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AN EXPLICIT ISOMORPHISM BETWEEN

QUANTUM AND CLASSICAL sln

ANDREA APPEL AND SACHIN GAUTAM

Abstract. Let g be a complex semisimple Lie algebra. Although the quan-
tum group U~g is known to be isomorphic, as an algebra, to the undeformed
enveloping algebra Ug[[~]], no such isomorphism is known when g 6= sl2. In this
paper, we construct an explicit isomorphism for g = sln, for every n > 2, which
preserves the standard flag of type A. We conjecture that this isomorphism
quantizes the Poisson diffeomorphism of Alekseev and Meinrenken [2].
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1. Introduction

1.1. Let g be a complex semisimple Lie algebra. The Drinfeld–Jimbo quantum
group U~g is a topological Hopf algebra over the ring of formal power series C[[~]],
which deforms the universal enveloping algebra Ug [12, 21, 22]. In [15], Drinfeld
pointed out that the algebra structure of Ug[[~]] remains unchanged under quanti-
zation, i.e., there exists an isomorphism of C[[~]]–algebras ψ : U~g → Ug[[~]], which
is congruent to the identity modulo ~. Due to its cohomological origin, such an
isomorphism is highly non–canonical and indeed unknown with the sole exception
of sl2 (e.g. [15, §5] and [9, Prop. 6.4.6]).

In this paper, we contruct an explicit algebra isomorphism ϕ : U~sln → Usln[[~]]
for any n > 2. We refer the reader to Section 2, Theorem 2.5, for the formulae
defining ϕ. Here, we will explain how the isomorphism is obtained and state some
of its properties.

1.2. Our construction relies on the homomorphism between the quantum loop
algebra and the Yangian of sln from [17]. Namely, ϕ is defined to be the following
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2 A. APPEL AND S. GAUTAM

composition

U~Lsln
Φ // Ŷ~sln

ev

��
U~sln
?�

OO

ϕ
// Usln[[~]]

where

• Φ is the algebra homomorphism between the quantum loop algebra and
(an appropriate completion of) the Yangian of sln, defined and studied by
the second author and V. Toledano Laredo in [17]. While the results of
[17] hold for any semisimple Lie algebra g, in this paper we only need them
for sln, and even further, only the restriction of Φ to U~sln. We refer the
reader to Section 3 for a brief review of [17].

• ev is the evaluation homomorphism at 0. It is well known that the evalu-
ation homomorphism exists only in type A (see [9, Prop. 12.1.15] for both
these statements).

The homomorphism Φ in the diagram above is given explicitly in the loop pre-
sentation of Yangian (also known as Drinfeld’s new presentation [14]), while the
evaluation homomorphism ev is known only in either the J–presentation, or the
RTT presentation of Yangian (see, for example, [9, Chapter 12] and [24, Chapter
1]). Thus, in order to work out an explicit formula for ϕ, defined via the diagram
above, we need to rewrite ev in terms of the Drinfeld currents of Y~sln.

1.3. One of the main results of this paper, Theorem 5.1, achieves exactly this. A
large part of this paper is devoted towards proving Theorem 5.1, but we can briefly
explain the idea behind it, which could be of independent interest.

We construct a matrix T ∈ End(Cn) ⊗ Usln such that T(u) := u Id−~T sat-
isfies the RTT relations with respect to the Yang’s R–matrix R(u) := u Id+~P ∈
End(Cn ⊗ Cn)[u, ~] (here P is the flip operator). See Section 2.4 and Proposition
4.1 for these assertions. This observation allows us to work out the commutation
relations between the quantum minors of T(u) using the standard techniques of
RTT algebras (Proposition 4.6). Morally speaking, RTT relations make sure that
linear algebra carries over to the matrix T(u), even though its entries are from a
non–commutative ring. As a side consequence, one obtains another proof of a few
well–known results from the classical invariant theory of sln, see Proposition 4.7.
We would like to refer to [24, Chapter 1] for a more thorough treatment, which also
inspired most of our proofs in Section 4. The sole exception being Proposition 4.8,
which carries out an important reduction (to rank 1 and 2) step. Our proof of this
result is new and seems to be applicable to more general situations.

1.4. We now highlight some of the properties of ϕ : U~sln → Usln[[~]], which are
clear from the formulae given in Section 2.5.

(1) ϕ is defined over Q (see Remark 2.6 (ii)).
(2) ϕ preserves the standard flag of Levi subalgebras in sln. More precisely,

let k ∈ {1, . . . , n − 1} and identify U~slk+1 with the subalgebra of U~sln
generated by {Ki, Ei, Fi}1≤i≤k (see Section 2.2). Similarly, let slk+1 be
viewed as a Lie subalgebra of sln, corresponding to matrices supported on
the top–left corner of order k + 1. Then ϕ (U~slk+1) ⊂ U(h+ slk+1)[[~]],
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where h ⊂ sln is the Cartan subalgebra of diagonal matrices. The appear-
ance of the Levi subalgebra h+ slk+1 is necessary since the diagonal entries
of T are supported on h and do not respect the standard embedding of
slk+1 in sln (cf. Section 2.4).

(3) ϕ has a semi–classical limit, as we explain in the next paragraph.

1.5. The identification of U~g and Ug[[~]] as algebras has a more geometric interpre-
tation as a quantization of the (formal) Ginzburg–Weinstein linearization theorem.
In [20], Ginzburg and Weinstein proved that, for any compact Lie group K with its
standard Poisson structure, the dual Poisson Lie group K∗ is Poisson isomorphic to
the dual Lie algebra k∗, with its canonical linear (Kostant-Kirillov-Souriau) Poisson
structure. Subsequently, this result has been generalized in the works of Alekseev
and Meinrenken [1, 2, 3] and Boalch [7]. Finally, in [16], Enriquez, Etingof and
Marshall provided a construction, for any finite–dimensional quasitriangular Lie
bialgebra g, of a family of formal Poisson isomorphisms between the Poisson man-
ifolds g∗ and G∗. We refer to such maps as formal dual exponential maps.

Formal dual exponential maps can be quantized by certain algebra isomorphisms
ψ : U~g → Ug[[~]] as we explain now. Let B be a quantized universal enveloping
algebra (QUE), i.e., an ~–adically complete Hopf algebra over C[[~]], together with

a fixed isomorphism of Hopf algberas B/~B
∼→ Ua, where a is a Lie algebra over

C. According to the quantum duality principle of Drinfeld and Gavarini [13, 19],
any QUE B contains a quantized formal series Hopf subalgebra (QFSH)

B′ := {b ∈ B | ∀ n ≥ 1, pn(b) ∈ ~nB⊗n} ⊂ B,

where, pn := (id−ιε)⊗n◦∆(n) : B → B⊗n. Here, ∆(n) is the nth iterated coproduct,
ε : B → C[[~]] is the counit, and ι : C[[~]] → B is the unit.

The semi–classical limit of B is then defined as SC(B) := B′/~B′. We say that
an algebra homomorphism ψ : A → B between two QUEs admits a semiclassical
limit if it respects the QFSH A′ and B′ and therefore it descends to a homomor-
phism SC(ψ) : SC(A) → SC(B). Alternatively, we say that ψ is a quantization of
SC(ψ).

It is easy to see that, in the case of the QUEs U~g and Ug[[~]], one has (cf. [19])

SC(U~g) ∼= OG∗ and SC(Ug[[~]]) ∼= C[[g∗]] =: Ôg∗ .

Therefore, any isomorphism of algebras ψ : U~g → Ug[[~]] preserving the QFSHs
(U~g)

′ and (Ug[[~]])′ is a quantized dual exponential map, i.e., it has a semi–classical
limit and it gives rise to a formal dual exponential map g∗ → G∗.

1.6. In the case of g = sln, the isomorphism ϕ, which we construct in Theorem
2.5, is a quantized dual exponential map and SC(ϕ) gives rise to a dual exponential
map sl∗n ∼= sln → SL∗

n. In [2, Thm. 1.2], Alekseev and Meinrenken show that such
Poisson morphism exists and it is uniquely determined by certain properties, which
are the analogues of (1) and (2) listed above. One verifies directly that for n = 2
SC(ϕ) coincides with the Alekseev–Meinrenken map. This suggest the following

Conjecture. The isomorphism ϕ is a canonical quantization of the Alekseev–Mein-
renken dual exponential map sl∗n → SL∗

n [2, Thm.1.2].
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We will return to this conjecture in [4].

1.7. Finally, it is worth mentioning that in the case n = 2 the isomorphism ϕ
is easily seen to identify (up to a sign) the action of the quantum Weyl group
operator of U~sl2 with the exponential of the Casimir element of Usl2. This simple
observation provides a direct and straightforward proof that the monodromy of
the Casimir connection is computed by the quantum Weyl group operators of the
quantum group (cf. [5, 26]). A further study of the isomorphism ϕ could lead to
a similar result for sln, n > 2, providing a direct proof which does not rely on any
cohomological results, in contrast with the methods used in [6, 27].

1.8. Outline of the paper. In Section 2, we recall the basic definitions of the
enveloping algebra Usln, the quantum group U~sln and describe the isomorphism
between U~sln and Usln[[~]] in Theorem 2.5. We then discuss the case of sl2 and we
give a direct proof that the proposed map is an algebra homomorphism. In Section
3, we review the definition of the Yangian Y~sln and the main construction of [17],
yielding an algebra homomorphism from U~sln to the completion of Y~sln with
respect to its Z>0–grading. In Section 4, we study the matrix T(u) ∈ Usln[~, u]
introduced in Section 2 and the relations satisfied by its quantum minors. In
particular, we show that T(u) satisfies the RTT = TTR relation (Proposition 4.1)
which leads to an analogue of the Capelli identity for sln. That is, the coefficients
of the quantum–determinant of T(u) are algebraically independent and generate
the center of Usln (see Proposition 4.7). In Section 5, the determinant identities
obtained in the previous section are used to construct the evaluation homomorphism
from Y~sln to Usln[~] in the loop presentation of the Yangian (Theorem 5.1). This
is the last step in the proof of Theorem 2.5.

1.9. Acknowledgements. We are very grateful to Pavel Etingof for suggesting
this problem to us, and to Valerio Toledano Laredo for patiently explaining to us
the semi–classical limits and pointing us to the literature on Poisson geometry. We
are also thankful to Maxim Nazarov, Alexander Tsymbaliuk, and Alex Weekes for
their useful comments and suggestions.

This research was supported in part by Perimeter Institute for Theoretical Physics.
Research at Perimeter Institute is supported by the Government of Canada through
the Department of Innovation, Science and Economic Development and by the
Province of Ontario through the Ministry of Research and Innovation. A. A.
was partially supported by the ERC grant STG–637618 and the NSF grant DMS–
1255334. S. G. acknowledges the generous support of the Simons Foundation, in
the form of a collaboration grant for mathematicians, number 526947.

2. The isomorphism between U~sln and Usln[[~]]

In this section, we recall the definition of the enveloping algebra Usln and the
quantum group U~sln. We state the main theorem, describing the isomorphism
between them. As an example, we prove the case of sl2 by direct computation.

