

Edinburgh Research Explorer

Decentralizing Inner-Product Functional Encryption
Citation for published version:
Abdalla, M, Benhamouda, F, Kohlweiss, M & Waldner, H 2019, Decentralizing Inner-Product Functional
Encryption. in Public-Key Cryptography - PKC 2019 - 22nd IACR International Conference on Practice and
Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II. Lecture Notes in
Computer Science (LNCS), vol. 11443, Security and Cryptology, vol. 11443, Springer, Cham, pp. 128-157,
22nd edition of the International Conference on Practice and Theory of Public Key Cryptography, Beijing,
China, 14/04/19. https://doi.org/10.1007/978-3-030-17259-6_5

Digital Object Identifier (DOI):
10.1007/978-3-030-17259-6_5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Public-Key Cryptography - PKC 2019 - 22nd IACR International Conference on Practice and Theory of Public-
Key Cryptography, Beijing, China, April 14-17, 2019, Proceedings, Part II

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://www.research.ed.ac.uk/en/publications/49a79274-ac76-4869-8aa3-f466fd35934c

Decentralizing Inner-Product
Functional Encryption

Michel Abdalla1,2, Fabrice Benhamouda3,
Markulf Kohlweiss4, and Hendrik Waldner4

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
michel.abdalla@ens.fr

2 INRIA, Paris, France
3 IBM Resesearch, Yorktown Heights, NY, US

fabrice.benhamouda@normalesup.org
4 University of Edinburgh, Edinburgh, UK

{mkohlwei,hendrik.waldner}@ed.ac.uk

Abstract. Multi-client functional encryption (MCFE) is a more flexi-
ble variant of functional encryption whose functional decryption involves
multiple ciphertexts from different parties. Each party holds a different
secret key ski and can independently and adaptively be corrupted by the
adversary. We present two compilers for MCFE schemes for the inner-
product functionality, both of which support encryption labels. Our first
compiler transforms any scheme with a special key-derivation property
into a decentralized scheme, as defined by Chotard et al. (ASIACRYPT
2018), thus allowing for a simple distributed way of generating functional
decryption keys without a trusted party. Our second compiler allows
to lift a unnatural restriction present in existing (decentralized) MCFE
schemes, which requires the adversary to ask for a ciphertext from each
party. We apply our compilers to the works of Abdalla et al. (CRYPTO
2018) and Chotard et al. (ASIACRYPT 2018) to obtain schemes with
hitherto unachieved properties. From Abdalla et al., we obtain instanti-
ations of DMCFE schemes in the standard model (from DDH, Paillier,
or LWE) but without labels. From Chotard et al., we obtain a DMCFE
scheme with labels still in the random oracle model, but without pairings.

mailto:michel.abdalla@ens.fr
mailto:fabrice.benhamouda@normalesup.org
mailto:mkohlwei@ed.ac.uk,hendrik.waldner@ed.ac.uk

Table of Contents

1 Introduction . 3
1.1 Contributions . 5
1.2 Technical Overview . 5
1.3 Additional Related Work . 7
1.4 Concurrent Work . 8
1.5 Organization . 8

2 Definitions and Security Models . 9
2.1 Multi-Client Functional Encryption . 9
2.2 Decentralized Multi-Client Functional Encryption 12
2.3 Inner-Product Functionality . 13
2.4 Symmetric Encryption . 13

3 From MCFE to DMCFE . 13
3.1 Special Key Derivation Property . 14
3.2 Instantiations . 14
3.3 Compiler for Prime Moduli . 14
3.4 Extension to Hard-to-Factor Moduli . 16

4 From xx-pos-IND to xx-any-IND Security . 17
4.1 Compiler for DMCFE Schemes without Labels 17
4.2 Compiler for Labeled DMCFE Schemes . 21

5 Security of the MCFE from Abdalla et al. against Adaptive Corruptions 22
5.1 Inner-Product FE with Two-Step Decryption and Linear

Encryption . 23
5.2 One-Time Inner-Product MCFE over ZL . 24
5.3 Inner-Product MCFE over Z . 25

A Postponed Proofs for the Compiler from MCFE to DMCFE (Section 3) 33
A.1 Proof of Theorem 3.2 . 33
A.2 Proof of Theorem 3.4 . 38

B Postponed Proof for the Compiler from pos-IND to any-IND for
Labeled DMCFE Schemes (Section 4.2) . 39

Decentralizing Inner-Product Functional Encryption 3

1 Introduction

Functional encryption (FE) [BSW11, O’N10, SW05] is a form of encryption
scheme that allows fine-grained access control over encrypted data. Besides the
classical encryption and decryption procedures, functional encryption schemes
consists of a key derivation algorithm, which allows the owner of a master secret
key to derive keys with more restricted capabilities. These derived keys skf are
called functional decryption keys and are associated with a function f . Using
the key skf for the decryption of a ciphertext Enc(x) generates the output f(x).
During this decryption procedure no more information is revealed about the
underlying plaintext than f(x).

In the case of classical functional encryption, the (functional) decryption
procedure takes as input a single ciphertext Enc(x). A natural extension is the
multi-input setting, where the decryption procedure takes as input n different ci-
phertexts and outputs a function applied on the n corresponding plaintexts. Such
a scheme is called multi-input functional encryption (MIFE) scheme [GGG+14].
In a MIFE scheme, each ciphertext can be generated independently (i.e., with
completely independent randomness).

An important use case of MIFE considers multiple parties or clients, where
each party Pi generates a single ciphertext of the tuple. The ciphertext gen-
erated by party Pi is often said to correspond to position or slot i. In the
multi-client setting, it becomes natural to assume that each party has a dif-
ferent secret/encryption key ski that can be corrupted by the adversary. We call
such a scheme a multi-client functional encryption (MCFE) scheme [CDG+18a,
GGG+14].

We remark that the exact terminology varies from paper to paper. Here, a
MCFE scheme is always supposed to be secure against corruption of the parties
encrypting messages. In a MIFE scheme, on the other hand, all the parties may
use the same encryption key and there is no security against corruption.

The multi-input and multi-client settings still require a trusted third party
that sets up the encryption keys and holds the master secret key used to de-
rive the functional decryption keys. As a result, the central authority is able to
recover every client’s private data. This raises the question if it is possible to de-
centralize the concept of functional encryption and get rid of this trusted entity.
In this work, we focus on the notion of decentralized multi-client functional en-
cryption (DMCFE) introduced by Chotard et al. [CDG+18a]. In DMCFE, the
key derivation procedure KeyDer is divided into two procedures KeyDerShare and
KeyDerComb. The KeyDer procedure allows each party Pi to generate a share
ski,f of the functional key skf from its secret key ski. The KeyDerComb proce-
dure is then used to combine these n different shares sk1,f , . . . , skn,f to generate
the functional key skf . Assuming that the secret key ski can also be generated
in a distributed way, this makes it possible to get rid of the trusted party and
to ensure that every party has complete control over their individual data.

An important property of MIFE and (D)MCFE schemes is whether they are
labeled or not. The labeled setting is similar to vanilla multi-input/multi-client
functional encryption, but the encryption procedure takes as input a second

4 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

parameter, a so-called label `. The decryption procedure is restricted in such a
way that it is only possible to decrypt ciphertexts that are encrypted under the
same label Enc(sk1, x1, `), . . . ,Enc(skn, xn, `). This setting is sometimes desirable
in practice as it allows repeated computations over encrypted data that comes
from different sources (for example data mining over encrypted data or multi-
client delegation of computation [CDG+18a]).

In the last few years, many multi-input or multi-client functional encryp-
tion schemes have been constructed. As noted in [AGRW17], these schemes can
be split into two main categories: (1) feasibility for general functionalities, and
(2) concrete and efficient realizations for more restricted functionalities. Con-
structions of the first category [GGG+14, BGJS15,AJ15, BKS18] are based on
more unstable assumptions, such as indistinguishable obfuscation or multilinear
maps, and tackle the problem of creating schemes for more general functional-
ities. A few constructions of the second category are provided in the work of
Abdalla et al. in [AGRW17,ACF+18] and Chotard et al. in [CDG+18a], which
consider different types of secret-key constructions for the inner-product func-
tionality. In these schemes, each function is specified by a collection y of n vec-
tors y1, . . . ,yn and takes a collection x of n vectors x1, . . . ,xn as input. Their
output is fy(x) =

∑n
i=1〈xi,yi〉 = 〈x,y〉. As the original single-input inner-

product functionality [ABDP15,BJK15,DDM16,ALS16] and their quadratic ex-
tensions [BCFG17], multi-input or multi-client inner-product functionalities can
be quite useful for computing statistics or performing data mining on encrypted
databases [AGRW17,CDG+18a].

Currently, the work of Chotard et al. provides the only known DMCFE to
our knowledge. However, while their MCFE uses any cyclic group where the De-
cisional Diffie-Hellman (DDH) assumption holds, their DMCFE scheme requires
pairings. Furthermore, the security notion they achieve only guarantees security
against an adversary that queries the encryption/challenge oracle for every posi-
tion i. At first glance, it might seem that more encryption queries would help the
adversary, but this does not allow trivial attacks and the adversary is restricted
as follows: all functions f for which the adversary has a functional decryption
key must evaluate to the same value on all the plaintext tuples queried to the
encryption oracle. However, when a position i is not queried, this condition is
always satisfied since the function f in principle can never be really evaluated
due to a missing input. Hence, requiring the adversary to query the encryp-
tion/challenge oracle for every position i actually weakens the achieved security
notion.

This leaves open the following problems that we tackle in this paper:

1. Constructing DMCFE schemes without pairings, and even from more general
assumptions than discrete-logarithm-based ones.

2. Removing the restriction that the adversary has to query the encryption
oracle for every position i.

Decentralizing Inner-Product Functional Encryption 5

1.1 Contributions

Our first main contribution is to provide a generic compiler from any MCFE
scheme satisfying an extra property called special key derivation into an DM-
CFE scheme. The transformation is purely information-theoretic and does not re-
quire any additional assumptions. As the MCFE from Chotard et al. [CDG+18a]
satisfies this extra property, we obtain a labeled DMCFE scheme secure under
the plain DDH assumption without pairings (in the random oracle model). As
in [CDG+18a], the version of the scheme without labels is secure in the standard
model (i.e., without random oracles).

Furthermore, we show as an additional contribution that the MIFE schemes
from Abdalla et al. [ACF+18] are actually MCFE secure against adaptive corrup-
tions (but without labels). This directly yields the first DMCFE scheme without
labels from the LWE assumptions and the Paillier assumptions in the standard
model.

Our second main contribution is to provide generic compilers to transform
any scheme in the weaker model where the adversary is required to query the
encryption oracle at every position i, into a scheme without this restriction. We
propose two versions of the compiler: one without labels (in the standard model)
which only requires an IND-CPA symmetric encryption scheme, and one with
labels in the random oracle model.

These two compilers can be used to lift the security of the previously men-
tioned constructions of DMCFE to the stronger model. The resulting instantia-
tions from DDH, LWE, and Paillier described above rely on the same assump-
tions.

1.2 Technical Overview

Contribution 1: A MCFE to DMCFE compiler. The DMCFE construction in-
troduced by Chotard et al. [CDG+18a] is based on pairings and proven in the
random oracle model.

