1344
(for GFL-NLTV) and IEN = 237 (for GFL-ENTV), for each
sub-aperture.
Comparison of Spatial Resolution. We can see in Figure 2b
for BP that different scatterers are smeared with each other,
causing a reduced spatial resolution. However, the perfor-
mance of all other methods is quite reasonable. To quantify
the performance, we use the metric of 3 dB main-lobe width

TABLE I: Comparison of Main-Lobe Width

20 Strongest Scatterers 40 Strongest Scatterers

BP 0.3024 m 0.306 m

FLASSO 0.1824 m 0.1682 m

GFL-NLTV 0.1530 m 0.1656 m

GFL-ENTV 0.1476 m 0.1506 m

GFL-ENTV (50%) 0.1566 m 0.1566 m

TABLE II: Comparison of Denoising Performance

Top 30 Rows Bottom 30 Rows

BP 16.42 dB 13.04 dB

FLASSO 6.36 dB 6.00 dB

GFL-NLTV 6.40 dB 6.86 dB

GFL-ENTV 2.78 dB 2.74 dB

GFL-ENTV (50%) 3.99 dB 3.94 dB

(MLW) [31]. MLW is a relative parameter of spatial resolution.
To estimate MLW, we focus on the strong scatterers. The idea
is to find a nearest point 3 dB below the value of the strong
scatterer and then averaging for all the strong scatterers. A
fine estimate is then obtained via interpolation over the pixels.
Note, generally, strong scatterers are chosen by finding the
maximum intensity point in each row/column of the image
and the nearest point 3 dB below the maximum value is also
found in the same row/column. However, in this paper, we
prefer 2-D processing, i.e., we choose a number of strong
scatterers in the image and then for each strong scatterer we
find the nearest point 3 dB below the maximum value in a
2-D search (i.e., including vertical, horizontal and diagonal
points), for a better estimate. Table I provides a comparison of
MLW estimates for different methods, for 20 and 40 strongest
scatterers, respectively. We can see, in comparison to BP, all
the methods have improved resolution. However, our proposed
method outperforms all other methods. The performance of
GFL-NLTV is quite close. Nonetheless, it has been achieved at
a substantially higher computational complexity. We can also
see, despite a reduction in frequency samples by 50%, GFL-
ENTV (50%) shows substantial gain in spatial resolution.
Comparison of Denoising. In order to show the denoising
performance of our proposed algorithm, we use the parameter
of standard deviation of a smooth patch of the dB-valued target
image. Table II shows the denoising performance for top 30
and bottom 30 rows of the target image, respectively. We can
see, our proposed method considerably outperforms all other
methods. Even GFL-ENTV (50%) also shows substantial gain.

V. CONCLUSIONS

In this paper, we have proposed graph based SAR imag-
ing for improved spatial resolution and denoising. We have
proposed the concept of extended neighbourhood to account
for the irregularity of SAR spatial grid and the nonuniformity
of reflectivity field. We solve our optimisation problem via
ADMM. Our proposed method has reduced computational
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Fig. 2: Performance Comparison of SAR Imaging Techniques

complexity and enhanced spatial resolution and denoising. Ex-
perimental results prove that our proposed method outperforms
a number of SAR imaging techniques, including the patch
based nonlocal method.

ACKNOWLEDGEMENT

This work has been approved for submission by TASSC-
PATHCAD Sponsor, Chris Holmes, Senior Manager Research,
Research Department, Jaguar Land Rover, Coventry, UK.

REFERENCES

[1] W. Carrara, R. Goodman, and R. Majewski, Spotlight Synthetic Aperture
Radar. Boston: Artech House, 1995.

[2] C. Jakowatz, D. Wahl, P. Eichel, D. Ghiglia, and P. Thompson, Spotlight-
Mode Synthetic Aperture Radar: A Signal Processing Approach. MA,
USA: Kulwer Academic Publishers, 1996.

[3] M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB
Algorithms. NY, USA: John Wiley & Sons, Inc., 1999.

[4] M. Cetin, I. Stojanovic, O. Onhon, K. Varshney, S. Samadi, W. C. Karl,
and A. S. Willsky, “Sparsity-driven synthetic aperture radar imaging:
Reconstruction, autofocusing, moving targets, and compressed sensing,”
IEEE Signal Processing Magazine, vol. 31, no. 4, pp. 27–40, July 2014.