2.1. Notations. Let n ∈ Z>2 and let I = {1, . . . , n− 1}. Let A = (aij)i,j∈I be the
Cartan matrix of type An−1. Namely,

aij =





2 if i = j
−1 if |i− j| = 1
0 if |i− j| > 1
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Throughout this paper, we consider ~ to be a formal variable and set q = e
~

2 ∈ C[[~]].

2.2. Quantum group. U~sln is a unital associative algebra over C[[~]] (topologi-
cally) generated by {Hi, Ei, Fi}i∈I subject to the following list of relations:

(QG1) For each i, j ∈ I

[Hi, Hj ] = 0;

(QG2) For each i, j ∈ I, we have

[Hi, Ej ] = aijEj and [Hi, Fj ] = −aijFj ;

(QG3) For each i, j ∈ I, we have

[Ei, Fj ] = δij
Ki −K−1

i

q − q−1
,

where we set Ki = e~Hi/2.
(QG4) For i 6= j, we have [Ei, Ej ] = 0 = [Fi, Fj ] if aij = 0. If aij = −1:

E2
i Ej − (q + q−1)EiEjEi + EjE

2
i = 0,

F 2
i Fj − (q + q−1)FiFjFi + FjF

2
i = 0.

U~sln has a structure of Hopf algebra, with coproduct and counit given, respec-
tively, by

∆(Hi) = Hi ⊗ 1 + 1⊗Hi,

∆(Ei) = Ei ⊗Ki + 1⊗ Ei,

∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

and ε(Hi) = εEi = ε(Fi) = 0.

2.3. Universal enveloping algebra of sln. Recall that Usln is a unital associa-
tive algebra over C generated by {hi, ekl}16i6n−1,16k 6=l6n subject to the following
relations: [hi, hj ] = 0, [hi, ekl] = (δik − δil − δi+1,k + δi+1,l)ekl, and [ek,l, ek′,l′ ] =
δl,k′ek,l′ − δk,l′ek′,l, where we understand that hi = ei,i − ei+1,i+1. Thus we have
ekk − ell = hk + · · ·+ hl−1, for 1 6 k < l 6 n.

Let h be the span of {hi}16i6n−1. The standard bilinear form defined by the
Cartan matrix of sln on h is given by (hi, hj) = aij . With respect to (·, ·), we
consider the fundamental coweights ̟∨

i ∈ h defined by (̟∨
i , hj) = δij , so that

̟∨
i =

1

n


(n− i)

i−1∑

j=1

jhj + i

n−1∑

j=i

(n− j)hj


 .

2.4. T–matrix. Let T = (Tij)16i,j6n be n × n matrix with entries from Usln
defined as 1 :

Tij =

{
̟∨

i −̟∨
i−1 if i = j

eij if i 6= j

Here we assume that ̟∨
0 = ̟∨

n = 0. Note that the diagonal entries are uniquely
determined by the requirement that

∑n
i=1 Tii = 0 and that for every 1 6 k < l 6 n:

Tkk −Tll = ekk − ell = hk + · · ·+ hl−1. (2.1)

1In [11], De Sole–Kac–Valeri introduced a more general version of the matrix T , which includes
the classical Lie algebras son and sp

n
.
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Define T(u) := u Id−~T. Given 1 6 m 6 n and a = (a1, . . . , am) and
b = (b1, . . . , bm) elements of {1, . . . , n}m, we consider the quantum–minor of T(u),
∆

a
b (T) (u) ∈ Usln[u, ~], defined as:

∆
a
b (T) (u) :=

∑

σ∈Sm

(−1)σ Taσ(1),b1(u1) · · ·Taσ(m),bm(um), (2.2)

where uj = u + ~(j − 1). The quantum–minors of T(u) are studied in Section 4.
For each 1 6 k 6 n, let Pk(u) be the principal k × k quantum–minor Pk(u) =

∆1,...,k
1,...,k (T)

(
u− ~

2
(k − 1)

)
. Thus,

Pk(u) :=
∑

σ∈Sk

(−1)σ Tσ(1),1

(
u− ~

2
(k − 1)

)
Tσ(2),2

(
u− ~

2
(k − 3)

)

· · ·Tσ(k),k

(
u+

~

2
(k − 1)

)
. (2.3)

We prove in §4.7 that the subalgebra generated in Usln by the coefficients appear-

ing in Pk(u), 1 6 k 6 n, is maximal commutative and we denote by ζ
(k)
1 , . . . , ζ

(k)
k

the roots of Pk(u) defined in an appropriate splitting extension.

2.5. Isomorphism ϕ. Choose two formal series G±(x) ∈ 1 + xC[[x]] satisfying the
following two conditions:

G−(x) = G+(−x),

G+(x)G−(x) =
ex/2 − e−x/2

x
.

(2.4)

Consider the following assignment ϕ : U~sln → Usln[[~]].

• ϕ(Hi) = hi for each i ∈ I.

• For each k ∈ I we have

ϕ(Ek) =
~

q − q−1

k∑

i=1



∏k−1

a=1 G
+
(
ζ
(k)
i − ζ

(k−1)
a − ~

2

)∏k+1
b=1 G

+
(
ζ
(k)
i − ζ

(k+1)
b − ~

2

)

∏
c 6=iG

+(ζ
(k)
i − ζ

(k)
c )G+(ζ

(k)
i − ζ

(k)
c − ~)


 ·




k∑

j=1

(−1)k−j
∆1,...,ĵ,...,k

1,...,k−1 (T)
(
ζ
(k)
i − ~

2 (k − 1)
)

∏
r 6=i(ζ

(k)
i − ζ

(k)
r )

ej,k+1


 , (2.5)

ϕ(Fk) =
~

q − q−1

k∑

i=1



∏k−1

a=1 G
−
(
ζ
(k)
i − ζ

(k−1)
a + ~

2

)∏k+1
b=1 G

−
(
ζ
(k)
i − ζ

(k+1)
b + ~

2

)

∏
c 6=iG

−(ζ(k)i − ζ
(k)
c )G−(ζ(k)i − ζ

(k)
c − ~)


 ·




k∑

j=1

(−1)k−j
∆1,...,k−1

1,...,ĵ,...,k
(T)

(
ζ
(k)
i − ~

2 (k − 3)
)

∏
r 6=i(ζ

(k)
i − ζ

(k)
r )

ek+1,j


 , (2.6)
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where ĵ means that the index j is omitted.

Theorem. The assignment ϕ given above is an isomorphism of algebras ϕ : U~sln
∼→

Usln[[~]], which satisfies ϕ|h = idh and ϕ = id mod ~.

2.6. Remarks.

(1) The expressions given above of ϕ(Ek) and ϕ(Fk) belong to a splitting ex-
tension of {Pj(u)}16j6n. However, the proof of Theorem 2.5 will high-
light the fact that the right–hand sides of (2.5) and (2.6) are symmetric in

{ζ(j)1 , . . . , ζ
(j)
j } for each j, and therefore live in Usln[[~]].

(2) For the formal series G±(x) satisfying (2.4), there are two natural candi-

dates. The first one, used in [17], is G±(x) =

(
ex/2 − e−x/2

x

) 1
2

. With this

choice, the isomorphism ϕ is defined over Q[[~]]. The second choice, implic-

itly used in [18], is G±(x) =
1

Γ
(
1± x

2πι

) , where Γ is the Euler’s gamma

function.

2.7. The case of sl2. For n = 2, we have T(u) =

[
u− ~̟∨ −~e12
−~e21 u+ ~̟∨

]
. Recall

that here ̟∨ = h/2. Thus we have P1(u) = u− ~̟∨ and

P2(u) = u2 −
(
~

2

)2

(2C + 1),

where C = e12e21+ e21e12 +h2/2 is the Casimir element of sl2. As per our conven-
tion, we set P0(u) = P3(u) = 1. The roots of these polynomials are:

ζ
(1)
1 = ~̟∨ and ζ

(2)
1 , ζ

(2)
2 = ±~

2

√
2C + 1.

Using Theorem 2.5 we get the following

ϕ(E) =
~

q − q−1
G+

(
~̟∨ − ~

2
(1 +

√
2C + 1)

)
G+

(
~̟∨ − ~

2
(1−

√
2C + 1)

)
e12,

ϕ(F ) =
~

q − q−1
G−

(
~̟∨ +

~

2
(1 +

√
2C + 1)

)
G−

(
~̟∨ +

~

2
(1 −

√
2C + 1)

)
e21.

Note that our isomorphism ϕ differs from the one given in [9, §6.4]. To write
their formulae, we have to make the following changes: the element Ω from [9, §6.4
B] is Ω = 1

4 (2C + 1), and the deformation parameter there denoted by h is our ~

2 .
With this in mind, the isomorphism of [9, Prop. 6.4.6], denoted by ϕCP, given as
follows: ϕCP(H) = h, ϕCP(F ) = e21, and

ϕCP(E) = 4

(
q
√
2C+1 + q−

√
2C+1 − q−1K − qK−1

(q − q−1)2(2C + 2h− h2)

)
e12.

Though not essential, we give a direct proof that our ϕ is an algebra homomor-
phism for the sl2 case below, which is analogous to the one in [9, Prop. 6.4.6].
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The only non–trivial relation to verify is [ϕ(E), ϕ(F )] =
K −K−1

q − q−1
, where as

usual we write K = e
~

2 h. For this we use the fact that C is central and for any
function P(̟∨) we have P(̟∨ − 1)e12 = e12P(̟∨), P(̟∨ + 1)e21 = e21P(̟∨).
Let us write α = ~̟∨ − ~

2 and β = ~

2

√
2C + 1. Then,

ϕ(E)ϕ(F ) =

(
~

q − q−1

)2

G+

(
~̟∨ − ~

2
(1 +

√
2C + 1)

)
G+

(
~̟∨ − ~

2
(1−

√
2C + 1)

)
·

·G−
(
~̟∨ − ~

2
(1 +

√
2C + 1)

)
G−

(
~̟∨ − ~

2
(1−

√
2C + 1)

)
e12e21

=

(
~

q − q−1

)2
eα + e−α − eβ − e−β

α2 − β2
e12e21

=
eβ + e−β − eα − e−α

(q − q−1)2
,

where, the second equality follows from G+(x)G−(x) = (ex/2 − e−x/2)/x and the
last one from

~2e12e21 = ~2
(
C

2
−̟∨2 +̟∨

)
= β2 − α2.

Similarly, one gets

ϕ(F )ϕ(E) =
eβ + e−β − eγ − e−γ

(q − q−1)2
,

where γ = ~̟∨ + ~

2 . Combining these, we obtain the desired identity as follows:

[ϕ(E), ϕ(F )] =
1

(q − q−1)2
(
eγ + e−γ − eα − e−α

)

=
1

(q − q−1)2
(
qK + q−1K−1 − q−1K − qK−1

)

=
K −K−1

q − q−1
.