Our first compiler transforms an MCFE scheme into a DMCFE scheme and
does not require pairings. It operates on schemes with the special key derivation
property, namely whose master secret key can be split into separate secret keys,
one for each input, i.e.msk = {ski}i∈[n], and whose functional decryption keys are
derived through a combination of local and linear inner-product computations
on i, f, ski and pp. That is, the functional decryption key skf for the function f :
x 7→

∑n
i=1〈xi,yi〉 can be written as skf = ({s(ski,y)}i∈[n],

∑n
i=1〈u(ski),yi〉),

where f is defined by the collection y of the vectors y1, . . . ,yn and takes as
input a collection x of n vectors x1, . . . ,xn, and where s and u are two public
functions.5 Sums and inner products are computed modulo some integer L which
is either prime or hard to factor.

5 We note that our compiler actually is not restricted to the inner-product function-
ality. The only requirement is the special key derivation property.

6 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

For instance the MCFE scheme of [CDG+18a], without pairings but support-
ing labels, has functional decryption keys of the form skf = (y,

∑
i ski · yi).

Consider first the following straw man compiler. It splits KeyDer into two
procedures KeyDerShare and KeyDerComb. The first procedure assumes that
each party Pi has access to the i-th share ti,y of a fresh secret sharing of zero
{ti,y}i∈[n]. It then computes si,y = s(ski,y) (which is a local computation) and
dki,y = 〈u(ski),yi〉 + ti,y. The output key share is ski,y = (si,y, dki,y). In the
KeyDerComb procedure, the dki,y values get summed up to cancel out the ti,y
values and to obtain

∑
i〈u(ski),yi〉. The output gets then extended with the val-

ues s(ski,y) to obtain the complete functional decryption key skf . This works
but the question on the generation of the fresh secret sharing of zero {ti,y}i∈[n]
is left out.

One solution consists in generating it as follows: ti,y =
∑
j 6=i(−1)j<iFKi,j (y),

where FKi,j is a pseudorandom function with key Ki,j = Kj,i shared between par-
ties Pi and Pj . This yields an DMCFE scheme secure against static corruption.
Unfortunately, we do not know how to prove such a scheme secure against adap-
tive corruptions.

Our full compiler improves this construction in two ways: it allows adaptive
corruptions and does not require any pseudorandom function. The procedure
KeyDerShare of our full compiler uses masking values {vi}i∈[n], vi ∈ Zm·nL , such
that vn = −

∑n−1
i=1 vi, to derive the key shares ski,f = 〈u(ski),yi〉+〈vi,y〉. Here,

〈vi,y〉 acts as a kind of information theoretic pseudorandom function with key
vi. To make this work, the queried values need to be linearly independent. This
allows us to construct an information-theoretic compiler that provides security
against adaptive corruptions (see Section 3 for details).

The masking of values prevents the combination of key shares for different
functions y. If one computes shares on different y’s, then the sum of these shares
will not sum up to 0 and the resulting key will be invalid. The encryption and
decryption procedures proceed in the same way as in the MCFE setting.

Contribution 2: A compiler enforcing a single ciphertext query for each position.
The standard security property of MIFE/MCFE schemes guarantees that an
adversary can only learn a function of the inputs when it is in possession of
a ciphertext for every input position i. This property is not satisfied by the
schemes of [AGRW17, ACF+18, CDG+18a]. Their basic definitions guarantee
security only when the adversary queries every position at least once. We call a
scheme satisfying this property pos-IND secure (for positive) while we call the
standard property any-IND secure.

To overcome this deficiency, Abdalla et al. [AGRW17] constructed a compiler
that turns any pos-IND secure MIFE scheme into an any-IND secure MIFE
scheme. The compiler uses a symmetric encryption scheme in addition to their
MIFE encryption scheme. In more detail, the setup procedure of the compiler
samples a key K for the symmetric encryption scheme and splits it into n shares
k1, . . . , kn, such that k1 ⊕ · · · ⊕ kn = K. Each party Pi receives its MIFE key
ski, the symmetric encryption key K, as well as its share of the encryption key

Decentralizing Inner-Product Functional Encryption 7

ki. To encrypt, every party first runs the encryption procedure of the MIFE
scheme to generate cti ← Enc(ski,xi) and then encrypts the output cti using
the symmetric encryption scheme to get ct′i ← EncSE(K, cti). The output of the
encryption procedure is (ct′i, ki). This compiler obviously does not work when we
allow corruptions as this would allow the adversary to learn K after corrupting
any single party and use it to recover cti from ct′i for all positions i. Consequently,
the compiler does not work for (D)MCFE schemes.

In this work, we construct an extension of the compiler described above that
works in the multi-client setting by individually having a separate symmetric
encryption key for each position. Hence, we increase the number of symmetric
encryption keys from 1 to n and the number of the corresponding shares from
n to n2. This allows us to ensure that if the adversary does not ask encryption
queries in every uncorrupted position, it does not learn any information about
the underlying (D)MCFE ciphertexts.

We describe in more detail how the compiler handles the additional keys. In
the setup procedure, every party (or a trusted party) generates its own key Ki
and corresponding shares ki,j , such that ki,1⊕· · ·⊕ki,n = Ki. The share ki,j gets
exchanged with Party Pj afterwards. In the encryption procedure every party
encrypts its plaintext in the same way as in the MIFE setting, but using its
own key Ki instead of the single symmetric encryption key K. The ciphertext
corresponding to slot i of Party Pi is (ct′i, {kj,i}j∈[n]).

If the adversary does not know all of the shares {ki,j}i,j∈[n], then security
relies on the security of the symmetric encryption scheme. If the adversary knows
all of the different symmetric encryption keys Ki, i ∈ [n], it relies on the security
of the multi-client scheme. All of the key shares are only released if an encryption
query has been made in every uncorrupted position.

This first compiler is, however, restricted to (D)MCFE schemes without la-
bels. To add support for labels, the first idea is to use fresh keys ki,j,` for each
label `. These keys can be locally derived from ki,j using a pseudorandom func-
tion. Unfortunately, we do not know how to prove the security of such a scheme
except in a very restricted setting (selective and static corruptions), where the
adversary needs to output all its corruption and encryption queries at the begin-
ning of the security experiment. We show how to achieve the standard (adaptive)
security notion when the above pseudorandom function as well as the symmetric
encryption scheme is implemented using hash functions that can be modeled as
random oracles. The use of random oracles allows us to show that the adversary
learns absolutely nothing about the inner ciphertexts cti until it has queried all
the positions (for each given label) and we can then program the random oracles
to properly “explain” the previously generated ciphertexts ct′i.

1.3 Additional Related Work

In [FT18], Fan and Tang proposed a new notion of distributed public key func-
tional encryption, in which the key generation procedure generates n different

8 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

shares {skfi }i∈[n] instead of a single functional decryption key skf . The decryp-
tion of a ciphertext ct (a encryption of a message m) under a function f requires
first the decryption under the functional key shares si ← Dec(skfi , ct) for all
i ∈ [n]. These shares {si}i∈[n] are then used to reconstruct f(m). In this set-
ting, a trusted third party is still needed to set up the public parameters and to
generate the functional keys, which makes it not really decentralized.

In Private Stream Aggregation (PSA), a weighted sum f(x) 7→
∑n
i xi gets

computed. This is similar to DMCFE for the inner-product functionality f(x) 7→
〈x,y〉. PSA was introduced by Shi et al. [SCR+11] and allows a set of users to
compute the sum of their encrypted data for different time periods. Compared
to DMCFE, PSA is more restricted. It only allows computation of simple sums,
whereas in principle DMCFE allows the computation of different functions on
the input data. Furthermore, research on PSA has mainly focused on achieving
new properties or better efficiency [BJL16,CSS12,Emu17, JL13, LC12], instead
of providing new functionalities.

1.4 Concurrent Work

Concurrently and independently of our work, Chotard et al. [CDG+18b] pro-
posed new constructions of MCFE schemes for inner products both in the central-
ized and decentralized settings. Their paper contains three main contributions:
(1) A pairing-based compiler that turns any pos-IND secure MCFE scheme into
an any-IND secure MCFE scheme, secure under the decisional Bilinear Diffie-
Hellman problem in the random oracle model; (2) A second compiler that turns
a one-IND secure MCFE scheme into a pos-IND secure MCFE scheme; and (3)
A compiler that transforms a class of MCFE schemes for inner products into
a corresponding DMCFE scheme, based on either the CDH assumption in the
random-oracle model or the DDH assumption in the standard model.

While contribution (2) is unrelated and complementary to our work, contri-
butions (1) and (3) are related to our contributions in Section 4 and Section 3,
respectively. Regarding (1), their compiler from pos-IND to any-IND security
produces constant-size ciphertexts, but it requires pairings and random oracles.
Our compiler in Section 4, on the other hand, avoids pairings, requiring either
symmetric encryption when applied to schemes without labels or random oracles
for schemes with labels, but ciphertext sizes are linear in the number of inputs.
Regarding (3), their compiler is similar to the straw man compiler described
above. It is based on the DDH assumption and proven secure with respect to
static corruptions. Our compiler in Section 3, on the other hand, is information-
theoretic and achieves adaptive security.

1.5 Organization

The paper is organized as follows. In Section 2, we recall classical definitions as
well as the definition of MCFE and DMCFE. Section 3 presents our first main
contribution: the compiler from MCFE to DMCFE. Our second main contribu-
tion, namely our compilers from pos-IND security to any-IND security, is shown

Decentralizing Inner-Product Functional Encryption 9

in Section 4. We conclude our paper by the proof that the MIFE scheme of Ab-
dalla et al. [ACF+18] is actually an MCFE scheme that is secure under adaptive
corruptions.

2 Definitions and Security Models

Notation. We use [n] to denote the set {1, . . . , n}. We write x for vectors and
xi for the i-th element. For security parameter λ and additional parameters n,
we denote the winning probability of an adversary A in a game or experiment
G as WinGA(λ, n), which is Pr[G(λ, n,A) = 1]. The probability is taken over the
random coins of G and A. We define the distinguishing advantage between games
G0 and G1 of an adversary A in the following way: AdvGA(λ, n) =

∣∣WinG0

A (λ, n)−
WinG1

A (λ, n)
∣∣.

2.1 Multi-Client Functional Encryption

In this section, we define the notion of MCFE [GGG+14].

Definition 2.1. (Multi-Client Functional Encryption) Let F = {Fρ}ρ be
a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 × · · · × Xρ,nρ → Yρ.6 Let
Labels = {0, 1}∗ or {⊥} be a set of labels. A multi-client functional encryption
scheme (MCFE) for the function family F and the label set Labels is a tuple of
five algorithms MCFE = (Setup,KeyGen,KeyDer,Enc,Dec):

Setup(1λ, 1n): Takes as input a security parameter λ and the number of par-
ties n, and generates public parameters pp. The public parameters implicitly
define an index ρ corresponding to a set Fρ of n-ary functions (i.e., n = nρ).

KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys
{ski}i∈[n] and a master secret key msk.

KeyDer(pp,msk, f): Takes as input the public parameters pp, the master secret
key msk and a function f ∈ Fρ, and outputs a functional decryption key skf .

Enc(pp, ski, xi, `): Takes as input the public parameters pp, a secret key ski, a
message xi ∈ Xρ,i to encrypt, a label ` ∈ Labels, and outputs ciphertext cti,`.

Dec(pp, skf , ct1,`, . . . , ctn,`): Takes as input the public parameters pp, a func-
tional key skf and n ciphertexts under the same label ` and outputs a value
y ∈ Yρ.