[5] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
May 2013.

[6] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 7, pp.
1644–1656, April 2013.

[7] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spectral image
processing,” Proceedings of the IEEE, vol. 106, no. 5, pp. 907–930, May
2018.

[8] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural Comput., vol. 15, no. 6, pp.
1373–1396, Jun. 2003.

[9] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity
and smoothness via the fused LASSO,” Journal of the Royal Statistical
Society Series B, pp. 91–108, 2005.

[10] S. Gishkori, L. Daniel, M. Gashinova, and B. Mulgrew, “Imaging
for a forward scanning automotive synthetic aperture radar,” IEEE
Transactions on Aerospace and Electronic Systems, p. to appear, 2018.

[11] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, vol. 60, no. 1-4, pp. 259–268, Nov.
1992.

[12] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4,
no. 2, pp. 490–530, 2005.

[13] G. Gilboa and S. Osher, “Nonlocal operators with applications to image
processing,” vol. 7, pp. 1005–1028, 01 2008.

[14] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, “Image recovery via
nonlocal operators,” Journal of Scientific Computing, vol. 42, no. 2,
pp. 185–197, Feb 2010.

[15] C. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum
likelihood denoising with probabilistic patch-based weights,” IEEE
Transactions on Image Processing, vol. 18, no. 12, pp. 2661–2672, Dec.
2009.

[16] H. Zhong, Y. Li, and L. Jiao, “SAR image despeckling using bayesian
nonlocal means filter with sigma preselection,” IEEE Geoscience and
Remote Sensing Letters, vol. 8, no. 4, pp. 809–813, Jul. 2011.

[17] C. Deledalle, L. Denis, G. Poggi, F. Tupin, and L. Verdoliva, “Exploiting
patch similarity for SAR image processing: The nonlocal paradigm,”
IEEE Signal Processing Magazine, vol. 31, no. 4, pp. 69–78, Jul. 2014.

[18] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[19] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation: Numerical Methods, 1997.

[20] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, April 2006.

[21] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509,
Feb. 2006.

[22] V. M. Patel, G. R. Easley, J. D. M. Healy, and R. Chellappa, “Com-
pressed synthetic aperture radar,” IEEE Journal of Selected Topics in
Signal Processing, vol. 4, no. 2, pp. 244–254, April 2010.

[23] R. Moses, L. Potter, and M. Cetin, “Wide-angle SAR imaging,”
Proc.SPIE, vol. 5427, pp. 164–175, 2004.

[24] J. Fang, Z. Xu, B. Zhang, W. Hong, and Y. Wu, “Fast compressed sens-
ing SAR imaging based on approximated observation,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 7, no. 1, pp. 352–363, Jan 2014.

[25] K. Aberman and Y. C. Eldar, “Sub-Nyquist SAR via Fourier domain
range-Doppler processing,” IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 55, no. 11, pp. 6228–6244, Nov 2017.

[26] M. Cetin and W. C. Karl, “Feature-enhanced synthetic aperture radar im-
age formation based on nonquadratic regularization,” IEEE Transactions
on Image Processing, vol. 10, no. 4, pp. 623–631, Apr 2001.

[27] D. C. Munson and J. L. C. Sanz, “Image reconstruction from frequency-
offset fourier data,” Proceedings of the IEEE, vol. 72, no. 6, pp. 661–669,
Jun. 1984.

[28] B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang, “An ADMM
algorithm for a class of total variation regularized estimation problems,”
IFAC Proceedings Volumes, vol. 45, no. 16, pp. 83 – 88, 2012, 16th
IFAC Symposium on System Identification.

[29] K. Naidu and L. Lin, “Data dome: full k-space sampling data for high-
frequency radar research,” Proc.SPIE, vol. 5427, pp. 200 – 207, 2004.

[30] M. Cetin, W. C. Karl, and D. A. Castanon, “Feature enhancement and
ATR performance using nonquadratic optimization-based SAR imag-
ing,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39,
no. 4, pp. 1375–1395, Oct 2003.

[31] G. R. Benitz, “High-definition vector imaging,” in Lincoln Laboratory
Journal, vol. 10, no. 2, 1997, pp. 147–170.