2.8. Evaluation homomorphism for n = 2. Let us illustrate our main idea in
the n = 2 example. That is, we will now explain how we obtained the expres-
sion of ϕ in the previous subsection. For this, we will have to write the algebra
homomorphism ev : Y~sl2 → Usl2[~] (see formulae (5.1), (5.2) and (5.3)):

ev(ξ(u)) =
P2(u)

P1

(
u+ ~

2

)
P1

(
u− ~

2

) =
u2 −

(
~

2

)2
(2C + 1)(

u− ~

2 (h+ 1)
) (
u− ~

2 (h− 1)
) ,

ev(x+(u)) =

(
u− ~

2
(h− 1)

)−1

· ~e12 ,

ev(x−(u)) =

(
u− ~

2
(h+ 1)

)−1

· ~e21 .

As explained in Corollary 3.5, if we write P2(u) in its splitting extension:

P2(u) =

(
u− ~

2

√
2C + 1

)(
u+

~

2

√
2C + 1

)
,
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we readily obtain the formulae for ϕ(E) and ϕ(F ). This also highlights the reason
why the resulting composition is best expressed in terms of, while still independent
of, a choice of roots of the polynomials Pk(u).

2.9. Proof of Theorem 2.5. The map ϕ given in Section 2.5 is obtained via the
following composition, where Y~sln is the Yangian of sln which is naturally an Z>0–

graded algebra, and Ŷ~sln is its completion with respect to the Z>0–grading (see
Section 3.1 below for the definition):

U~sln
Φ //

ϕ
((◗◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

Ŷ~sln

ev

��
Usln[[~]]

The expressions (2.5) and (2.6) are obtained by combining Corollary 3.5 with the
explicit formulae for ev given in Proposition 5.6. Thus the fact that ϕ is an algebra
homomorphism follows from the corresponding assertions for Φ (proved in Theorem
3.4) and ev (Theorem 5.1).

The reader can readily verify that modulo ~, ϕ is the identity. Namely, let ϕ be
the induced map U~sln/~U~sln → Usln. Then ϕ(Ek) = ek,k+1 and ϕ(Fk) = ek+1,k.
Since the quantum group U~sln is a flat deformation of Usln, this implies that the
algebra homomorphism ϕ is in fact an isomorphism.

3. The Yangian of sln and U~sln

In this section, we review the definition of the Yangian Y~sln, as given in [14].
We also review the main construction of [17] yielding an algebra homomorphism
between U~sln and the completion of Y~sln with respect to its Z>0–grading.

3.1. The Yangian of sln. Y~sln is a unital associative algebra over C[~] generated
by {ξi,r, x±i,r}r∈Z>0,i∈I subject to the following relations

(Y1) For any i, j ∈ I, r, s ∈ Z>0

[ξi,r , ξj,s] = 0.

(Y2) For i, j ∈ I and s ∈ Z>0

[ξi,0, x
±
j,s] = ±aijx±j,s.

(Y3) For i, j ∈ I and r, s ∈ Z>0

[ξi,r+1, x
±
j,s]− [ξi,r, x

±
j,s+1] = ±aij

~

2
(ξi,rx

±
j,s + x±j,sξi,r).

(Y4) For i, j ∈ I and r, s ∈ Z>0

[x±i,r+1, x
±
j,s]− [x±i,r, x

±
j,s+1] = ±aij

~

2
(x±i,rx

±
j,s + x±j,sx

±
i,r).

(Y5) For i, j ∈ I and r, s ∈ Z>0

[x+i,r, x
−
j,s] = δijξi,r+s.
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(Y6) Let i 6= j ∈ I and set m = 1− aij . For any r1, · · · , rm ∈ Z>0 and s ∈ Z>0

∑

π∈Sm

[
x±i,rπ(1)

,
[
x±i,rπ(2)

,
[
· · · ,

[
x±i,rπ(m)

, x±j,s

]
· · ·
]]

= 0.

Note that Y~sln is a graded algebra, with deg(~) = 1 and deg(yi,r) = r for
y = ξ, x±.

3.2. Formal currents. Define ξi(u), x
±
i (u) ∈ Y~(g)[[u

−1]] by

ξi(u) = 1 + ~
∑

r>0

ξi,ru
−r−1 and x±i (u) = ~

∑

r>0

x±i,ru
−r−1.

According to [18, Prop. 2.3], the relations (Y1)–(Y5) are then equivalent to the
following identities in Y~sln[u, v;u

−1, v−1]].

(Y1) For any i, j ∈ I

[ξi(u), ξj(v)] = 0.

(Y2) For any i, j ∈ I, and a = ~aij/2

(u− v ∓ a)ξi(u)x
±
j (v) = (u− v ± a)x±j (v)ξi(u)∓ 2ax±j (u∓ a)ξi(u).

(Y3) For any i, j ∈ I, and a = ~aij/2

(u− v ∓ a)x±i (u)x
±
j (v)

= (u− v ± a)x±j (v)x
±
i (u) + ~

(
[x±i,0, x

±
j (v)]− [x±i (u), x

±
j,0]
)
.

(Y4) For any i, j ∈ I

(u− v)[x+i (u), x
−
j (v)] = −δij~ (ξi(u)− ξi(v)) .

We also recall that the relation (Y6) follows from (Y1)–(Y5) and the special case
of (Y6) when all r1 = · · · = rm = s = 0 [23].

Lemma. The relation (Y2) is equivalent to the following

Ad(ξi(u))
−1(x±j (v)) =

u− v ∓ a

u− v ± a
x±j (v)±

2a

u− v ± a
x±j (u± a), (Y2′)

where as before a = aij~/2.

Proof. Setting v = u± a in (Y2) we obtain

Ad(ξi(u))x
±
j (u± a) = x±j (u∓ a).

Note that this relation can be similarly obtained from (Y2′). Using this identity
we can deduce (Y2) from (Y2′) and vice versa. �

3.3. Some elementary equivalences among relations of Y~sln. The following
proposition will be used to reduce the list of relations to be verified in order to
obtain an algebra homomorphism from Y~sln to Usln[~].

Proposition.

(1) Assuming the relation (Y1), (Y2) follows from the following
• The i = j case of (Y2) (or, equivalently (Y2′)).
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• For i 6= j, either the following special case of (Y2):

Ad(ξi(u))(x
±
j,0) = x±j,0 ± aijx

±
j (u∓ aij~/2),

or the analogous special case of (Y2′):

Ad(ξi(u))
−1(x±j,0) = x±j,0 ∓ aijx

±
j (u± aij~/2).

(2) Assuming (Y1) and (Y2), the relation (Y3) follows from
• The following special case of (Y3), for each i, j ∈ I such that i = j, or
aij = 0.

[x±i,0, x
±
j (u)]− [x±i (u), x

±
j,0] = ∓aij

2
(x±i (u)x

±
j (u) + x±j (u)x

±
i (u)).

• The relation (Y3) for j = i+ 1.
(3) Again assuming (Y1) and (Y2), the relation (Y4) follows from its special

case: for each i, j ∈ I

[x+i (u), x
−
j,0] = δij(ξi(u)− 1).

Proof. We begin by proving (Y2) assuming its special cases listed in (1) above
hold. Let i, j, k ∈ I and assume that we know the following relations from (S3)

Ad(ξi(u))(x
±
k,0) = x±k,0 ± aikx

±
k (u∓ aik~/2),

Ad(ξj(u))(x
±
k,0) = x±k,0 ± ajkx

±
k (u∓ ajk~/2).

Now we compute Ad(ξi(u)(ξj(v))x
±
k,0 in two different ways, since we know ξi(u)

and ξj(v) commute, from (Y1).

Ad(ξi(u)ξj(v))(x
±
k,0) = Ad(ξi(u))

(
x±k,0 ± ajkx

±
k (v ∓ ajk~/2)

)

= x±k,0 ± aikx
±
k (u∓ aik~/2)± ajk Ad(ξi(u))(x

±
k (v ∓ ajk~/2)).

Similarly we get

Ad(ξj(v)ξi(u))(x
±
k,0) = Ad(ξj(v))

(
x±k,0 ± aikx

±
k (u∓ aik~/2)

)

= x±k,0 ± ajkx
±
k (v ∓ ajk~/2)± aik Ad(ξj(v))(x

±
k (u∓ aik~/2)).

Combining we obtain the following equation

ajk((Ad(ξi(u))− 1)(x±k (v ∓ ajk~/2))) = aik((Ad(ξj(v)) − 1)(x±k (u ∓ aik~/2))).

The conclusion is that if we know Ad(ξi(u))(x
±
k (v)) for some i ∈ I so that aik 6= 0,

then we can compute Ad(ξj(u))(x
±
k (v)) for any j ∈ I. (1) asserts exactly that we

know (Y2) for one such pair and we are done.

The proof of the remaining relations uses (Y2) which will be assumed. For in-
stance, let us prove (Y4) from its special cases given in (3). The proof of (2) is
entirely analogous and is skipped here.

Apply Ad(ξj(v)) to both sides of

[x+i (u), x
−
j,0] = δij(ξi(u)− 1).
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Using (Y1), the right–hand side does not change, while the left hand side can be
computed as follows (where a = aij~/2):

Ad(ξj(v))([x
+
i (u), x

−
j,0]) =

[
v − u+ a

v − u− a
x+i (u)−

2a

v − u− a
x+i (v − a), x−j,0 − 2x−j (v + ~)

]
.

Now, for i 6= j we get

(v − u+ a)[x+i (u), x
−
j (v + ~)] = 2a[x+i (v − a), x−j (v + ~)].

Set u = v + a in the equation above to see that its right–hand side must be zero.
Thus so must be its left–hand side and we obtain (Y4).

Assuming i = j, we can drop the subscript i and note that a = ~. We have

Ad(ξ(v))([x+(u), x−0 ]) =
v − u+ ~

v − u− ~
(ξ(u)− 1)− 2~

v − u− ~
(ξ(v − ~)− 1)

− 2
v − u+ ~

v − u− ~
[x+(u), x−(v + ~)] +

4~

v − u− ~
[x+(v − ~), x−(v + ~)].

Setting this equal to ξ(u) − 1 we get the following equation, after clearing the
denominator and cancelling a factor of 2:

(u− v−~)[x+(u), x−(v+~)]+2~[x+(v−~), x−(v+~)] = ~(ξ(v−~)− ξ(u)). (3.1)
Set u = v + ~ to get 2~[x+(v − ~), x−(v + ~)] = ~(ξ(v − ~)− ξ(v + ~)).

Now replace the commutator [x+(v − ~), x−(v + ~)] in (3.1) by this to get

(u− v − ~)[x+(u), x−(v + ~)] = ~(ξ(v + ~)− ξ(u)),

which is exactly (Y4) for i = j. �

3.4. Homomorphism Φ : U~sln → Ŷ~sln. Now let Ŷ~sln be the completion of
Y~sln with respect to its Z>0–grading. Again let G±(x) be two formal series in
1 + xC[[x]] satisfying (2.4).

Following [17, §2.9], we define for each i ∈ I:

ti(u) = ~
∑

r∈Z>0

ti,ru
−r−1 := log(ξi(u)),

Bi(v) = ~
∑

r∈Z>0

ti,r
vr

r!
.