A scheme MCFE is correct, if for all λ, n ∈ N, pp← Setup(1λ, 1n), f ∈ Fρ, ` ∈
Labels, xi ∈ Xρ,i, when ({ski}i∈[n],msk) ← KeyGen(pp) and skf ← KeyDer(pp,

msk, f), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, `), . . . ,Enc(pp, skn, xn, `)) = f(x1, . . . , xn)] = 1 .

When ρ is clear from context, the index ρ is omitted. When Labels = {0, 1}∗,
we say that the scheme is labeled or with labels. When Labels = {⊥}, we say that
the scheme is without labels, and we often omit `.
6 All the functions inside the same set Fρ have the same domain and the same range.

10 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Remark 2.2. We note that contrary to most definitions, the algorithm Setup
only generates public parameters that determine the set of functions for which
functional decryption keys can be created. The secret/encryption keys and the
master secret keys are generated by another algorithm KeyGen, while the func-
tional decryption keys are generated by KeyDer. This separation between Setup
and KeyGen is especially useful when combining multiple MCFE/MIFE schemes
as in [ACF+18] to ensure that all the MCFE/MIFE instances are using the
same modulus. Note that this separation prevents for example the functionality
to consist of inner products modulo some RSA modulus N = pq and the master
secret key to contain the factorization of N (except if the factorization of the
modulus N is public).

As noted in [CDG+18a,GGG+14], the security model of multi-client func-
tional encryption is similar to the security model of standard multi-input func-
tional encryption, except that instead of a single master secret key msk for
encryption, each slot i has a different secret key ski and the keys ski can be indi-
vidually corrupted. In addition, one also needs to consider corruptions to handle
possible collusions between different parties. In the following, we define security
as adaptive left-or-right indistinguishability under both static (sta), and adaptive
(adt) corruption. We also consider three variants of these notions (one, any, pos)
related to the number of encryption queries asked by the adversary for each slot.

Definition 2.3. (Security of MCFE) Let MCFE be an MCFE scheme, F =
{Fρ}ρ a function family indexed by ρ and Labels a label set. For xx ∈ {sta, adt},
yy ∈ {one, any, pos}, and β ∈ {0, 1}, we define the experiment xx-yy-INDMCFE

β

in Fig. 1, where the oracles are defined as:

Corruption oracle QCor(i): Outputs the encryption key ski of slot i. We de-
note by CS the set of corrupted slots at the end of the experiment.

Encryption oracle QEnc(i, x0i , x
1
i , `): Outputs cti,` = Enc(pp, ski, x

β
i , `) on a

query (i, x0i , x
1
i , `). We denote by Qi,` the number of queries of the form

QEnc(i, ·, ·, `).
Key derivation oracle QKeyD(f): Outputs skf = KeyDer(pp,msk, f).

and where Condition (*) holds if all the following conditions hold:

– If i ∈ CS (i.e., slot i is corrupted): for any query QEnc(i, x0i , x
1
i , `), x0i = x1i .

– For any label ` ∈ Labels, for any family of queries {QEnc(i, x0i , x1i , `)}i∈[n]\CS ,
for any family of inputs {xi ∈ Xρ,i}i∈CS , for any query QKeyD(f), we define
x0i = x1i = xi for any slot i ∈ CS, xb = (xb1, . . . , x

b
n) for b ∈ {0, 1}, and we

require that:
f(x0) = f(x1) .

We insist that if one index i /∈ CS is not queried for the label `, there is no
restriction.

– When yy = one: for any slot i ∈ [n] and ` ∈ Labels, Qi,` ∈ {0, 1}, and if
Qi,` = 1, then for any slot j ∈ [n] \ CS, Qj,` = 1. In other words, for any
label, either the adversary makes no encryption query or makes exactly one
encryption query for each i ∈ [n] \ CS.

Decentralizing Inner-Product Functional Encryption 11

sta-yy-INDMCFE
β (λ, n,A)

CS ← A(1λ, 1n)

pp← Setup(1λ, 1n)

({ski}i∈[n],msk)← KeyGen(pp)

α← AQEnc(·,·,·,·),QKeyD(·)(pp, {ski}i∈CS)
Output: α if Condition (*) is satisfied,

or a uniform bit otherwise

adt-yy-INDMCFE
β (λ, n,A)

pp← Setup(1λ, 1n)

({ski}i∈[n],msk)← KeyGen(pp)

α← AQCor(·),QEnc(·,·,·,·),QKeyD(·)(pp)

Output: α if Condition (*) is satisfied,
or a uniform bit otherwise

Fig. 1. Security games for MCFE

sta-one-IND sta-pos-IND sta-any-IND

adt-one-IND adt-pos-IND adt-any-IND

Fig. 2. Relations between the MCFE security notions (arrows indicate implication or
being “a stronger security notion than”)

– When yy = pos: for any slot i ∈ [n] and ` ∈ Labels, if Qi,` > 0, then for any
slot j ∈ [n]\CS, Qj,` > 0. In other words, for any label, either the adversary
makes no encryption query or makes at least one encryption query for each
slot i ∈ [n] \ CS.

We define the advantage of an adversary A in the following way:

Advxx-yy-IND
MCFE,A (λ, n) =

∣∣Pr[xx-yy-INDMCFE
0 (λ, n,A) = 1]

− Pr[xx-yy-INDMCFE
1 (λ, n,A) = 1]

∣∣ .
A multi-client functional encryption scheme MCFE is xx-yy-IND secure, if for
any n, for any polynomial-time adversary A, there exists a negligible function
negl such that: Advxx-yy-IND

MCFE,A (λ, n) ≤ negl(λ).

We omit n when it is clear from the context. We also often omit A from the
parameter of experiments or games when it is clear from context.

We summarize the relations between the six security notions in Fig. 2. Multi-
input functional encryption (MIFE) and functional encryption (FE) are spe-
cial cases of MCFE. MIFE is MCFE without corruption, and FE is the spe-
cial case of n = 1 (in which case, MIFE and MCFE coincide as there is no
non-trivial corruption). Therefore, for single-input FE schemes, sta-any-IND =
adt-any-IND = any-IND corresponds to the secret-key version of the standard
adaptive indistinguishability notion used in [ALS16]. The security notions con-
sidered in [CDG+18a] are actually xx-pos-IND and so are the MIFE notions of
[ACF+18]. An xx-one-IND MCFE is also called a one-time secure scheme.

12 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

2.2 Decentralized Multi-Client Functional Encryption

Now, we introduce the definition of decentralized multi-client functional encryp-
tion (DMCFE) [CDG+18a]. As for our definition of MCFE, we separate the
algorithm Setup which generates public parameters defining in particular the set
of functions, from the algorithm KeyGen (see Remark 2.2).

Definition 2.4. (Decentralized Multi-Client Functional Encryption)
Let F = {Fρ}ρ be a family (indexed by ρ) of sets Fρ of functions f : Xρ,1 ×
· · · × Xρ,nρ → Yρ.Let Labels = {0, 1}

∗ or {⊥} be a set of labels. A decentralized
multi-client functional encryption scheme (DMCFE) for the function family F
and the label set Labels is a tuple of six algorithms DMCFE = (Setup,KeyGen,
KeyDerShare,KeyDerComb,Enc,Dec):

Setup(1λ, 1n) is defined as for MCFE in Definition 2.1.
KeyGen(pp): Takes as input the public parameters pp and outputs n secret keys
{ski}i∈[n].

KeyDerShare(pp, ski, f): Takes as input the public parameters pp, a secret key
ski from position i and a function f ∈ Fρ, and outputs a partial functional
decryption key ski,f .

KeyDerComb(pp, sk1,f , . . . , skn,f): Takes as input the public parameters pp, n
partial functional decryption keys sk1,f , . . . , skn,f and outputs the functional
decryption key skf .

Enc(pp, ski, xi, `) is defined as for MCFE in Definition 2.1.
Dec(pp, skf , ct1,`, . . . , ctn,`) is defined as for MCFE in Definition 2.1.

A scheme DMCFE is correct, if for all λ, n ∈ N, pp← Setup(1λ, 1n), f ∈ Fρ, ` ∈
Labels, xi ∈ Xρ,i, when {ski}i∈[n] ← KeyGen(pp), ski,f ← KeyDerShare(ski, f)

for i ∈ [n], and skf ← KeyDerComb(pp, sk1,f , . . . , skn,f), we have

Pr [Dec(pp, skf ,Enc(pp, sk1, x1, `), . . . ,Enc(pp, skn, xn, `)) = f(x1, . . . , xn)] = 1 .

We remark that there is no master secret key msk. Furthermore, similarly
to [CDG+18a], our definition does not explicitly ask the setup to be decentral-
ized. However, all our constructions allow for the setup to be easily decentralized,
at least assuming that the original schemes have such a property in the case of
our compilers.

We consider a similar security definition for the decentralized multi-client
scheme. We point out that contrary to [CDG+18a], we do not differentiate en-
cryption keys from secret keys. This is without loss of generality, as corruptions
in [CDG+18a] only allow to corrupt both keys at the same time.

Definition 2.5. (Security of DMCFE) The xx-yy-IND security notion of
an DMCFE scheme (xx ∈ {sta, adt} and yy ∈ {one, any,pos}) is similar to the
one of an MCFE (Definition 2.3), except that there is no master secret key msk
and the key derivation oracle is now defined as:

Key derivation oracle QKeyD(f): Computes ski,f := KeyDerShare(pp, ski, f)
for i ∈ [n] and outputs {ski,f}i∈[n].

Decentralizing Inner-Product Functional Encryption 13

2.3 Inner-Product Functionality

We describe the functionalities supported by the constructions in this paper, by
considering the index ρ of F in more detail.

The index of the family is defined as ρ = (R, n,m,X, Y) where R is either
Z or ZL for some integer L, and n,m,X, Y are positive integers. If X,Y are
omitted, then X = Y = L is used (i.e., no constraint).

This defines Fρ = {fy1,...,yn : (Rm)
n → R} where

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉 = 〈x,y〉 ,

where the vectors satisfy the following bounds: ‖xi‖∞ < X, ‖yi‖∞ < Y for
i ∈ [n], and where x ∈ Rmn and y ∈ Rmn are the vectors corresponding to the
concatenation of the n vectors x1, . . . ,xn and y1, . . . ,yn respectively.

2.4 Symmetric Encryption

For our second compiler (Section 4.1), we make use of a symmetric encryption
scheme SE = (EncSE,DecSE) that is indistinguishable secure under chosen plain-
text attacks (IND-CPA) and whose keys are uniform strings in {0, 1}λ as defined
by [BDJR97].

EncSE(K, x): Takes as input a key K ∈ {0, 1}λ and a message x to encrypt, and
outputs the ciphertext ct.

DecSE(K, ct): Takes as input a key K and a ciphertext ct to decrypt, and outputs
a message x.

We denote with AdvIND-CPA
SE,A (λ) the advantage of an adversary guessing β in

the following game: the challenger picks K ← {0, 1}λ and gives A access to
an encryption oracle QEnc(x0i , x

1
i) that outputs ct = EncSE(K, x

β
i) on a query

(x0, x1).

3 From MCFE to DMCFE

In this section, we describe our first compiler which allows the decentraliza-
tion of MCFE schemes that satisfy an additional property, called special key
derivation. We start by defining this property and showing that existing schemes
from [ACF+18,CDG+18a] satisfy it. Next, we describe the compiler and prove
its security when the underlying modulus of the special key derivation prop-
erty is prime. Finally, we extend the proof to the case where this modulus is a
hard-to-factor composite number.

14 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

3.1 Special Key Derivation Property

Definition 3.1 (MCFE with Special Key Derivation). An MCFE scheme
MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) for a family of functions F and a set
of labels Labels has the special key derivation property modulo L if:7

– Secret keys ski generated by KeyGen have the following form: ski = (i, si,
{uki }k∈[κ]), where si ∈ {0, 1}∗, and uki ∈ ZmL , and κ and m are positive
integers implicitly depending on the public parameters pp.

– skf ← KeyDer(pp,msk, f) outputs skf = ({si,f}i∈[n], {dk
k
f}k∈[κ]), where si,f

is a (polynomial-time) function of pp, i, si, and f , while:

dkkf =

n∑
i=1

〈uki ,yki,f 〉 = 〈uk,ykf 〉 ,

where yki,f ∈ ZmL is a (polynomial-time) function of pp, i, and f , and uk and
ykf are the vectors in ZmnL corresponding to the concatenation of the vectors
{uki }i∈[n] and {yki,f}i∈[n] respectively.

Without loss of generality for MCFE with the special key derivation property,
we can suppose that msk = {ski}i∈[n]. We also remark that we do not require any
property of the family of functions F and that our compiler could be applicable
to more general MCFE than inner-product ones.

3.2 Instantiations

The MCFE construction of Chotard et al. [CDG+18a, Section 4] satisfies the
special key derivation property modulo L = p (the order of the cyclic group),
with κ = 2 and ykf = y, when f : x 7→ 〈x,y〉.

The generic constructions of Abdalla et al. [ACF+18, Section 3] (both over
Z and ZL, see also Section 5) satisfy the special key derivation property modulo
L (where L is the modulo used for the information-theoretic MIFE/MCFE with
one-time security) with ykf = y. The instantiations from MDDH, LWE, and
Paillier ([ACF+18, Section 4]) use L = p the prime order of the cyclic group,
L = q the prime modulo for LWE (we need L = q to be prime for our compiler),
L = N = pq the modulus used for Paillier respectively.

3.3 Compiler for Prime Moduli

We start by presenting our compiler from MCFE schemes with the special key
derivation property modulo a prime L in Fig. 3. Correctness follows directly

7 The integer L can depend on the public parameters pp.

Decentralizing Inner-Product Functional Encryption 15

Setup′(1λ, 1n) :

Return Setup(1λ, 1n)

KeyGen′(pp) :

({ski}i∈[n],msk)← KeyGen(pp)

Recall that ski = (i, si, {uki }k∈[κ])

For k ∈ [κ]:

For i ∈ [n− 1], vki ← ZML

vkn := −
n−1∑
i=1

vki mod L

Return {sk′i = (ski, {vki }k∈[κ])}i∈[n]

Enc′(pp, sk′i, xi, `) :

Parse sk′i = (ski, {vki }k∈[κ])

Return cti,` ← Enc(pp, ski, xi, `)

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski, {vki }k∈[κ])

For k ∈ [κ], dkki,f := 〈uki ,yki,f 〉+ 〈vki ,ykf 〉

Return sk′i,f := (si,f , {dkki,f}k∈[κ])

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

Parse {sk′i,f = (si,f , {dkki,f}k∈[κ])}i∈[n]

For k ∈ [κ], dkkf :=

n∑
i=1

dkki,f

Return sk′f = ({si,f}i∈[n], {dk
k
f}k∈[κ])

Dec′(pp, sk′f , {cti,`}i∈[n]) :

Return Dec(pp, sk′f , {cti,`}i∈[n])

Fig. 3. Compiler from MCFE to DMCFE′: si,f is a function of pp, i, si, f and yki,f is
a function of pp, i, f , and k. M = mn.

from the fact that:
n∑
i=1

dkki,f =

n∑
i=1

〈uki ,yki,f 〉+
n∑
i=1

〈vki ,ykf 〉

= dkkf + 〈
n∑
i=1

vki ,y
k
f 〉 = dkkf + 〈0,ykf 〉 = dkkf .

We insist on the fact that while vectors uki and yki,f are m-dimensional, vectors
vki and ykf are (mn)-dimensional.

We have the following security theorem.

Theorem 3.2. Let MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) be an MCFE
construction for a family of functions F and a set of labels Labels. We suppose
that MCFE has the special key derivation property modulo a prime L. For any
xx ∈ {sta, adt} and any yy ∈ {one, pos, any}, if MCFE is an xx-yy-IND-secure
MCFE scheme, then the scheme DMCFE′ depicted in Fig. 3 is an xx-yy-IND-
secure DMCFE scheme. Namely, for any PPT adversary A, there exist a PPT
adversary B such that:

Advxx-yy-IND
DMCFE′,A(λ, n) ≤ Advxx-yy-IND

MCFE,B (λ, n) .

Below, we provide a proof sketch of the theorem. The formal proof is in
Appendix A.1.

16 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Proof (Theorem 3.2 — sketch). In this sketch, we focus on a setting without
corruption and where L is a prime number. For the sake of simplicity, we also
suppose that κ = 1 and si,f is an empty string, so that we can omit the super-
script k and we have sk′i,f = dki,f = 〈ui,yi,f 〉+ 〈vi,yf 〉. We can define u′i ∈ ZL
to be ui “padded with 0” so that we can write: 〈ui,yi,f 〉 = 〈u′i,yf 〉 (recall that
yf is just the concatenation of the vectors yi,f for i ∈ [n]). Thus we have:

sk′i,f = dki,f = 〈u′i,yf 〉+ 〈vi,yf 〉 = 〈u′i + vi,yf 〉 .

Now, we remark that from keys dki,g for g ∈ {f1, . . . , fq}, one can compute the
key dki,f for any f such that yf is in the subspace generated by yf1 , . . . ,yfq .
Indeed, if y =

∑q
j=1 µj · yfj , for some µ1, . . . , µq ∈ ZL, then: dki,f =

∑q
j=1 µj ·

dki,fj .
Let S be the set of functions f queried to QKeyD such that the family of vector

{yf}f∈S is linearly independent. We compute the dki,f of linearly dependent
functions as outlined above. We now look at linearly independent functions. As
the vectors vi are uniformly distributed under the constraints

∑n
i=1 vi = 0 (by

definition of Setup′), linear algebra ensures that the values {〈vi,yf 〉}i∈[n],f∈S are
distributed uniformly under the constraints

∑n
i=1〈vi,yf 〉 = 0 for f ∈ S. Thus,

from Section 3.3, we get that for any f ∈ S, {dki,f}i∈[n] is a fresh additive secret
sharing of

n∑
i=1

dki,f =

n∑
i=1

〈u′i,yf 〉 =
n∑
i=1

〈ui,yi,f 〉 = dkf ,

and hence can be simulated knowing only dkf = KeyDer(msk, f) (but not the
vectors ui themselves, which are parts of the secret keys ski). In other words
queries to the oracle QKeyD(f) in the security game of DMCFE′ can be simulated
just from KeyDer(pp,msk, f) (or equivalently just from queries to the oracle
QKeyD(f) in the security game of MCFE).

Thus, we have a perfect reduction from the security of DMCFE′ to the security
of MCFE. ut

3.4 Extension to Hard-to-Factor Moduli

We can extend the previous scheme to moduli L which are hard to factor. This
is required for the Paillier instantiation from [ACF+18, Section 4.3].

Let us provide formal details.

Definition 3.3 (Factorization). Let GenL be a PPT algorithm taking as in-
put the security parameter 1λ and outputing a number L ≥ 2. We define the
experiment FactorGenL(λ,A) for an adversary A as follows: it outputs 1 if on
input L ← GenL(1λ), the adversary outputs two integers L1, L2 ≥ 2, such that
L1 ·L2 = L. The advantage of A is AdvFactorGenL,A(λ) = Pr[FactorGenL(λ,A)]. Factor-
ization is hard for GenL if the advantage of any PPT adversary A is negligible
in λ.

We have the following security theorem proven in Appendix A.2.

Decentralizing Inner-Product Functional Encryption 17

Theorem 3.4. Let MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) be an MCFE
construction for an ensemble of functions F and a set of labels Labels. We sup-
pose that MCFE has the special key derivation property modulo an integer L,
which is part of the public parameter pp and generated as L← GenL(1λ) in the
setup, for some polynomial-time algorithm. We assume that factorization is hard
for GenL. For any xx ∈ {sta, adt} and any yy ∈ {one, pos, any}, if MCFE is an
xx-yy-IND-secure MCFE scheme, then the scheme DMCFE′ depicted in Fig. 3
is an xx-yy-IND-secure DMCFE scheme. Namely, for any PPT adversary A,
there exist two PPT adversaries B and B′ such that:

Advxx-yy-IND
DMCFE′,A(λ, n) ≤ Advxx-yy-IND

MCFE,B (λ, n) + 2 · AdvFactorGenL,B′(λ) .

4 From xx-pos-IND to xx-any-IND Security

We present two compilers transforming pos-IND-secure MIFE, MCFE, and DM-
CFE schemes into any-IND schemes. These compilers essentially force the ad-
versary to ask for at least one ciphertext per position i (and per label, for labeled
schemes).

The first compiler works for sta-pos-IND and adt-pos-IND-secure schemes
without labels (Labels = {⊥}) and only requires an IND-CPA symmetric en-
cryption scheme to work. We prove it for the adt-pos-IND case as the proof
for sta-pos-IND is simpler. The second compiler supports labeled schemes, but
is in the random oracle model. Although our presentation is for DMCFE, the
compilers can be adapted to work for MCFE schemes in a straightforward way.

Regarding efficiency, both compilers add 2n − 1 symmetric keys (i.e., λ-bit
strings) to each secret key ski, and n symmetric keys to each ciphertext cti (plus
the overhead due to symmetric encryption, which can be as low as λ bits us-
ing stream ciphers for example). (Partial) functional decryption keys and public
parameters are unchanged. For the first compiler, the computational complex-
ity overhead essentially consists in one symmetric encryption of the original ci-
phertext for functional encryption, and n symmetric decryptions for functional
decryption. The second compiler uses a specific encryption scheme based on
hash functions (modeled as random oracles) which requires 2n−1 hash function
evaluations in addition to the encryption algorithm.

4.1 Compiler for DMCFE Schemes without Labels

The compiler without labels is described in Fig. 4. where SE is an IND-CPA
symmetric-key encryption scheme. We show the following security theorem.

Theorem 4.1. Let DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,
Dec) be an adt-pos-IND-secure DMCFE scheme without labels (Labels = {⊥})
for a family of functions F . Let SE = (EncSE,DecSE) be an IND-CPA symmetric-
key encryption scheme. Then the DMCFE scheme DMCFE′ = (Setup′,KeyGen′,

18 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Setup′(1λ, 1n) :

Return pp← Setup(1λ, 1n)

KeyGen′(pp) :

{ski}i∈[n] ← KeyGen(pp)

For i ∈ [n] :

ki,1, . . . , ki,n ← {0, 1}λ

Ki = ⊕j∈[n]ki,j
Return {sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])}i∈[n]

Enc′(pp, sk′i, xi) :

Parse sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])

cti ← Enc(pp, ski, xi)

ct′i ← EncSE(Ki, cti)

Return (ct′i, {kj,i}j∈[n])

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])

Return sk′i,f ← KeyDerShare(ski, f)

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

skf := KeyDerComb(pp, {sk′i,f}i∈[n])

Return skf

Dec′(pp, skf , ct
′′
1 , . . . , ct

′′
n) :

Parse {ct′′i = (ct′i, {kj,i}j∈[n])}i∈[n]
For i ∈ [n] :

Ki = ⊕j∈[n]ki,j
cti ← DecSE(Ki, ct

′
i)

Return Dec(pp, skf , ct1, . . . , ctn).