(3.2)

Let Y 0 be the subalgebra of Y~sln generated by {ξi,r}i∈I,r∈Z>0
. Define g±i (u) =∑

m∈Z>0
g±i,mu

m ∈ Ŷ 0[u] by

g±i (u) :=
1

G+(~)
exp

(
Bi(−∂v) ·

d

dv

(
log(G±(v))

))
. (3.3)

Theorem. The assignment Φ(Hi) = ξi,0 and

Φ(Ei) =
∑

m∈Z>0

g+i,mx
+
i,m and Φ(Fi) =

∑

m∈Z>0

g−i,mx
−
i,m

defines an algebra homomorphism Φ : U~sln → Ŷ~sln.
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Proof. In [17, Prop. 2.10] certain algebra homomorphisms λ±i (u) =
∑

r∈Z>0
λ±i;ru

r :

Y 0 → Y 0[u] are constructed so that

λ±i (v1)Bj(v2) = Bj(v2)∓
e

~

2 aijv2 − e−
~

2 aijv2

v2
ev1v2 . (3.4)

Note that we are in a simply–laced case, so we don’t need to introduce the sym-
metrizing integers present in (7) of [17, Prop. 2.10]. The necessary and sufficient
conditions prescribed in [17, Thm. 3.4, §4.7] for Φ to be an algebra homomorphism
are:

(A) For each i, j ∈ I

g+i (u)λ
+
i (u)(g

−
j (v)) = g−j (v)λ

−
j (v)(g

+
i (u)).

(B̃) For every i ∈ I, we have

g+i (v)λ
+
i (v)(g

−
i (v)) =

~

q − q−1
exp

(
Bi(−∂v)∂v · log

(
ev/2 − e−v/2

v

))
.

(C) For each i, j ∈ I, we have

g±i (u)λ
±
i (u)(g

±
j (v))

eu − ev±a

u− v ∓ a
= g±j (v)λ

±
j (v)(g

±
i (u))

eu±a − ev

u− v ± a
.

Thus we need to compute λǫ1i (u)(gǫ2j (v)) for each i, j ∈ I and ǫ1, ǫ2 ∈ {±}. For
this we have the following

Claim. Let a = ~

2aij . Then we have

λǫ1i (u)(gǫ2j (v)) = gǫ2j (v)

(
Gǫ2(v − u− a)

Gǫ2(v − u+ a)

)ǫ11

.

Given the claim we can prove that the equations (A), (B̃) and (C) hold, as fol-
lows.

Proof of (A). This equation becomes

G−(v − u− a)

G−(v − u+ a)
=
G+(u− v − a)

G+(u− v + a)
,

which is true since G−(x) = G+(−x) as per (2.4).

Proof of (B̃). The left–hand side of condition (B̃) can be computed using the claim
above:

g+i (v)λ
+
i (v)(g

−
i (v)) = g+i (v)g

−
i (v)

G+(~)

G−(~)

=
1

G+(~)G−(~)
exp

(
Bi(−∂v)∂v · log

(
G+(x)G−(x)

))

=
~

q − q−1
exp

(
Bi(−∂v)∂v · log

(
ev/2 − e−v/2

v

))
,

where we used that G+(x)G−(x) = (ex/2 − e−x/2)/v as required in (2.4).
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Proof of (C). This condition (for the + case) takes the following form:

G+(v − u− a)

G+(v − u+ a)

eu − ev+a

u− v − a
=
G+(u− v − a)

G+(u− v + a)

eu+a − ev

u− v + a
,

which again follows from (2.4).

It remains to prove the claim above. Let us take ǫ1 = + and ǫ2 = − for
definiteness, and as usual let a = ~

2aij . Then we get

λ+i (u)(g
−
j (v)) = G+(~)−1 exp

((
Bj(−∂v)−

e−a∂v − ea∂v

(−∂v)
e−u∂v

)
· ∂v log(G−(v))

)

= g−j (v) exp
((
e−∂v(u+a) − e−∂v(u−a)

)
· log(G−(v))

)

= g−j (v)
G−(v − u− a)

G−(v − u+ a)

as claimed. �

3.5. Composition of a graded algebra homomorphism with Φ. Let us fix
i ∈ I and consider the following situation. Assume A is an Z>0–graded, unital
algebra over C[~], and assume that we are given a homomorphism of graded algebras
η : Y~sln → A such that

• η(ξi(u)) is expansion in u−1 of a rational function of the form:

η(ξi(u)) =
N∏

k=1

u− ak
u− bk

,

where ak, bk ∈ A are homogeneous elements of degree 1, for 1 6 k 6 N .
• η(x±i (u)) are again rational functions of the form:

η(x±i (u)) =
M∑

ℓ=1

~

u− c±ℓ
B±

ℓ ,

where c±ℓ ∈ A are of degree 1 and B±
ℓ ∈ A are of degree 0.

Corollary. The composition η ◦ Φ : U~sln → Â maps Ei, Fi to the following:

Ei 7→
1

G+(~)

M∑

ℓ=1

(
N∏

k=1

G+(c+ℓ − ak)

G+(c+ℓ − bk)

)
B+

ℓ ,

Fi 7→
1

G+(~)

M∑

ℓ=1

(
N∏

k=1

G−(c−ℓ − ak)

G−(c−ℓ − bk)

)
B−

ℓ .

Proof. The proof follows a computation similar to the one given in [17, Section

4.6]. Since η(ξi(u)) =

N∏

k=1

u− ak
u− bk

, we get

η(ti(u)) =

N∑

k=1

log(1− aku
−1)− log(1− bku

−1) =

N∑

k=1



∑

r>0

br+1
k − ar+1

k

r + 1
u−r−1


 .



AN EXPLICIT ISOMORPHISM BETWEEN QUANTUM AND CLASSICAL sln 15

Thus ~η(ti,r) =

N∑

k=1

br+1
k − ar+1

k

r + 1
. This implies

η(g±i (u)) = G+(~)−1 exp


∑

r>0

(−1)r

(
N∑

k=1

br+1
k − ar+1

k

(r + 1)!

)
∂r+1
u log(G±(u))




= G+(~)−1 exp

((
N∑

k=1

e−ak∂u − e−bk∂u

)
log(G±(u))

)

= G+(~)−1 exp

(
N∑

k=1

log(G±(u − ak))− log(G±(u− bk))

)

= G+(~)−1
N∏

k=1

G±(u − ak)

G±(u − bk)
.

Finally from the expression of η(x±i (u) we get that η(x±i,m) =

M∑

ℓ=1

(c±ℓ )
mB±

ℓ . Sub-

stituting this in the formula for Φ(Ei) and Φ(Fi) given in Theorem 3.4, we get

∑

m>0

g±i,mx
±
i,m =

M∑

ℓ=1


∑

m>0

g±i,m(c±ℓ )
m


B±

ℓ =

M∑

ℓ=1

g±i (c
±
ℓ )B

±
ℓ

= G+(~)−1
M∑

ℓ=1

(
N∏

k=1

G±(c±ℓ − ak)

G±(c±ℓ − bk)

)
B±

ℓ

as claimed. �

4. RTT relations and determinant identities

In this section, we study the algebraic properties of the matrix T(u). We show
that it satisfies the RTT relations and obtain commutation relations between quan-
tum minors of T(u). In particular, we prove the Capelli identity for sln, i.e., the
coefficients of the quantum–determinant of T(u) generate the center of Usln.

4.1. RTT relations. Let T(u) be the n×n matrix with coefficients from Usln[~, u]
as defined in Section 2.4.

We view this matrix as an element of End(Cn) ⊗ Usln[u, ~] as follows. Let
{|i〉}16i6n be the standard basis of Cn and let |i〉 〈j| be the elementary matrix
defined as: |i〉 〈j| |k〉 = δjk |i〉. Then

T(u) =
∑

i,j

|i〉 〈j| ⊗ Tij(u). (4.1)

Thus, we have T(u) |j〉 =∑i |i〉 ⊗ Tij(u). Let P ∈ End(Cn ⊗ Cn) be the flip of
the tensor factors, and let R(u) = u Id+~P be the Yang’s R–matrix. The following

(Yang–Baxter) equation holds in End
(
(Cn)⊗3

)
[~, u, v]:

R12(u)R13(u+ v)R23(v) = R23(v)R13(u + v)R12(u), (YBE)

where, as usual, the subscripts indicate which tensor factors R acts on.
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Proposition. Set

T1(u) =
∑

i,j

|i〉 〈j| ⊗ 1⊗ Tij(u) and T2(v) =
∑

i,j

1⊗ |i〉 〈j| ⊗ Tij(v)

in End(Cn ⊗ Cn)⊗ Usln[~, u, v]. Then,

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v). (4.2)

Proof. We apply both sides of (4.2) to an arbitrary basis vector |j〉⊗|l〉 ∈ Cn⊗Cn.
For the left–hand side, we get

(u− v)
∑

i,k

|i〉 ⊗ |k〉 ⊗ Tij(u)Tkl(v) + ~
∑

i,k

|k〉 ⊗ |i〉 ⊗ Tij(u)Tkl(v),

while the right–hand side gives

(u− v)
∑

i,k

|i〉 ⊗ |k〉 ⊗ Tkl(v)Tij(u) + ~
∑

i,k

|i〉 ⊗ |k〉 ⊗ Tkj(v)Til(u).

Thus, we have to prove the following equation for each i, j, k, l:

(u − v)[Tij(u),Tkl(v)] = ~ (Tkj(v)Til(u)− Tkj(u)Til(v)) . (4.3)

Switching the roles of u↔ v, ij ↔ kl, the equation above is equivalent to

(u − v)[Tij(u),Tkl(v)] = ~ (Til(u)Tkj(v)− Til(v)Tkj(u)) . (4.4)

Note that the entries of the matrix T satisfy the following relation

[Tij ,Tkl] = δjk Til −δil Tkj . (4.5)

From this it is easy to deduce (4.3) as follows:

(u − v)[Tij(u),Tkl(v)] = ~2(u − v)[Tij ,Tkl]

= ~2(u − v)(δkj Til −δil Tkj)

= ~((δilu− ~Til)(δkjv − ~Tkj)−
(δilv − ~Til)(δkju− ~Tkj))

= ~ (Til(u)Tkj(v)− Til(v)Tkj(u)) .

This finishes the proof of the proposition. �

4.2. Several variables generalization. For N > 2, consider the following ele-

ment of End
(
(Cn)⊗N

)
, depending on u1, · · · , uN :

R(u1, . . . , uN) := RN−1,N · (RN−2,NRN−2,N−1) · · · (R1N · · ·R12) =

= (R12 · · ·R1N ) · (RN−2,N−1RN−2,N) · · ·RN−1,N

where Rij = Rij(ui − uj) acts on ith and jth tensor factor. The equality of the
two expressions given above follows by a repeated application of the Yang–Baxter
equation (YBE) (see also the proof of the following proposition).

Proposition. The matrix T(u) satisfies

R(u1, . . . , uN )T1(u1) · · ·TN (uN) = TN (uN ) · · ·T1(u1)R(u1, . . . , uN). (4.6)
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Proof. We proceed by induction. For N = 2, one has (4.2). For N > 2, one has

(R1N · · ·R13)R12 T1 T2(T3 · · ·TN ) =

=(R1N · · ·R13)T2 T1R12(T3 · · ·TN ) =

=T2(R1N · · ·R14)R13 T1 T3(T4 · · ·TN )R12 =

=(T2 · · ·TN )T1(R1N · · ·R12).