Fig. 4. Compiler from an xx-pos-IND DMCFE DMCFE without labels into an xx-any-
IND DMCFE DMCFE′ using an IND-CPA symmetric-key encryption scheme SE

KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 4 is an adt-any-IND-
secure DMCFE scheme. Namely, for any PPT adversary A, there exist PPT
adversaries B and B′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n) + n · AdvIND-CPA
SE,B′ (λ) .

Proof. An encryption query on the i-th slot is denoted as (x0i , x1i).
In the proof we need to consider two different cases:

1. In all uncorrupted positions i /∈ CS, at least one query has been made,
Qi ≥ 1.

2. In an uncorrupted position i /∈ CS, zero queries have been made, Qi = 0.

We begin our proof by considering the first point.

Lemma 4.2. Let DMCFE = (Setup, KeyGen, KeyDerShare, KeyDerComb, Enc,
Dec) be an adt-pos-IND-secure DMCFE construction without labels (Labels =
{⊥}) for a family of functions F . Let SE = (EncSE,DecSE) be a symmetric-
key encryption scheme. Then the DMCFE scheme DMCFE′ = (Setup′,KeyGen′,
KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 4 is adt-any-IND se-
cure. Namely, for any PPT adversary A restricted to make Qi ≥ 1 for all i /∈ CS
there exist a PPT adversary B such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n) .

Decentralizing Inner-Product Functional Encryption 19

Proof. We construct an adversary B against the adt-any-IND security of the
scheme DMCFE′. B generates ki,1, . . . , ki,n and Ki for every i ∈ [n].

If A aks a query QCor′(i), B asks a query QCor(i) to its own corruption oracle
to obtain the key ski and uses it to create sk′i, which gets forwarded to A.

When the adversary A asks a query QEnc′(i, x0i , x
1
i), B directly forwards it

to its own encryption oracle. It receives cti ← Enc(pp, ski, x
β
i) as a result and

uses Ki to generate ct′i ← EncSE(Ki, cti). This ciphertext gets concatenated with
the key shares of the symmetric encryption scheme {kj,i}j∈[n] and sent to A as
an answer to the encryption query.

If A asks a query QKeyD′(f), B forwards it to its own oracle to receive ski,f ,
which gets forwarded to A.

It is straightforward to see that the adversary B perfectly simulates the se-
curity game for DMCFE′ to A. Hence, we have:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n) .

ut

We continue with the consideration of the second point.

Lemma 4.3. Let DMCFE = (Setup, KeyGen, KeyDerShare, KeyDerComb, Enc,
Dec) be a DMCFE construction without labels (Labels = {⊥}) for a family
of functions F . Let SE = (EncSE,DecSE) be an IND-CPA symmetric-key en-
cryption scheme and let Qi = 0 for at least one i /∈ CS. Then the DMCFE
scheme DMCFE′ = (Setup′,KeyGen′,KeyDerShare′,KeyDerComb′,Enc′,Dec′) de-
scribed in Fig. 4 is adt-any-IND-secure. Namely, for any PPT adversary A,
there exists an adversary B′ such that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ n · AdvIND-CPA

SE,B′ (λ) .

Proof. We prove this part by using a hybrid argument. We define the games
G1, . . . ,Gn in Fig. 5.

Due to the definition of the game it holds that: Game G0 corresponds to the
experiment adt-any-INDDMCFE′

β for β = 1 and Gn to the experiment adt-any-
INDDMCFE′

β for β = 1 therefore using the triangular inequality, we get:

Advadt-any-IND
DMCFE′,A (λ, n) ≤

n∑
t=1

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)|.

We then conclude by showing that for any t, there exists an adversary Bt
such that

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)| ≤ AdvIND-CPA
SE,Bt (λ).

The adversary B′ of the statement then just picks t ∈ [n] and simulates Bt.
The standard details are omitted here. The adversary Bt against the IND-CPA
security of the symmetric encryption scheme behaves in the following way:

In the first step, Bt generates the keys Ki and also samples ski for all i ∈
[n] \ {t} by running the key generation algorithm of DMCFE.

20 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Gt(λ, n,A) :

ES = {}

pp← Setup(1λ, 1n)

(ski,Ki, {ki,j , kj,i}j∈[n])i∈[n] ← KeyGen′(pp)

α← AQEnc′(·,·,·),QKeyD′(·),QCor′(·)(pp)

Output: α

QEnc′(i, x0i , x
1
i)

Add i to ES

If i /∈ (CS ∪ ES), kj,i ←R {0, 1}λ for all j ∈ [n] \ CS

If i ≤ t, return(EncSE(Ki,Enc(pp, sk′i, x0i)), {kj,i}j∈[n])

If i > t, return(EncSE(Ki,Enc(pp, sk′i, x
1
i)), {kj,i}j∈[n])

QKeyD′(y)

Return {sk′i,f ← KeyDerShare(pp, ski, f)}i∈[n]

QCor′(i)

If i /∈ CS

ki,j ←R {0, 1}λ for all j ∈ [n] \ (CS ∪ ES), s.t. Ki = ⊕j∈[n]ki,j
If i /∈ ES

kj,i ←R {0, 1}λ for all j ∈ [n] \ (CS ∪ {i})
Return (ski,Ki, {ki,j , kj,i}j∈[n])

Fig. 5. The description of the hybrid used for the reduction to the symmetric-key
encryption scheme in Lemma 4.3.

We denote by ES the set of positions i in which encryption queries have been
made.

If A corrupts a position i 6= t, the adversary Bt samples random values ki,j
for all j ∈ [n]\(CS ∪ES) such that Ki = ⊕j∈[n]ki,j . If the position i has not been
corrupted before and if no encryption query has been asked in this position (i.e.
i /∈ CS∪ES), then Bt samples random values kj,i for all j ∈ [n]\(CS∪{i}). If the
adversary A asks a corruption query QCor′(t), the adversary Bt directly outputs
a random value r ← {0, 1}. This is due to the fact that, if party t is corrupted
the games Gt−1 and Gt are the same. This results in an advantage equal to 0.

Whenever A asks a query QEnc′(i, x0i , x
1
i) we consider three different cases.

In the first case, A queries the encryption oracle for i < t, then Bt generates
EncSE(Ki,Enc(pp, ski, x

0
i)) using the key Ki. The same happens for queries with

i > t, but with x1i instead of x0i , i.e. EncSE(Ki,Enc(pp, ski, x1i)). In the case that

Decentralizing Inner-Product Functional Encryption 21

A asks a query QEnc′(t, x0t , x
1
t), Bt generates (Enc(pp, skt, x

0
t),Enc(pp, skt, x

1
t))

and sends it to its own encryption oracle to receive EncSE(Enc(pp, skt, x
β
t)). If

no encryption has been asked in the position i before and if i is not corrupted
(i.e., i /∈ (CS ∪ ES)) then we sample kj,i for all j ∈ [n] \ CS. If i ∈ (CS ∪ ES)
then the values kj,i have already been sampled for all j ∈ [n]. The ciphertext
EncSE(Ki,Enc(pp, ski, x

β
i)) together with kj,i,∀j ∈ [n] are then sent to A in the

last step.
If Bt asks a key derivation query QKeyD′(f), Bt uses the public parameters

pp and the keys {ski, f}i∈[n] to generate {sk′i,f ← KeyDerShare(pp, ski, f)}i∈[n]
as a response for A.

The reduction shows that for all t ∈ [n]:

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)| ≤ AdvIND-CPA
SE,Bt (λ) .

This results in:
n∑
t=1

|Win
Gt−1

A (λ, n)−WinGtA (λ, n)| ≤
n∑
t=1

AdvIND-CPA
SE,Bt (λ) .

ut

Theorem 4.1 follow from the two above lemmas. ut

4.2 Compiler for Labeled DMCFE Schemes

We now present the compiler supporting labels in Fig. 6, where H1 : {0, 1}∗ →
{0, 1}λ and H2 : {0, 1}∗ → {0, 1}|cti| are two hash functions modeled as random
oracles in the security proof. We formally prove the following security theorem
in Appendix B.

Theorem 4.4. Let DMCFE = (Setup,KeyGen,KeyDerShare,KeyDerComb,Enc,
Dec) be an adt-pos-IND-secure DMCFE scheme for an ensemble of functions F
and set of labels Labels. Then the DMCFE scheme DMCFE′ = (Setup′,KeyGen′,
KeyDerShare′,KeyDerComb′,Enc′,Dec′) described in Fig. 6 is an adt-any-IND-
secure scheme. Namely, when the hash functions H1 and H2 are modeled as
random oracles, for any PPT adversary A there exist a PPT adversary B such
that:

Advadt-any-IND
DMCFE′,A (λ, n) ≤ Advadt-pos-IND

DMCFE,B (λ, n)

+
2qH1

+ (2n+ 1) · (qH2
qQEnc + q2QEnc)

2λ
,

where qH1 , qH2 , and qQEnc are the numbers of queries to the oracles H1, H2, and
QEnc respectively.

A high-level overview of the proof of this theorem can be found in Section 1.2.

22 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Setup′(1λ, 1n) :

Return pp← Setup(1λ, 1n)

KeyGen′(pp) :

{ski}i∈[n] ← KeyGen(pp)

For i ∈ [n] :

ki,1, . . . , ki,n ← {0, 1}λ

Return {sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])}i∈[n]

Enc′(pp, sk′i, xi, `) :

Parse sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])

cti ← Enc(pp, ski, xi)

For j ∈ [n] :

ki,j,` := H1(ki,j‖i‖j‖`)
kj,i,` := H1(kj,i‖j‖i‖`)

Ki,` := ⊕j∈[n]ki,j,`
ri ← {0, 1}λ; ct′i := cti ⊕ H2(Ki,`‖ri)
Return (ct′i, ri, {kj,i,`}j∈[n])

KeyDerShare′(pp, sk′i, f) :

Parse sk′i = (ski,Ki, {ki,j , kj,i}j∈[n])

Return sk′i,f ← KeyDerShare(pp, sk′i, f)

KeyDerComb′(pp, {sk′i,f}i∈[n]) :

skf := KeyDerComb(pp, {ski,f}i∈[n])

Return skf

Dec′(pp, skf , ct
′′
1 , . . . , ct

′′
n) :

Parse {ct′′i = (ct′i, ri, {kj,i,`}j∈[n])}i∈[n]
For i ∈ [n] :

Ki,` = ⊕j∈[n]ki,j,`
cti = ct′i ⊕ H2(Ki,`‖ri)

Return Dec(pp, skf , ct1, . . . , ctn).

Fig. 6. Compiler from an xx-pos-IND DMCFE DMCFE with labels into an xx-any-
IND DMCFE DMCFE′ with labels, where H1 : {0, 1}∗ → {0, 1}λ and H2 : {0, 1}∗ →
{0, 1}|cti| are two hash functions modeled as random oracles in the security proof.

5 Security of the MCFE from Abdalla et al. against
Adaptive Corruptions

In this section, we prove that the MIFE scheme by Abdalla et al. [ACF+18]
is also secure against adaptive corruptions, when their unique encryption and
secret key is split into individual secret keys for each party in a natural way8, as
described in Fig. 7 and Fig. 9.

For simplicity, we focus here on the bounded-norm MIFE case since the con-
struction over ZL can be easily adapted from it. Towards this goal, Section 5.1
first recalls the definition of FE with two-step decryption and linear encryption.
Next, Section 5.2 recalls the other building block, an sta-one-IND-secure MCFE
scheme for Fρ, ρ = (ZL, n,m,L, L). Finally, Section 5.3 recalls the MCFE con-
struction from [ACF+18].

8 Note that the schemes in [ACF+18] were presented as a MIFE scheme with a unique
encryption and secret key. It is however straightforward to split the encryption key
and secret key into a key ski for each party.

Decentralizing Inner-Product Functional Encryption 23

5.1 Inner-Product FE with Two-Step Decryption and Linear
Encryption

The [ACF+18] construction extends a one-time secure MIFE scheme over ZL to
a many-time secure MIFE scheme over Z. This extension relies on a single-input
FE scheme for Fρ, ρ = (Z, 1,m,X, Y) satisfying two properties, called two-step
decryption and linear encryption [ACF+18]. As indicated in [ACF+18], the two-
step decryption property informally says that the FE decryption algorithm can
be broken in two steps: one step that uses the secret key to return an encoding
of the result and the other step that returns the actual result 〈x,y〉 as long as
the bounds ||x||∞ < X, ||y||∞ < Y hold. The linear encryption property, on
the other hand, informally states that the FE encryption algorithm is additively
homomorphic. We now recall these definitions more formally.

Definition 5.1 (Two-step decryption [ACF+18]). A secret-key FE scheme
FE = (Setup,KeyGen, KeyDer,Enc,Dec) for the function ensemble Fρ, ρ = (Z, 1,
m,X, Y) satisfies the two-step decryption property if it admits PPT algorithms
Setup?, Dec1,Dec2 and an encoding function E such that:

1. For all λ ∈ N,Setup?(1λ, 1n) outputs pp where pp includes ρ = (Z, 1,m,X,
Y) and a bound B ∈ N, as well as the description of a group G (with group
law ◦) of order L > 2 · n · m · X · Y , which defines the encoding function
E : ZL × Z→ G.

2. For all msk ← KeyGen(pp),x ∈ Zm, ct ← Enc(pp,msk,x),y ∈ Zm, and
sk← KeyDer(msk,y), we have

Dec1(pp, sk, ct) = E(〈x,y〉 mod L, noise) ,

for some noise ∈ N that depends on ct and sk. Furthermore, it holds that
Pr[noise < B] = 1− negl(λ), where the probability is taken over the random
coins of KeyGen and KeyDer. Note that there is no restriction on the norm
of 〈x,y〉 here.

3. Given any γ ∈ ZL, and pp, one can efficiently compute E(γ, 0).
4. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise+ noise′) .

5. For all γ < 2 · n ·m ·X · Y , and noise < n ·B,Dec2(pp, E(γ, noise)) = γ.

Definition 5.2 (Linear encryption [ACF+18]). A secret-key FE
scheme FE = (Setup, KeyGen,KeyDer,Enc,Dec) is said to satisfy the linear en-
cryption property if there exists a deterministic algorithm Add that takes as input
a ciphertext and a message, such that for all x,x′ ∈ Zm, the following are iden-
tically distributed:

Add(Enc(pp,msk,x),x′), and Enc
(
pp,msk, (x+ x′ mod L)

)
.

Recall that the value L ∈ N is defined as part of the output of the algorithm
Setup? (see the two-step decryption property above).

24 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Define ppot = (n,m,L)

KeyGenot(ppot) :

{ui}i∈[n] ← (ZmL)n

Return msk := {mski}i∈[n] = {ui}i∈[n]

Encot(ppot,mski,xi) :

Parse mski = ui

Return cti := ui + xi mod L

KeyDerot(ppot,msk,y) :

Parse msk = {ui}i∈[n],y = (y1, . . . ,yn)

Return dky :=
∑
i∈[n]

〈ui,yi〉

Decot(ppot, dky,y, {cti}i∈[n]) :

Parse y = (y1, . . . ,yn)

Return
∑
i∈[n]

〈cti,yi〉 − dky mod L

Fig. 7. One-Time Inner-Product MCFE over ZL (for FmL,n)

5.2 One-Time Inner-Product MCFE over ZL

We recap the one-time secure scheme provided by Abdalla et al. [ACF+18] in
Fig. 7, to which we made the following modifications. First, our description does
not need a setup procedure Setupot, which now simply defines (n,m,L). Second,
the steps of the original Setupot in Abdalla et al. [ACF+18] are now defined in
the KeyGenot procedure. When doing so, we also split their unique secret key into
individual secret keys for each party. Since these modifications do not impact
the correctness of the scheme, we refer to [ACF+18] for a proof of correctness.
As for its security with respect to adaptive corruptions, we need to modify the
proof of Abdalla et al. [ACF+18] to account for corruption queries.

Theorem 5.3. The MCFEot scheme in Fig. 7 is adt-one-IND secure. Namely,
for any adversary A, Advadt-one-IND

MCFEot,A (λ) = 0

Proof. Let A be an adversary against the adt-one-IND security of the MCFEot

scheme with advantage Advadt-one-IND
MCFEot,A (λ). Let sta-one-sel-INDMCFEot

β (λ, n,B) be
a variant of the sta-one-INDMCFEot

β (λ, n,B) experiment in which the selective
adversary B additionally specifies the encryption challenges {xbi}i∈[n],b∈{0,1} to-
gether with the corrupted set at the beginning of the experiment. (Recall that
there is a single challenge per slot.)

We use complexity leveraging to transform A into a selective adversary B
such that:

Advadt-one-IND
MCFEot,A (λ) ≤ 2−n · (2X)

−2nm · Advsta-one-sel-IND
MCFEot,B (λ) .

After adversary B made its guesses {xbi}i∈[n],b∈{0,1} and determined the set of
corrupted parties, it simulates A’s experiment using its own static and selective
experiment. When B receives a challenge or corruption query from A, it checks
if the guess was successful: if it was, it continues simulating A’s experiment,
otherwise, it returns 0. When the guess is successful, B perfectly simulates A’s
view.

Decentralizing Inner-Product Functional Encryption 25

Hβ(1λ,B)

(CS, {xbi}i∈[n],b∈{0,1})← B(1
λ, 1n)

For i ∈ [n],

ui ← ZmL ; cti ← ui

α← BOK(·)({ui}i∈CS , {cti}i∈[n])

Output α

OK(i,y)

Parse y = (y1, . . . ,yn)

sky =
∑
i∈[n]

〈ui − xβi ,yi〉

Return sky

Fig. 8. Hybrid experiments for the proof of Theorem 5.3.

Hence, to prove that MCFEot satisfies perfect sta-one-IND security, we just
need to prove that it satisfies perfect sta-one-sel-IND security. In order to prove
MCFEot satisfies perfect sta-one-sel-IND security (i.e., Advsta-one-sel-IND

MCFEot,B (λ) = 0),
we introduce hybrid games Hβ(1λ,B), described in Fig. 8.

We prove that for all β ∈ {0, 1}, the hybrid Hβ(1λ,B) is identical to the ex-
periment sta-one-sel-INDMCFEot

β (λ, n,B). This can be seen by using the fact that,
in the selective security game, all {xβi ∈ Zm}i∈[n] have identical distributions:
{ui mod L}i∈[n] and {ui−xβi mod L}, with ui ←R ZmL . This also holds for the
corrupted positions i ∈ CS, because in this case it holds that x0

i = x1
i .

Finally, we show that B’s view in Hβ(1λ,B) is independent of β. Indeed,
the only information about β that leaks in the experiment is 〈xβi ,yi〉, which is
independent of β by the definition of the security game. ut

5.3 Inner-Product MCFE over Z

In Fig. 9, we recall the construction of [ACF+18] of a pos-IND-secure scheme
MCFE = (Setup,KeyGen,KeyDer,Enc,Dec) from the (one-IND-secure) MCFE
scheme MCFEot = (KeyGenot,KeyDerot,Encot,Decot) described in Section 5.2 and
from any any-IND-secure scheme FE = (Setupsi,KeyGensi,KeyDersi,Encsi,Decsi)
for a single input. As for the one-time scheme in Section 5.2, we also modified
the KeyGen procedure in [ACF+18] in order to split their unique secret key into
individual secret keys for each party. Since these modifications do not impact
the correctness of the scheme, we refer to [ACF+18] for a proof of the latter. In
the following, we show that this construction allows for adaptive corruption.

Lemma 5.4. Assume that the single-input scheme FE is any-IND-secure and
the multi-client scheme MCFEot is adt-one-IND-secure. Then the multi-client
scheme MCFE is adt-pos-IND-secure. Namely, for any PPT adversary A, there
exist PPT adversaries B and B′ such that

Advadt-pos-IND
MCFE,A (λ, n) ≤ Advadt-one-IND

MCFEot,B (λ, n) + n · Advany-IND
FE,B′ (λ, n).

Proof. To prove the security of the multi-client inner-product functional encryp-
tion scheme, we define a sequence of games, where G0 is the adt-pos-INDMCFE

0 (λ,

26 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Setup(1λ, 1n) :

ppsi ← Setupsi(1λ, 1n)

Set ppot := (n,m,L), with ρsi = (Z, 1,m, 3X,Y) and L implicitly defined from ppsi

Return pp = (ppsi, ppot)

KeyGen(pp) :

{ui}i∈[n] ← KeyGenot(ppot)

For i ∈ [n], msksii ← KeyGensi(ppsi), ski := (msksii ,ui)

Return {ski}i∈[n]

Enc(pp, ski,xi) :

Parse ski = (msksii ,ui) and return cti := Encsi(ppsi,msksii ,Enc
ot(ppot,ui,xi))

KeyDer(pp,msk,y) :

Parse msk = {msksii ,ui}i∈[n],y = (y1, . . . ,yn)

For i ∈ [n], ski,y ← KeyDersi(ppsi,msksii ,yi)

dky := KeyDerot(ppot, {ui}i∈[n],y)

Return sky := ({ski,y}i∈[n], dky)

Dec(pp, sky, {cti}i∈[n]) :

Parse sky = ({ski,y}i∈[n], dky)

For i ∈ [n], E(〈ui + xi,yi〉 mod L, noisei)← Decsi1(ppsi, ski,y, cti)

Return Decsi2(ppsi, E(〈u1 + x1,y1〉 mod L, noise1)) ◦ . . .
◦ E(〈un + xn,yn〉 mod L, noisen) ◦ E(−dky, 0))

Fig. 9. Inner-Product for Fρ, ρ = (Z, n,m,X, Y) built from MCFEot for Fρot , ρot =
(ZL, n,m,L, L) and FE for Fρsi , ρsi = (Z, 1,m, 3X,Y)

Decentralizing Inner-Product Functional Encryption 27

Game ctji justification/remark

G0 Enc(pp, ski,x
0,j
i − x0,1

i + x0,1
i)

G1 Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i) adt-one-IND of MCFEot

G1.k
Enc(pp, ski, x1,j

i − x1,1
i + x1,1

i), for i ≤ k

Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i), for i > k

any-IND of FE

G2 Enc(pp′, ski, x1,j
i) G2 = G1,n

Fig. 10. Overview of the games to prove the security of the MCFE scheme.

n,A) game and G2 the adt-pos-INDMCFE
1 (λ, n,A) game. A description of all the

different games can be found in Fig. 10. We denote the winning probability of
an adversary A in a game Gi as WinGiA (λ, n), which is Pr[Gi(λ, n,A) = 1]. The
probability is taken over the random coins of Gi and A. The encryption query j
on the i-th slot is denoted as (x0,j

i ,x1,j
i).