Since R(u1, . . . , uN) = R(u2, . . . , uN )(R1N · · ·R12), we get

R(u1, . . . , uN )T1 · · ·TN =

=R(u2, . . . , uN )(R1N · · ·R12)T1 · · ·TN =

=R(u2, . . . , uN )(T2 · · ·TN )T1(R1N · · ·R12)

and the result follows by induction. �

4.3. Specialization. Let AN be the antisymmetriser operatorAN =
∑

σ∈SN
(−1)σσ.

Proposition. If ui − ui+1 = −~ for all i = 1, . . . , N − 1, then

R(u1, . . . , uN ) = cNAN ,

where cN ∈ C[~] is a scalar. Explicitly, cN = (−~)N(N−1)/2(N − 1)! · · · 1!.
Proof. For N = 2, R(−~) = (−~)(1− P ) = −~A2. For N > 2, one has

R(u1, . . . , uN) = cN−1ÃN−1(R1N · · ·R12),

where ÃN−1 is the antisymmetriser operator on {2, . . . , N}. Then
R(u1, . . . , uN) =cN−1ÃN−1(R1N · · ·R12) =

=cN−1(−~)N−1(N − 1)!ÃN−1

(
1− 1

N − 1
P1N

)
· · · (1− P12) =

=cN ÃN−1(1− P12 − · · · − P1N ) = cNAN

as desired. �

For future reference, we will write the equation given by the proposition above
as R(u1, . . . , uN) ∼ AN .

Corollary. Set ui = u+ ~(i− 1). Then

AN T1(u1) · · ·TN (uN ) = TN (uN) · · ·T1(u1)AN .

4.4. Quantum determinants. The quantum determinant of the matrix T(u) is
the element qdet(T(u)) defined by the relation

An qdet(T(u)) = An T1(u1) · · ·Tn(un), (4.7)

where ui = u+ ~(i− 1) for i = 1, . . . , n.

Proposition. For every µ ∈ Sn,

qdet(T(u)) = (−1)µ
∑

σ∈Sn

(−1)σ Tσ(1),µ(1)(u1) · · ·Tσ(n),µ(n)(un).

In particular,

qdet(T(u)) =
∑

σ∈Sn

(−1)σ Tσ(1),1(u1) · · ·Tσ(n),n(un).
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Proof. It is enough to apply both sides of (4.7) to the vector |µ(1)〉 ⊗ · · · ⊗ |µ(n)〉
in (Cn)⊗n. �

Similarly, from Corollary 4.3 with N = n, one has the relation

An qdet(T(u)) = Tn(un) · · ·T1(u1)An,

providing a description of qdet(T(u)) as a row–determinant.

4.5. Quantum minors. The quantum minors of T(u) are also defined by the
relation derived in Corollary 4.3. Let N 6 n and let a, b ∈ {1, . . . , n}N . For
convenience, we write |a〉 for the basis vector |a1〉 ⊗ · · · ⊗ |aN 〉. Let AN (u) be the
operator given in Corollary 4.3. Then we define ∆

a
b (T) (u) as the following matrix

coefficient of AN (u):

AN |b〉 =
∑

a

|a〉 ⊗∆
a
b (T) (u) . (4.8)

The following is an obvious generalisation of 4.4. For any a ∈ {1, . . . , n}N , we
denote by a \ ai the tuple obtained from a by removing the ith entry ai.

Lemma. Let uj = u+ ~(j − 1) as before. Then we have the following:

(1) For any tuples a = (a1, . . . , aN), b = (b1, . . . , bN),

∆
a
b (T) (u) =

∑

σ∈SN

(−1)σ Taσ(1),b1(u1) · · ·Taσ(N),bN (uN )

=
∑

σ∈SN

(−1)σ Ta1,bσ(1)
(uN ) · · ·TaN ,bσ(N)

(u1).

(2) For every σ ∈ SN ,

∆
σ(a)
b (T) (u) = (−1)σ∆

a
b (T) (u) = ∆

a
σ(b) (T) (u) .

(3)

∆
a
b (T) (u) =

N∑

k=1

(−1)N−k∆
a\ak

b\bN (T) (u) · TakbN (u + ~(N − 1))

=

N∑

k=1

(−1)N−k∆
a\aN

b\bk (T) (u+ ~) · TaN bk(u)

=

N∑

k=1

(−1)k−1 Takb1(u) ·∆
a\ak

b\b1 (T) (u+ ~)

=

N∑

k=1

(−1)k−1 Ta1bk(u+ ~(N − 1)) ·∆a\a1

b\bk (T) (u) .

4.6. Commutation relations with quantum minors. For any a ∈ {1, . . . , n}N ,
we denote by ρi,x(a) the tuple obtained from a by replacing the ith entry ai with
x.

Proposition. For every 1 6 k, l 6 n and a, b ∈ {1, . . . , n}N , we have

(u−v)[Tkl(u),∆
a
b (T) (v)] = ~

N∑

i=1

(
∆

a
ρi,l(b)

(T) (v) · Tkbi(u)− Tail(u) ·∆
ρi,k(a)
b (T) (v)

)
,
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(u− v − ~(N − 1))[Tkl(u),∆
a
b (T) (v)] = ~

N∑

i=1

(
Tkbi (u) ·∆

a
ρi,l(b)

(T) (v)

−∆
ρi,k(a)
b (T) (v) · Tail(u)

)
.

Proof. Consider the generalised RTT relation

R(u, v, v + ~, . . . , v + ~(N − 1))T0(u)T1(v) · · ·TN (v + ~(N − 1)) =

=TN (v + ~(N − 1)) · · ·T1(v)T0(u)R(u, v, v + ~, . . . , v + ~(N − 1)).

From the definition given in Section 4.2, we get

R(u, v, v + ~, . . . , v + ~(N − 1)) ∼ AN +
~

u− v

N∑

i=1

ANP0i.

The first equation then follows by applying the identity above to the vector |l〉 ⊗
|b〉 and computing the coefficient of |k〉 ⊗ |a〉. The proof of the second one is
analogous. �

Corollary. For a, b ∈ {1, . . . , n}N and 1 6 i, j 6 N ,

[Taibj (u),∆
a1...aN

b1...bN
(T) (v)] = 0.

4.7. Center of Usln. An easy application of Corollary 4.6 is that the coefficients of
the principal minors of T(u) commute with each other. We record this observation
and the well–known fact about the center of Usln below. Recall that we defined in
(2.3):

Pk(u) = ∆1,...,k
1,...,k (T)

(
u− ~

2
(k − 1)

)
for each 1 6 k 6 n.

Note that Pk(u) is a (monic in u) homogeneous polynomial of degree k in Usln[~, u],
where the grading is understood to be 0 for elements of Usln and 1 for u and ~.
Let us denote its coefficients as:

Pk(u) = uk +
k−1∑

j=0

z
(k)
j ~k−juj.

We observe that z
(n)
n−1 = Tr (T) = 0.

Proposition.

(1) The elements {z(k)j }16k6n,06j6k−1 form a commutative subalgebra of Usln.

(2) The elements {z(n)j }06j6n−2 are algebraically independent and generate the
center of Usln.

Z(Usln) = C[z
(n)
0 , . . . , z

(n)
n−2].

(3) The roots of Pk(u) are distinct.

Proof. As remarked earlier, (1) follows directly from Corollary 4.6. We briefly
sketch the proof of (2) which is otherwise well–known. One identifies the center
Z(Usln) with the algebra of invariants C[h]Sn (see, for instance, [10, §7.4]). The
latter is a polynomial ring in n − 1 variables, p2, . . . , pn (power sum symmetric

functions). The reader can easily check that under these identifications z
(n)
j = pj+2

which proves the claimed assertion.
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(3) follows from (2) using the following standard argument. Let P (u) be a
monic polynomial with coefficients from a (unital) commutative ring A. Define
Disc(P ) =

∏
i6=j(ai−aj) where {ai} are the roots of P (u). Note that the expression

of Disc(P ) is symmetric in {ai} and hence it is a polynomial in the coefficients of
P (u). By definition Disc(P ) = 0 if, and only if P (u) has some root with multiplicity
> 1. In this case one obtains a non–trivial algebraic relation among the coefficients
of P (u). �

4.8. ψ–operators. Let 0 6 k 6 n − 2 and m = n− k. For each i, j ∈ {1, . . . ,m}
define

ψ(k) [T]ij (u) := ∆1,...,k
1,...,k (T)

(
u− ~

2
k

)−1

∆1,...,k,k+i
1,...,k,k+j (T)

(
u− ~

2
k

)
. (4.9)

We will skip the dependence on T from the notation when no confusion is pos-

sible. We view this ψ
(k)
ij (u) as an element of Usln[~][u;u

−1]].

Proposition.

(1) The m×m matrix ψ(k) satisfies the RTT relations with R(u) = u Id+~P ∈
End(Cm⊗Cm)[~, u]. More explicitly, the following relations hold for a, b, c, d ∈
{1, . . . ,m}

(u − v)[ψ
(k)
ab (u), ψ

(k)
cd (v)] = ~

(
ψ
(k)
ad (u)ψ

(k)
cb (v) − ψ

(k)
ad (v)ψ

(k)
cb (u)

)
. (4.10)

(2) The following iteration relation holds for the ψ–operator

ψ(k)
[
ψ(l) [T]

]
= ψ(k+l) [T] .

Proof. We prove (2) first. For that it is enough to prove the assertion for k = 1 (the
general case follows from repeated application of k = 1 case). Let us assume that we
have a matrix φ(u) ∈ End(Cm)⊗Usln[~][u;u

−1]] satisfying the RTT relations. The
reader can verify easily that the equation ψ(1)

[
ψ(l) [φ]

]
= ψ(l+1) [φ], is equivalent

to the following determinant identity:

∆1,...,l,l+1,a
1,...,l,l+1,b (φ) (u)∆

1,...,l
1,...,l(φ) (u+ ~) = ∆1,...,l,l+1

1,...,l,l+1(φ) (u)∆
1,...,l,a
1,...,l,b (φ) (u+ ~)−

∆1,...,l,a
1,...,l,l+1(φ) (u)∆

1,...,l,l+1
1,...,l,b (φ) (u+ ~) , (4.11)

where a, b > l + 2. The proof of this identity uses Lemma 4.5. For notational
convenience we will write l for the sequence 1, . . . , l and l \ i for the sequence

1, . . . , î, . . . , l, for any 1 6 i 6 l. As before, let uj = u + j~. Then we have the
following column expansion from the second equation of Lemma 4.5 (3).