We start our proof by considering the games G0 and G1

Lemma 5.5. For any PPT A, there exists a PPT adversary B such that

|WinG0

A (λ, n)−WinG1

A (λ, n)| ≤ Advadt-one-IND
MCFEot,B (λ, n) .

Proof. Compared to G0, G1 replaces the encryptions of x
0,j
i −x

0,1
i +x0,1

i with the
encryptions of x0,j

i −x0,1
i +x1,1

i for all of the slots i under adaptive corruptions.
This mirrors directly the distribution of the challenge ciphertexts in Gβ .

The adversary B simulates Gβ to A using the adt-one-INDMCFE
β experiment.

In the beginning B generates the parameters pp = (ppsi, ppot) ← Setup(1λ, 1n)
and the keys msksii ← KeyGen(ppsi) for all the positions i ∈ [n]. Whenever A asks
a query QKeyD′(y = (y1, . . . ,yn)), B uses its own key derivation oracle to get
dky =

∑
i∈[n]〈ui,yi〉 and computes the keys ski,y ← KeyDersi(ppsi,msksii ,yi) for

all the positions i ∈ [n] on its own and sends them to A.
For each position i ∈ [n], the first encryption query QEnc′(i,x0,1

i ,x1,1
i) by

A gets forwarded to the challenger. B receives cti,ot = ui + xβ,1i as an answer,
computes ct1i = Encsi(ppsi,msksii ,ui + xβ,1i), and returns it to A. For all further
queries (j > 1), B produces ctji by encrypting (x0,j

i − x0,1
i + cti,ot) mod L.

When A asks a query QCor′(i), it is necessary that x0,j
i = x1,j

i holds for
all the corruption queries that A has asked before. In this case, B computes
ui = cti,ot − x0,1

i and sends (msksii ,mpksii ,ui) to A.
Finally, B outputs 1, if and only if A outputs 1. By the reasoning above, we

can conclude that:

|WinG0

A (λ, n)−WinG1

A (λ, n)| ≤ Advadt-one-IND
MCFEot,B (λ, n) .

ut

28 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

In the next step we consider game G2. In this game, we change the encryption
from Encsi(ppsi,msksii ,x

0,j
i − x0,1

i + ui + x1,1
i) to Encsi(ppsi,msksii ,x

1,j
i − x1,1

i +

ui + x1,1
i) for all slots i and all queries j.

To prove that G1 is indistinguishable from G2 we need to apply a hybrid
argument over the n slots, using the security of the single input FE scheme.

Using the definition of the games in Fig. 11, we can see that

|WinG1

A (λ, n)−WinG2

A (λ, n)| =
n∑
k=1

|Win
G1.k−1

A (λ, n)−WinG1.k

A (λ, n)| ,

where G1 corresponds to game G1.0 and whereas G2 is identical to game G1.n.
Now, we can bound the difference between each consecutive pair of games

for every k:

Lemma 5.6. For every k ∈ [n], there exists a PPT adversary Bk against the
any-IND security of the single-input scheme FE such that

|Win
G1.k−1

A (λ, n)−WinG1.k

A (λ, n)| ≤ Advany-IND
FE,Bk (λ, n) .

Proof. G1.k replaces the encryption of x0,j
i − x0,1

i + x1,1
i with encryptions of

x1,j
i −x1,1

i +x1,1
i in all slots, for i ≤ k. As already described in the preliminaries,

it must hold that 〈x0,j
i − x0,1

i ,yi〉 = 〈x1,j
i − x1,1

i ,yi〉 for all queries. Hence
〈x0,j
i −x

0,1
i +x1,1

i ,yi〉 = 〈x1,j
i −x

1,1
i +x1,1

i ,yi〉, and since ‖x0,j
i − x0,1

i + x1,1
i ‖∞ <

3X and ‖x1,j
i − x1,1

i + x1,1
i ‖∞ < 3X, using the linear encryption property, we

can reduce the difference in the winning probability of an adversary A in games
G1.k−1 and G1.k to the any-IND security of the single-input scheme FE.

More precisely, we build an adversary Bk that simulates G1.k−1+β to A when
interacting with the underlying any-INDFE

β experiment. In the beginning of the
reduction, Bk receives the public parameters from the experiment. The received
key from the challenge is set to be mpksik , corresponding to the k-th encryption
instance. In the next step, Bk randomly chooses ui ∈ ZmL for all i ∈ [n] and runs
the KeyGen procedure to get msksii for all i 6= k.

Whenever A asks a query QKeyD′(y), Bk computes dky =
∑
i∈[n]〈ui,yi〉 on

its own and generates ski,y ← KeyGensi(ppsi,msksii ,yi) for all i 6= k. To get the
functional key skk,y, Bk queries its own key derivation oracle on yi and outputs
({ski,y}i∈[n], dky) to A.

For the encryption queries QEnc(i,x0,j
i ,x1,j

i), Bk proceeds in the following
way:

– If i < k it computes Encsi(ppsi,msksii ,ui + x1,j
i).

– If i > k it computes Encsi(ppsi,msksii ,x
0,j
i − x0,1

i + ui + x1,1
i).

– If i = k, Bk queries the encryption oracle on input (x0,j
k −x0,1

k +x1,1
k ,x1,j

k −
x1,1
k + x1,1

k) to get back the ciphertext ctj∗ := Encsi(ppsi,msksik ,x
β,j
k − xβ,1k +

Decentralizing Inner-Product Functional Encryption 29

x1,1
k) from the any-INDFE

β experiment.9 Then, Bk computes the ciphertext
ctjk := Add(ctj∗,uk) and forwards it to A.

As in the security proof of the MIFE scheme in [ACF+18], we remark that by
the two-step property Definition 5.2, ctjk is identically distributed to Encsi

(
ppsi,

msksik ,x
j,β
k − x1,β

k + x1,1
k + uk mod L

)
, which is itself equal to Encsi

(
ppsi,msksik ,

Encot(xj,βk − x1,β
k + x1,1

k)
)
.

In the case that the adversaryA asks a corruption query QCor′(k) for position
k at any time, the adversary Bk directly outputs a random value α ← {0, 1}.
This is due to the fact that, if position k is corrupted, then the games G1.k−1
and G1.k are identical given that x1,0

k = x1,1
k . This results in an advantage equal

to 0 and Lemma 5.6 trivially holds in this case.
In the case that the adversary A asks a corruption query QCor′(i) for i 6= k,

Bk simply returns (msksii ,ui) to A.
This covers the simulation of the game G1.k−1+β . Finally, Bk outputs the

same bit β′ returned by A:

|Win
G1.k−1

A (λ, n)−WinG1.k

A (λ, n)| ≤ Advany-IND
FE,Bk (λ, n).

ut

The proof of theorem follows by combining the statements in Lemma 5.5 and
Lemma 5.6 and noticing that the adversary B′ in the theorem statement can be
obtained by picking i ∈ [n] and running Bi. The standard details are omitted
here. ut

Acknowledgments. This work was supported in part by the European Union’s
Horizon 2020 Research and Innovation Programme under grant agreement
780108 (FENTEC), by the ERC Project aSCEND (H2020 639554), by the French
Programme d’Investissement d’Avenir under national project RISQ P141580,
and by the French FUI project ANBLIC.

References

ABDP15. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional
encryption schemes for inner products. In PKC 2015, LNCS 9020, pages
733–751. Springer, Heidelberg, March / April 2015.

ACF+18. M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input
functional encryption for inner products: Function-hiding realizations and
constructions without pairings. In CRYPTO 2018, Part I, LNCS 10991,
pages 597–627. Springer, Heidelberg, August 2018.

9 As in [ACF+18], note that these vectors have norm less than 3X, and as such,
are a valid input to the encryption oracle. Furthermore, these queries are allowed,
since as explained at the beginning of the proof: it holds that 〈x0,j

i − x0,1
i ,yi〉 =

〈x1,j
i − x1,1

i ,yi〉.

30 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

G0(1
λ,A), G1(1

λ,A) , G2(1
λ,A) :

pp← Setup(1λ, 1n)

{ski}i∈[n] ← KeyGen(pp)

α← AQEnc′(·,·,·),QKeyD′(·),QCor′(·)(pp)

Output: α

QEnc′(i,x0,x1)

Return Enc(pp, ski,x
0,j
i − x0,1

i + x0,1
i)

Return Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i)

Return Enc(pp, ski,x
1,j
i − x1,1

i + x1,1
i)

QKeyD′(y)

dky =
∑
i∈[n]

〈ui,yi〉,

For i ∈ [n],

ski,y ← KeyDersi(pp,msksii ,yi)

Return ({ski,y}i∈[n], dky)

G1.k(1
λ,A) :

pp← Setup(1λ, 1n)

{ski}i∈[n] ← KeyGen(pp)

α← AQEnc′(·,·,·),QKeyD′(·),QCor′(·)(pp)

Output: α

QEnc′(i,x0,x1)

If i ≤ k return

Enc(pp, ski,x
1,j
i − x1,1

i + x1,1
i)

If i > k return

Enc(pp, ski,x
0,j
i − x0,1

i + x1,1
i)

QKeyD′(y)

dky =
∑
i∈[n]

〈ui,yi〉,

For i ∈ [n],

ski,y ← KeyDersi(pp,msksii ,yi)

Return ({ski,y}i∈[n], dky)

Fig. 11. A more detailed description of how the games work.

AGRW17. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product
functional encryption from pairings. In EUROCRYPT 2017, Part I, LNCS
10210, pages 601–626. Springer, Heidelberg, April / May 2017.

AJ15. P. Ananth and A. Jain. Indistinguishability obfuscation from compact
functional encryption. In CRYPTO 2015, Part I, LNCS 9215, pages 308–
326. Springer, Heidelberg, August 2015.

ALS16. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for
inner products, from standard assumptions. In CRYPTO 2016, Part III,
LNCS 9816, pages 333–362. Springer, Heidelberg, August 2016.

BCFG17. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional en-
cryption for quadratic functions with applications to predicate encryption.
In CRYPTO 2017, Part I, LNCS 10401, pages 67–98. Springer, Heidelberg,
August 2017.

BDJR97. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of symmetric encryption. In 38th FOCS, pages 394–403. IEEE
Computer Society Press, October 1997.

BGJS15. S. Badrinarayanan, D. Gupta, A. Jain, and A. Sahai. Multi-input func-
tional encryption for unbounded arity functions. In ASIACRYPT 2015,
Part I, LNCS 9452, pages 27–51. Springer, Heidelberg, November / De-
cember 2015.

Decentralizing Inner-Product Functional Encryption 31

BJK15. A. Bishop, A. Jain, and L. Kowalczyk. Function-hiding inner product
encryption. In ASIACRYPT 2015, Part I, LNCS 9452, pages 470–491.
Springer, Heidelberg, November / December 2015.

BJL16. F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-
preserving aggregation of time-series data. ACM Trans. Inf. Syst. Secur.,
18(3):10:1–10:21, 2016.

BKS18. Z. Brakerski, I. Komargodski, and G. Segev. Multi-input functional encryp-
tion in the private-key setting: Stronger security from weaker assumptions.
Journal of Cryptology, 31(2):434–520, April 2018.