∆
l;l+1,a
l;l+1,b (φ) (u0) = ∆

l;l+1
l;l+1(φ) (u0)φa,b(ul+1)−∆

l;a
l;l+1(φ) (u0)φl+1,b(ul+1)

+
l∑

i=1

(−1)l+i∆
l\i;l+1,a
l;l+1 (φ) (u0)φi,b(ul+1).
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Substituting this expression in (4.11) gives us
(

l∑

i=1

(−1)l+i∆
l\i;l+1,a
l;l+1 (φ) (u0)φi,b(ul+1)

)
·∆l

l(φ) (u1) =

∆
l+1

l+1(φ) (u0)
(
∆

l;a
l;b (φ) (u1)− φa,b(ul+1)∆

l
l(φ) (u1)

)

−∆
l;a
l+1(φ) (u0)

(
∆

l+1

l;b (φ) (u1)− φl+1,b(ul+1)∆
l
l(φ) (u1)

)
. (4.12)

Now we use (2) of Lemma 4.5 and the row expansion formula (the fourth equality
of Lemma 4.5 (3)):

∆
l;α
l;β(φ) (w) = ∆

α;l
β;l(φ) (w) = φα,β(wl)∆

l
l(φ) (w) +

l∑

j=1

(−1)l+j+1φα,j(wl)∆
l
l\j;β(φ) (w)

to rewrite the right–hand side of (4.12) as

R.H.S. = ∆
l+1

l+1(φ) (u0)




l∑

j=1

(−1)l+j+1φa,j(ul+1)∆
l
l\j;b(φ) (u1)




−∆
l;a
l+1(φ) (u0)




l∑

j=1

(−1)l+j+1φl+1,j(ul+1)∆
l
l\j;b(φ) (u1)




=

l∑

j=1

(−1)l+j+1
(
∆

l+1

l+1(φ) (u0)φa,j(ul+1)

−∆
l;a
l+1(φ) (u0)φl+1,j(ul+1)

)
∆

l
l\j;b(φ) (u1)

=

l∑

i,j=1

(−1)i+j∆
l\i;l+1,a
l;l+1 (φ) (u0)φij(ul+1)∆

l
l\j;b(φ) (u1) ,

where in the last equality we used the column expansion of a matrix with a repeated
column:

0 = ∆
l;l+1,a
l;l+1,j (φ) (w) = ∆

l;l+1
l;l+1(φ) (w)φa,j(wl+1)−∆

l;a
l;l+1(φ) (w)φl+1,j(wl+1)

+

l∑

i=1

(−1)l+i∆
l\i;l+1,a
l;l+1 (φ) (w)φij(wl+1).

This turns the equation (4.12) that we need to verify into the following

l∑

i=1

(−1)i∆
l\i;l+1,a
l;l+1 (φ) (u0) ·




l∑

j=1

(−1)jφij(ul+1)∆
l
l\j;b(φ) (u1)− (−1)lφi,b(ul+1)∆

l
l(φ) (u1)


 = 0. (4.13)

Now we only need to observe that each ith term in the equation above is the row

expansion of ∆
i;l
l;b(φ) (u1) which is zero since i ∈ {1, . . . , l}. This finishes the proof
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of (2).

In order to prove (1) we observe that an easy induction argument, using (2),
reduces it to the case of k = 1. Again we revert back to a more general set up
where we are given a matrix φ(u) ∈ End(Cm)⊗Usln[~][u;u

−1]] satisfying the RTT
relation. We need to prove the following equation (see (4.3)):

(u− v)[ψac(u), ψbd(v)] = ~(ψbc(v)ψad(u)− ψbc(u)ψad(v)), (4.14)

where ψij(u) = ∆1i
1j(φ) (u) for any i, j ∈ {2, . . . ,m}. Our proof is based on the

idea behind Proposition 4.6. Namely, we take the R–matrix R(u, u+ ~, v, v+ ~) in

End
(
(Cm)⊗4

)
and use the generalisation of the RTT relations given in (4.6) for

N = 4:

R(u, u+ ~, v, v + ~)φ1(u)φ2(u + ~)φ3(v)φ4(v + ~) =

φ4(v + ~)φ3(v)φ2(u+ ~)φ1(u)R(u, u+ ~, v, v + ~).

We will apply this operator to the basis vector |1c1d〉 and compute the coefficient
of |1a1b〉. For this, we rewrite R(u, u+ ~, v, v+ ~) using the Yang–Baxter equation
(YBE), where x = u− v:

R(u, u+ ~, v, v + ~) = (R34(−~)R12(−~))R14(x− ~)R24(x)R13(x)R23(x+ ~)

= R23(x+ ~)R24(x)R13(x)R14(x− ~) (R34(−~)R12(−~))

Thus the operator we are interested in, say T (u, v), takes the following form.

T (u, v) = [φ4(v + ~)φ3(v)R34(−~)] · [φ2(u+ ~)φ1(u)R12(−~)] ·
R14(x− ~)R24(x)R13(x)R23(x + ~)

= R23(x+ ~)R24(x)R13(x)R14(x − ~)·
[R12(−~)φ1(u)φ2(u + ~)] · [R34(−~)φ3(v)φ4(v + ~)]

Thus the coefficient of |1a1b〉 in T (u, v) |1c1d〉 computed using the first expression
of T (u, v) gives the following answer, using the definition of quantum minors given
in (4.8):

〈1a1b| T (u, v) |1c1d〉 = (~x)2(x2 − ~2)

(
x+ 2~

x+ ~

)(
∆1b

1d(φ) (v)∆
1a
1c (φ) (u)

+
~

x
∆1b

1c(φ) (v)∆
1a
1d(φ) (u)

)
. (4.15)

Similarly, using the second expression of T (u, v), the same coefficient turns out
to be:

〈1a1b| T (u, v) |1c1d〉 = (~x)2(x2 − ~2)

(
x+ 2~

x+ ~

)(
∆1a

1c (φ) (u)∆
1b
1d(φ) (v)

+
~

x
∆1b

1c(φ) (u)∆
1a
1d(φ) (v)

)
. (4.16)

Combining equations (4.15) and (4.16) we get the desired equation (4.14). �
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5. The evaluation homomorphism

In this section, we complete the proof of Theorem 2.5 by describing the evalu-
ation homomorphism from the Yangian Y~sln to Usln[~] with respect to the loop
generators of the Yangian.

5.1. Evaluation homomorphism. Recall the definition of the generating series
{ξk(u), x±k (u)}k∈I from Section 3.2. Let Pk(u) be given by (2.3), i.e.,

Pk(u) = ∆1,...,k
1,...,k (T)

(
u− ~

2
(k − 1)

)
.

and define

ev(ξk(u)) =
Pk−1(u) Pk+1(u)

Pk

(
u+ ~

2

)
Pk

(
u− ~

2

) (5.1)

ev(x+k (u)) = Pk

(
u+

~

2

)−1 [
ek,k+1,Pk

(
u+

~

2

)]
(5.2)

ev(x−k (u)) = Pk

(
u− ~

2

)−1 [
Pk

(
u− ~

2

)
, ek+1,k

]
(5.3)

Theorem. The formulae above define an algebra homomorphism

ev : Y~sln → Usln[~].

Remark. We are grateful to Maxim Nazarov for pointing out that the defining
formulae of the morphism ev are similar to those appearing in [8, 14, 24, 25], which
define an embedding ι : Y~sln → Y~gln and describe the Drinfeld generators of Y~sln
in terms of quantum minors in Y~gln. The relation with the homomorphism ev is
easily explained. Since the matrix T(u) satisfies the RTT relation (4.2), there is
an induced algebra homomorphism evT : Y~gln → Usln[~]. Then, ev = evT ◦ ι.

Proof. We note that the coefficients of the polynomials {Pk(u)}16k6n commute,
because of Corollary 4.6. Thus we get [ξi(u), ξj(v)] = 0 for every i, j ∈ I which is
the relation (Y1) of Section 3.2.

Comparing the coefficients of ~u−1 in the definition of ev, and observing that

Pk(u) = uk − ~̟∨
k u

k−1 + · · ·

it follows that ev(ξk,0) = 2̟∨
k −̟∨

k−1−̟∨
k+1 = hk, ev(x

+
k,0) = ek,k+1 and ev(x−k,0) =

ek+1,k. Thus the relation (Y6) of Section 3.1 holds for r1 = · · · = rm = s = 0 from
the Serre relations defining Usln. In turn this special case of (Y6) implies the gen-
eral case (see remark preceding Lemma 3.2).

Our proof of the rest of the relations uses the ψ–operator introduced in Section
4.8 and the expression of ev in using ψ, as proved below in Section 5.2.

The proofs of (Y2), (Y3) and (Y4) are given below in Sections 5.3, 5.4 and 5.5
respectively. �
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5.2. ψ–operators and evaluation homomorphism. We begin by making the
observation that the definition of the evaluation map ev is obtained recursively
using the ψ–operator introduced in Section 4.8. To state this precisely, we begin
by rewriting (5.2) and (5.3) using the following easily verified identities:

[
ek,k+1,Pk

(
u+

~

2

)]
= −∆1,...,k

1,...,k̂,k+1
(T)

(
u− ~

2
(k − 1) +

~

2

)
,

[
Pk

(
u− ~

2

)
, ek+1,k

]
= −∆1,...,k̂,k+1

1,...,k (T)

(
u− ~

2
(k − 1)− ~

2

)
.

Note that the formulae (5.1), (5.2) and (5.3) for k = 1 take the following form:

ev(ξ1(u)) = T11

(
u+

~

2

)−1

T11

(
u− ~

2

)−1

∆12
12 (T)

(
u− ~

2

)
, (5.4)

ev(x+1 (u)) = −T11

(
u+

~

2

)−1

T12

(
u+

~

2

)
, (5.5)

ev(x−1 (u)) = −T11

(
u− ~

2

)−1

T21

(
u− ~

2

)
. (5.6)

Lemma. For each k > 1, we have

ev(ξk(u)) = ψ
(k−1)
11

(
u+

~

2

)−1

ψ
(k−1)
11

(
u− ~

2

)−1

∆12
12

(
ψ(k−1)

)(
u− ~

2

)
, (5.7)

ev(x+k (u)) = −ψ(k−1)
11

(
u+

~

2

)−1

ψ
(k−1)
12

(
u+

~

2

)
, (5.8)

ev(x−k (u)) = −ψ(k−1)
11

(
u− ~

2

)−1

ψ
(k−1)
21

(
u− ~

2

)
. (5.9)

Proof. The proof of this lemma is a direct verification, which we carry out below.
Let us start with the assertion for x+k (u) from (5.8). We expand the right–hand
side of this equation:

R.H.S. = −∆1,...,k
1,...,k (T)

(
u− ~

2
(k − 1) +

~

2

)−1

·∆1,...,k−1
1,...,k−1 (T)

(
u− ~

2
(k − 1) +

~

2

)
·

·∆1,...,k−1
1,...,k−1 (T)

(
u− ~

2
(k − 1) +

~

2

)−1

·∆1,...,k

1,...,k̂,k+1
(T)

(
u− ~

2
(k − 1) +

~

2

)

= Pk

(
u+

~

2

)−1

·
[
ek,k+1,Pk

(
u+

~

2

)]
= ev(x+k (u)).

Now consider the right–hand side of (5.9):

R.H.S. = −∆1,...,k
1,...,k (T)

(
u− ~

2
(k − 1)− ~

2

)−1

·∆1,...,k−1
1,...,k−1 (T)

(
u− ~

2
(k − 1)− ~

2

)
·

·∆1,...,k−1
1,...,k−1 (T)

(
u− ~

2
(k − 1)− ~

2

)−1

·∆1,...,k

1,...,k̂,k+1
(T)

(
u− ~

2
(k − 1)− ~

2

)

= Pk

(
u− ~

2

)−1

·
[
Pk

(
u− ~

2

)
, ek+1,k

]
= ev(x−k (u)).



AN EXPLICIT ISOMORPHISM BETWEEN QUANTUM AND CLASSICAL sln 25

Finally for ξk(u), the right–hand side of (5.7) can be expanded as below:

R.H.S. = ∆1,...,k−1
1,...,k−1 (T)

(
u− ~

2
(k − 1) +

~

2

)
·∆1,...,k

1,...,k (T)

(
u− ~

2
(k − 1) +

~

2

)−1

·

·∆1,...,k−1
1,...,k−1 (T)

(
u− ~

2
(k − 1)− ~

2

)
·∆1,...,k

1,...,k (T)

(
u− ~

2
(k − 1)− ~

2

)−1

·

·∆1,...,k−1
1,...,k−1 (T)

(
u− ~

2
(k − 1)− ~

2

)−1

·∆1,...,k+1
1,...,k+1 (T)

(
u− ~

2
(k − 1)− ~

2

)

=
∆1,...,k−1

1,...,k−1 (T)
(
u− ~

2 (k − 2)
)
·∆1,...,k+1

1,...,k+1 (T)
(
u− ~

2k
)

∆1,...,k
1,...,k (T)

(
u− ~

2 (k − 1) + ~

2

)
·∆1,...,k

1,...,k (T)
(
u− ~

2 (k − 1)− ~

2

)

=
Pk−1(u) Pk+1(u)

Pk

(
u+ ~

2

)
Pk

(
u− ~

2

) = ev (ξk(u)) .

�

5.3. Proof of (Y2). Using Proposition 3.3, it suffices to prove the following two
relations:

• For each i ∈ I

Ad(ξi(u))
−1(x±i (v)) =

u− v ∓ ~

u− v ± ~
x±i (v)±

2~

u− v ± ~
x±j (u± ~). (5.10)

• For each i 6= j ∈ I

[
ξi(u), x

±
j,0

]
= ±aijξi(u)x±j

(
u± ~

2
aij

)
. (5.11)

Below we prove these for the + case, for definiteness. The − case is entirely
analogous.

The equation (5.11) for j 6∈ {i−1, i+1} holds, since in that case ej,j+1 commutes
with {Pi−1,Pi,Pi+1} defining ev(ξi(u)). For j = i+1 one only has to observe that
ei+1,i+2 commutes with Pi−1 and Pi. Similarly the case j = i− 1.

Thus we are left with proving (5.10) for any i ∈ I. Using Lemma 5.2, we can write
ev(ξi(u)) and ev(x+i (u)) in terms of the ψ–operator. Below we omit the superscript

(i− 1) from ψ(i−1)(u).

ev(ξi(u)) = ψ11

(
u+

~

2

)−1

ψ11

(
u− ~

2

)−1

∆12
12 (ψ)

(
u− ~

2

)
,

ev(x+i (u)) = −ψ11

(
u+

~

2

)−1

ψ12

(
u+

~

2

)
.

Note that [ψ(u), ψ(v)] = 0 and we have the following relation between ψ11 and ψ12

Ad (ψ11(u)) · ψ12(v) =
u− v − ~

u− v
ψ12(v) +

~

u− v
ψ12(u)ψ11(v)ψ11(u)

−1. (5.12)

Setting u = v + ~ in this equation gives the following:

ψ12(v)ψ11(v)
−1 = ψ11(v + ~)−1ψ12(v + ~). (5.13)
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Combining these observation, the equation we need to verify, namely (5.10) takes
the following form, after using (5.13) and renaming variables u, v 7→ u+ ~

2 , v +
~

2 :

Ad (ψ11(u − ~)ψ11(u)) · ψ12(v − ~) =
u− v − ~

u− v + ~
ψ12(v − ~)+

2~

u− v + ~
ψ12(u)ψ11(u)

−1ψ11(v − ~),

which is a direct consequence of repeated application of (5.12).

5.4. Proof of (Y3). Recall that we need to prove the following relation for every
pair i, j ∈ I.

(u− v ∓ a)x±i (u)x
±
j (v) = (u − v ± a)x±j (v)x

±
i (u)

+ ~
([
x±i,0, x

±
j (v)

]
−
[
x±i (u), x

±
j,0

])
. (5.14)

For i = j or for a pair with aij = 0, it suffices to prove the following special case
(see Proposition 3.3).

[x±i,0, x
±
j (u)]− [x±i (u), x

±
j,0] = ∓aij

2
(x±i (u)x

±
j (u) + x±j (u)x

±
i (u)). (5.15)

Let us prove this relation for the + case only. Note that for i, j ∈ I such that
aij = 0, this relation follows from [x+i (u), x

+
j,0] = 0 which is true since ej,j+1 com-

mutes with ei,i+1 and Pi.

Next, let us assume i = j. In this case we need to show that [x+i,0, x
+
i (u)] =

−x+i (u)2. Below, we will use the fact that ei,i+1 commutes with the commutator
[ei,i+1,Pi(u)]. This is because this commutator can be written as a quantum–minor:

[ei,i+1,Pi(u)] = −∆1,...,i
1,...,i−1,i+1 (T)

(
u− ~

2
(i− 1)

)
,

and ei,i+1 is an entry of the indicated submatrix, and we can use Corollary 4.6 to
conclude that it commutes with the quantum–minor. Thus we have the following
computation, with ũ = u− ~

2 for convenience:

[x+i,0, x
+
i (ũ)] =

[
ei,i+1,Pi(u)

−1[ei,i+1,Pi(u)]
]

= −Pi(u)
−1[ei,i+1,Pi(u)] Pi(u)

−1[ei,i+1,Pi(u)]

= −x+i (ũ)2

as intended. Note that we used the identity [α, β−1] = −β−1[α, β]β−1 in the cal-
culation above.

Finally, we are left with the case j = i + 1. We will reduce this case to rank
2 using the ψ–operator. To do this, we need to rewrite the commutators on the
right–hand side of (5.14) as follows. For convenience, below we write ũ = u − ~

2

and ṽ = v − ~

2 . Using the definition, and the fact that ei,i+1 commutes with Pi+1

(see Corollary 4.6) we get

[x+i,0, x
+
i+1(ṽ)] = Pi+1(v)

−1 [ei,i+2,Pi+1(v)]

= ∆1,...,i+1
1,...,i+1 (T)

(
v − ~

2
i

)−1

·∆1,...,i+1
1,...,i−1,i+1,i+2 (T)

(
v − ~

2
i

)
.
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Similarly we get

[x+i (ũ), x
+
i+1,0] = −∆1,...,i

1,...,i (T)

(
u− ~

2
(i− 1)

)−1

·∆1,...,i
1,...,i−1,i+2 (T)

(
u− ~

2
(i − 1)

)
.

Clearing the inverses of the principal quantum–minors from both sides of (5.14)
and using the properties of the ψ–operator from Proposition 4.8, we get the follow-
ing version of (5.14):
(
u− v +

~

2

)
ψ12(u)∆

12
13 (ψ)

(
v − ~

2

)
−
(
u− v − ~

2

)
∆12

13 (ψ)

(
v − ~

2

)
ψ12(u) =

~

(
ψ11(u)∆

12
23 (ψ)

(
v − ~

2

)
+∆12

12 (ψ)

(
v − ~

2

)
ψ13(v)

)
.

Rearranging the terms of this equation, and replacing v − ~

2 by v, we get the
following equation that we need to verify:

(u− v − ~)
[
ψ12(u),∆

12
13 (ψ) (v)

]
=

~
(
ψ11(u)∆

12
23 (ψ) (v) + ∆12

12 (ψ) (v)ψ13(u)− ψ12(u)∆
12
13 (ψ) (v)

)
. (5.16)

Since the ψ–matrix also satisfies the RTT relations (see Proposition 4.8) we can
use the commutation relations derived in Proposition 4.6. Using the second identity
given there, with N = 2 and k = 1, l = 2, a1 = 1, a2 = 2, b1 = 1, b2 = 3, we get

(u− v − ~)
[
ψ12(u),∆

12
13 (ψ) (v)

]
=

~
(
ψ11(u)∆

12
23 (ψ) (v) + ψ13(u)∆

12
12 (ψ) (v)−∆12

13 (ψ) (v)ψ12(u)
)
.

Thus the required relation follows from the following claim:

Claim. The following equation holds:
[
ψ13(u),∆

12
12 (ψ) (v)

]
+
[
ψ12(u),∆

12
13 (ψ) (v)

]
= 0. (5.17)

Proof of the claim. Multiply the left–hand side by (u− v) and use the first relation
given in Proposition 4.6 to get

[
ψ13(u),∆

12
12 (ψ) (v)

]
= ~

(
−∆12

23 (ψ) (v)ψ11(u) + ∆12
13 (ψ) (v)ψ12(u)

−ψ13(u)∆
12
12 (ψ) (v)

)
,

[
ψ12(u),∆

12
13 (ψ) (v)

]
= ~

(
∆12

23 (ψ) (v)ψ11(u) + ψ12(u)∆
12
13 (ψ) (v)

−∆12
12 (ψ) (v)ψ13(u)

)
.

Adding the two, we get that

(u− v)
([
ψ13(u),∆

12
12 (ψ) (v)

]
+
[
ψ12(u),∆

12
13 (ψ) (v)

])
=

− ~
([
ψ13(u),∆

12
12 (ψ) (v)

]
+
[
ψ12(u),∆

12
13 (ψ) (v)

])
.

This prove the claim and the relation (Y3).

5.5. Proof of (Y4). Again using Proposition 3.3, it is sufficient to prove the fol-
lowing two versions of (Y4).

• For each i ∈ I, we have

(u− v)[x+i (u), x
−
i (v)] = ~(ξi(v) − ξi(u)). (5.18)
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• For i 6= j, we have

[x+i (u), x
−
j,0] = 0. (5.19)

Note that (5.19) follows easily since ej+1,j commutes with Pi for i 6= j. We will
now prove (5.18) using the ψ–operator as before. Recall that by definition, we have
(again we omit the superscript (i − 1) from ψ(i−1)(u)).

ev(x+i (u)) = −ψ11

(
u+

~

2

)−1

ψ12

(
u+

~

2

)
,

ev(x−i (u)) = −ψ11

(
u− ~

2

)−1

ψ21

(
u− ~

2

)
.

In order to carry out the proof, we will need to use the following relations:

Ad (ψ11(u))
−1 · ψ12(v) =

u− v + ~

u− v
ψ12(v)−

~

u− v
ψ11(u)

−1ψ11(v)ψ12(u), (5.20)

Ad (ψ11(u))
−1 · ψ21(v) =

u− v − ~

u− v
ψ21(v) +

~

u− v
ψ11(u)

−1ψ11(v)ψ21(u), (5.21)

ψ12(v)ψ11(v)
−1 = ψ11(v + ~)−1ψ12(v + ~), (5.22)

ψ21(v)ψ11(v)
−1 = ψ11(v − ~)−1ψ21(v − ~), (5.23)

(u− v) [ψ12(u), ψ21(v)] = ~(ψ11(u)ψ22(v)− ψ11(v)ψ22(v)). (5.24)

By definition, we have

[x+i (u), x
−
i (v)] = ψ11

(
u+

~

2

)−1

ψ12

(
u+

~

2

)
ψ11

(
v − ~

2

)−1

ψ21

(
v − ~

2

)

− ψ11

(
v − ~

2

)−1

ψ21

(
v − ~

2

)
ψ11

(
u+

~

2

)−1

ψ12

(
u+

~

2

)
.

To make the computation less cumbersome, let us write the equation above as
(u − v)[x+i (u), x

−
i (v)] = T1(u, v) − T2(u, v). The two terms on the right–hand side

can be simplified using (5.20) and (5.21).

T1 = ψ11

(
u+

~

2

)−1

ψ11

(
v − ~

2

)−1

·

·
(
(u− v + ~)ψ12

(
u+

~

2

)
− ~ψ11

(
u+

~

2

)
ψ12

(
v − ~

2

)
ψ11

(
v − ~

2

)−1
)
·

· ψ21

(
v − ~

2

)
,

T2 = ψ11

(
u+

~

2

)−1

ψ11

(
v − ~

2

)−1

·

·
(
(u− v + ~)ψ21

(
v − ~

2

)
− ~ψ11

(
v − ~

2

)
ψ21

(
u+

~

2

)
ψ11

(
u+

~

2

)−1
)
·

· ψ12

(
u+

~

2

)
.
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Thus we get using (5.22), (5.23) and (5.24), that (5.18) holds, upon carrying out
the simplification of its left–hand side as follows:

L.H.S. = ψ11

(
u+

~

2

)−1

ψ11

(
v − ~

2

)−1

· (u− v + ~)

[
ψ12

(
u+

~

2

)
, ψ21

(
v − ~

2

)]

− ~ψ11

(
v +

~

2

)−1

ψ11

(
v − ~

2

)−1

ψ12

(
v +

~

2

)
ψ21

(
v − ~

2

)

+ ~ψ11

(
u+

~

2

)−1

ψ11

(
u− ~

2

)−1

ψ21

(
u− ~

2

)
ψ12

(
u+

~

2

)

= ~ψ11

(
v +

~

2

)−1

ψ11

(
v − ~

2

)−1

·
(
ψ11

(
v +

~

2

)
ψ22

(
v − ~

2

)
−

ψ12

(
v +

~

2

)
ψ21

(
v − ~

2

))

− ~ψ11

(
u+

~

2

)−1

ψ11

(
u− ~

2

)−1

·
(
ψ11

(
u− ~

2

)
ψ22

(
u+

~

2

)
−

ψ21

(
u− ~

2

)
ψ12

(
u+

~

2

))

= ~(ξi(v)− ξi(u)).

5.6. Partial fractions. The following proposition is needed to compute the com-

position ev◦Φ, where Φ : U~sln → Ŷ~sln is the algebra homomorphism from Section

3.4. For this, let us recall that {ζ(k)1 , . . . , ζ
(k)
k } are the roots of the polynomial Pk(u).

Proposition. For each k ∈ I, we have

ev(x+k (u)) =

k∑

i=1

~

u+ ~

2 − ζ
(k)
i

·




k∑

j=1

(−1)k+j
∆1,...,ĵ,...,k

1,...,k−1 (T)
(
ζ
(k)
i − ~

2 (k − 1)
)

∏
c 6=i(ζ

(k)
i − ζ

(k)
c )

ej,k+1


 ,

ev(x−k (u)) =
k∑

i=1

~

u− ~

2 − ζ
(k)
i

·




k∑

j=1

(−1)k+j
∆1,...,k−1

1,...,ĵ,...,k
(T)

(
ζ
(k)
i − ~

2 (k − 3)
)

∏
c 6=i(ζ

(k)
i − ζ

(k)
c )

ek+1,j


 .

Proof. From the definition (5.2), (5.3), and the observation made in Section 5.2,
we have the following:

ev(x+k (u)) = −Pk

(
u+

~

2

)−1

∆1,...,k
1,...,k−1,k+1 (T)

(
u+

~

2
− ~

2
(k − 1)

)
,

ev(x−k (u)) = −Pk

(
u− ~

2

)−1

∆1,...,k−1,k+1
1,...,k (T)

(
u− ~

2
− ~

2
(k − 1)

)
.

Using the column and row expansions of quantum minors (first and third equa-
tions of Lemma 4.5 (3)), we get

∆1,...,k
1,...,k−1,k+1 (T) (w) =

k∑

j=1

(−1)k+j∆1,...,ĵ,...,k
1,...,k−1 (T) (w) Tj,k+1(w + ~(k − 1)),

∆1,...,k−1,k+1
1,...,k (T) (w) =

k∑

j=1

(−1)k+j∆1,...,k−1

1,...,ĵ,...,k
(T) (w + ~)Tk+1,j(w).
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Note that, for j ∈ {1, . . . , k}, Tj,k+1(w) = −~ej,k+1 and Tk+1,j(w) = −~ek+1,j.
Combining these, we arrive at the following expressions:

ev(x+k (u)) = ~Pk

(
u+

~

2

)−1 k∑

j=1

(−1)k+j∆1,...,ĵ,...,k
1,...,k−1 (T)

(
u+

~

2
− ~

2
(k − 1)

)
ej,k+1,

ev(x−k (u)) = ~Pk

(
u− ~

2

)−1 k∑

j=1

(−1)k+j∆1,...,k−1

1,...,ĵ,...,k
(T)

(
u+

~

2
− ~

2
(k − 1)

)
ek+1,j .

Now Pk(w) commutes with the quantum minors involved in the expressions
above. Moreover, the degree of each quantum minor in the right–hand side of the

equations is strictly less than that of Pk. Thus, if {ζ(k)1 , . . . , ζ
(k)
k } are the roots of

Pk(u), then we have the following partial fraction decomposition.

Qj

(
u+ ~

2 − ~

2 (k − 1)
)

Pk

(
u+ ~

2

) =

k∑

i=1

1

u+ ~

2 − ζ
(k)
i

Qj

(
ζ
(k)
i − ~

2 (k − 1)
)

∏
c 6=i(ζ

(k)
i − ζ

(k)
c )

,

Rj

(
u+ ~

2 − ~

2 (k − 1)
)

Pk

(
u− ~

2

) =

k∑

i=1

1

u− ~

2 − ζ
(k)
i

Rj

(
ζ
(k)
i + ~− ~

2 (k − 1)
)

∏
c 6=i(ζ

(k)
i − ζ

(k)
c )

,

where

Qj(w) = ∆1,...,ĵ,...,k
1,...,k−1 (T) (w) ,

Rj(w) = ∆1,...,k−1

1,...,ĵ,...,k
(T) (w) .

Note that we have used Proposition 4.7 (3) here, and the following well–known
identity for a rational function vanishing at ∞ and whose denominator has distinct
roots (deg(p) < r in the equation below):

p(x)∏r
i=1(x− ai)

=

r∑

i=1

1

x− ai

p(ai)∏
j 6=i(ai − aj)

.

This proves the proposition. �

5.7. Evaluation homomorphism in J–presentation. It is perhaps worth point-
ing out that our homomorphism ev is the evaluation homomorphism at 0 from [9,
Prop. 12.1.15], denoted below by evCP. The significant difference being that evCP

is explicitly given in the J–presentation of the Yangian.

To see that ev = evCP one begins by making the observation that Y~sln is
generated by {ξi,0, x±i,0}i∈I and t1,1 defined as t1,1 := ξ1,1 − ~

2 ξ
2
i,0. This is because

we have the following relations

[t1,1, x
±
1,r] = ±2x±1,r+1 and [t1,1, x

±
2,r] = ∓x±2,r+1.

Thus, we can get {x±j,r}j=1,2 from {x±j,0}j=1,2 and t1,1. In turn, using [x+2,r, x
−
2,s] =

ξ2,r+s we can obtain t2,1. Continuing in this fashion, we see that every element from
{x±i,r, ξi,r}i∈I,r∈Z>0

can be written in terms of {x±i,0, ξi,0}i∈I and t1,1.

Using the argument given above, and the fact that both ev and evCP map
x+i,0 7→ ei,i+1 and x−i,0 7→ ei+1,i, we are left with checking that ev(t1,1) = evCP(t1,1).
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Computation of ev(t1,1). Recall that we have the following formula for ev(ξ1(u)),
from (5.4) (see also the n = 2 example from Section 2.7). Below C1 = e12e21 +

e21e12 +
h2
1

2 is the Casimir of sl2 corresponding to the node 1.

ev(ξ1(u)) =

(
u− ~

2̟
∨
2

)2 − ~
2

4 (2C1 + 1)(
u+ ~

2 − ~̟∨
1

) (
u− ~

2 − ~̟∨
1

)

=

(
1− ~̟∨

2 u
−1 − ~2

4
(2C1 + 1− (̟∨

2 )
2u−2

)
·

·
(
1− ~

(
̟∨

1 − 1

2

)
u−1

)−1

·
(
1− ~

(
̟∨

1 − 1

2

)
u−1

)−1

.

Recall that ξ1,1 is the coefficient of ~u−2 in ξ1(u). A straightforward computation
gives the following answer:

ev(t1,1) =
~

2
(̟∨

2 h1 − e12e21 − e21e12) . (5.25)

Computation of evCP(t1,1). Combining the expression of evCP given in [9, Prop. 12.1.15]
with the isomorphism between the J–presentation and the loop presentation of
Y~sln from [9, Thm. 12.1.3] (see also [14]), we get the following:

evCP(t1,1)=
~

4



∑

λ,µ

Tr(h1(IλIµ+IµIλ))IλIµ −
∑

β>0

(β, α1)(x
+
β x

−
β +x−β x

+
β )


 (5.26)

where

• {Iλ}λ is an orthonormal basis of sln (with respect to the inner product
(X,Y ) = Tr(XY ) when X,Y ∈ sln are viewed as n× n matrices).

• In the first term, h1, Iλ, Iµ are to be multiplied as n×n matrices and Tr is
the trace of the resulting matrix.

• β > 0 refers to the set of positive roots of sln.

We carry out the simplification of the right–hand side of (5.26). Let us write T1
and T2 for the two terms there. Then

T1 = T 0
1 +

∑

j>2

κ1j −
∑

j>2

κ2j and T2 = 2κ12 +
∑

j>2

κ1j −
∑

j>2

κ2j ,

where κij = eijeji + eijeji and T
0
1 is the Cartan part of the first term T1, namely

when Iλ, Iµ ∈ h. That is,

T 0
1 =

∑

λ,µ
Iλ,Iµ∈h

Tr(h1(IλIµ + IµIλ))IλIµ.

Finally, it is enough to observe that in Uh one has
~

2
̟∨

2 h1 =
~

4
T 0
1 .
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