BSW11. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and
challenges. In TCC 2011, LNCS 6597, pages 253–273. Springer, Heidelberg,
March 2011.

CDG+18a. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. De-
centralized multi-client functional encryption for inner product. In ASI-
ACRYPT 2018, Part II, LNCS 11273, pages 703–732. Springer, Heidelberg,
December 2018.

CDG+18b. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval.
Multi-client functional encryption with repetition for inner product. Cryp-
tology ePrint Archive, Report 2018/1021, 2018. http://eprint.iacr.
org/2018/1021.

CSS12. T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation
with fault tolerance. In FC 2012, LNCS 7397, pages 200–214. Springer,
Heidelberg, February / March 2012.

DDM16. P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner
product with full function privacy. In PKC 2016, Part I, LNCS 9614, pages
164–195. Springer, Heidelberg, March 2016.

Emu17. K. Emura. Privacy-preserving aggregation of time-series data with public
verifiability from simple assumptions. In Information Security and Pri-
vacy - 22nd Australasian Conference, ACISP, Lecture Notes in Computer
Science 10343, pages 193–213, Auckland, New Zealand, 2017. Springer,
Heidelberg, Germany.

FT18. X. Fan and Q. Tang. Making public key functional encryption function
private, distributively. In PKC 2018, Part II, LNCS 10770, pages 218–244.
Springer, Heidelberg, March 2018.

GGG+14. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sa-
hai, E. Shi, and H.-S. Zhou. Multi-input functional encryption. In EU-
ROCRYPT 2014, LNCS 8441, pages 578–602. Springer, Heidelberg, May
2014.

JL13. M. Joye and B. Libert. A scalable scheme for privacy-preserving aggrega-
tion of time-series data. In FC 2013, LNCS 7859, pages 111–125. Springer,
Heidelberg, April 2013.

LC12. Q. Li and G. Cao. Efficient and privacy-preserving data aggregation in mo-
bile sensing. In 20th IEEE International Conference on Network Protocols,
ICNP, pages 1–10, Austin, TX, USA, 2012. IEEE Computer Society.

O’N10. A. O’Neill. Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556, 2010. http://eprint.iacr.org/2010/556.

SCR+11. E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-
preserving aggregation of time-series data. In NDSS 2011. The Internet
Society, February 2011.

http://eprint.iacr.org/2018/1021
http://eprint.iacr.org/2018/1021
http://eprint.iacr.org/2010/556

32 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

SW05. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In EU-
ROCRYPT 2005, LNCS 3494, pages 457–473. Springer, Heidelberg, May
2005.

Decentralizing Inner-Product Functional Encryption 33

A Postponed Proofs for the Compiler from MCFE to
DMCFE (Section 3)

A.1 Proof of Theorem 3.2

Before stating the formal proof of this theorem, we need some intermediate
results. For any prime L, any positive integer M , any set of vectors S ⊆ ZML , we
define Vect({y}y∈S) to be the subspace generated by the vectors y in S.

Lemma A.1. For any prime L, any positive integer M , and any vector u ∈
ZML , the games IP0(L,M,u) and IP1(L,M,u) depicted in Fig. 12 are perfectly
indistinguishable.

Proof (Lemma A.1). The proof in the “selective case” where the adversary out-
puts all its queries at the beginning of the game follows from classical linear
algebra. Since the two games are perfectly indistinguishable in this “selective
case,” we get perfect indistinguishability by a “complexity-leveraging-like” argu-
ment, similarly to what is done in the proof of Theorem 5.3. ut

Lemma A.2. For any prime L, any positive integer M , and any vector u ∈
ZML , the games IPCor0(L,M,u) and IPCor1(L,M,u) depicted in Fig. 14 are
perfectly indistinguishable.

Remark A.3. We have the following straightforward claim.

Claim. At any point in time in IPCor1(L,M,u) from Fig. 14, S is actually a
basis of the vector space V (i.e., vectors in S are linearly independent).

IP0(L,M,u)

v ← ZML
Output: AQIP(·)(L,M,u)

QIP(y)

Set dky := 〈u,y〉+ 〈v,y〉
Return dky

IP1(L,M,u)

S := ∅. At any time: V := Vect({y}y∈S)

Output: AQIP(·)(L,M,u)

QIP(y)

If y /∈ V
Add y to S

Set and return dky ← ZML

Else, find {µy′ ∈ ZL}y′∈S s.t. y =
∑
y′∈S

µy′ · y′,

Set and return dky :=
∑
y′∈S

µy′ · dky′

Fig. 12. Games for Lemma A.1

34 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Thus, a way to pick v uniformly under the constraint:

∀y ∈ S, dky = 〈u,y〉+ 〈v,y〉

is to
1. Choose a set S′ ⊆ ZML such that S′ ∩ S = ∅ and S′ ∪ S is a basis of ZML (it

is possible since S is a base of the subspace V and hence vectors in S are
linearly independent).

2. Choose random values for dky ∈ ZL for y ∈ S′.
3. Solve the linear system with indeterminate v:

∀y ∈ S ∪ S′, dky = 〈u,y〉+ 〈v,y〉 .

Since S ∪ S′ is a basis of ZML , this system has a unique solution.

Proof (Lemma A.2). Let ei be the i-th vector in the canonical basis of ZML . We
introduce two additional games IPCor0.1(L,M,u) and IPCor0.9(L,M,u) defined
in Fig. 13, where QCor is essentially implemented using calls to the QIP oracle.

The result follows from the three claims below.

Claim. IPCor0(L,M,u) and IPCor0.1(L,M,u) are perfectly indistinguishable.

Proof. This follows from the fact that since dkei = 〈u, ei〉+ 〈v, ei〉 = ui+ vi, we
have w = u+ v. ut
Claim. IPCor0.1(L,M,u) and IPCor0.9(L,M,u) are perfectly indistinguishable.

Proof. We can indeed perfectly simulate the QIP oracle of IPCor0.1(L,M,u)
and IPCor0.9(L,M,u) respectively from the QIP′ oracle of IP0(L,M,u) and
IP1(L,M,u) respectively as follows: QIP(y)
– Return ⊥ if called after QCor.
– Set and return dky := 〈u,y〉+ QIP′(y).

The fact that when QIP′ is from IP0(L,M,u), the result perfectly simulates
QIP from IPCor0.1(L,M,u) is straightforward. The fact that when QIP′ is from
IP1(L,M,u), the result perfectly simulates QIP from IPCor0.9(L,M,u) comes
from the fact that if for all y′ ∈ S: dky′ = 〈u,y′〉+QIP′(y′) and if y =

∑
y′∈S µy′ ·

y′ then: ∑
y′∈S

µy′ · dky′ = 〈u,y〉+
∑
y′∈S

µy′ · QIP′(y′) .

We conclude the proof using Lemma A.1. ut
Claim. IPCor0.9(L,M,u) and IPCor1(L,M,u) are perfectly indistinguishable.

Proof. The proof is essentially a combination of Remark A.3 and the first claim.
ut

This concludes the proof of Lemma A.2.
ut

Proof (Theorem 3.2). We focus on the adaptive case (xx = adt). The static
case (xx = sta) is simpler. We can deal with any yy ∈ {one, pos, any}, as we
are anyway forwarding the encryption queries directly to the MCFE encryption
oracle.

Decentralizing Inner-Product Functional Encryption 35

IPCor0.1(L,M,u)

v ← ZML
Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ if called more than once.
For i ∈ [M], dkei ← QIP(ei)

w := (dke1 , . . . , dkeM) ∈ ZML
Return w − u

QIP(y)

Return ⊥ if called after QCor.
Set dky := 〈u,y〉+ 〈v,y〉
Return dky

IPCor0.9(L,M,u)

S := ∅. At any time: V := Vect({y}y∈S)

Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ if called more than once.
For i ∈ [M], dkei ← QIP(ei)

w := (dke1 , . . . , dkeM) ∈ ZML
Return w − u

QIP(y)

Return ⊥ if called after QCor.
If y /∈ V

Add y to S

Set and return dky ← ZML
Else

Find {µy′ ∈ ZL}y′∈S
s.t. y =

∑
y′∈S

µy′ · y′

Set and return dky :=
∑
y′∈S

µy′ · dky′

Fig. 13. Games for the proof of Lemma A.2

Case κ = 1. We start by proving the case κ = 1. This allows us to omit the
superscript k. We define M = mn.

We assume without loss of generality that the oracle QCor is only called once
for each i (as its output is deterministic).

Let G0 and G3 correspond to the experiments xx-yy-INDDMCFE
β for β = 0 and

β = 1, respectively. We prove the security by introducing two hybrid games G1

and G2 (see Fig. 15), for which the only difference with G0 and G3 respectively
is in the definition of the key derivation oracle and corruption oracle.

We abuse notation as the set S and the corresponding subspace V , as well
as the set of corrupted parties CS potentially change at each oracle query QCor
and QKeyD. But we still write them as S, V , and CS.

The proof follows from Lemmas A.4 to A.6 below.

Lemma A.4. Games G0 and G1 are perfectly indistinguishable, i.e., for any
adversary A, WinG0

A (λ, n) = WinG1

A (λ, n).

Proof. Let us suppose that we know in advance a non-corrupted party Pi∗ , i.e.,
i∗ ∈ [n] \ CS. We then remark that both in G0 and G1, we could compute dki∗,f

36 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

IPCor0(L,M,u)

v ← ZML
Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ if called before
Return v

QIP(y)

Return ⊥ if called after QCor

Set dky := 〈u,y〉+ 〈v,y〉
Return dky

IPCor1(L,M,u)

S := ∅. At any time: V := Vect({y}y∈S)

Output: AQCor(),QIP(·)(L,M,u)

QCor()

Return ⊥ called before
Pick v uniformly under the constraint:
∀y ∈ S, dky = 〈u,y〉+ 〈v,y〉

Return v

QIP(y)

Return ⊥ if called after QCor

If y /∈ V

Add y to S. Set and return dky ← ZML
Else

Find {µy′ ∈ ZL}y′∈S s.t. y =
∑
y′∈S

µy′ · y′,

Set and return dky :=
∑
y′∈S

µy′ · dky′

Fig. 14. Games for Lemma A.2

in QKeyD(f) as:
dki∗,f = dkf −

∑
i6=i∗

dki,f ,

where dkf = 〈u,yf 〉.
For any i ∈ [n], we define u′i ∈ ZML to be the vector corresponding to the

concatenation of 0 ∈ ZmL , . . . , 0 ∈ ZmL , ui, 0 ∈ ZmL , . . . , 0 ∈ ZmL . We have:

〈ui,yi,f 〉 = 〈u′i,yf 〉 .

We can perfectly simulate the oracles QCor and QKeyD of Games G0 and G1

respectively from the QCori and QIPi oracles of n−1 instances (for i ∈ [n]\{i∗})
of IPCor0(L,M,u) and IPCor1(L,M,u) respectively with u = u′i, as follows:
QIP(y)
– QCor(i) generate vi ← QCori().
– QKeyD(f) generate dki,f ← QIPi(yf) for i ∈ [n] \ {i∗} add dki∗,f = dkf −∑

i 6=i∗ dki,f .

We conclude the proof by applying Lemma A.2. ut

Decentralizing Inner-Product Functional Encryption 37

G0,G3 :

QCor(i)

Return sk′i := (i, si,ui,vi)

QKeyD(f)

For any i ∈ [n],
dki,f := 〈ui,yi,f 〉+ 〈vi,yf 〉
sk′i,f := (si,f , dki,f)

Return {sk′i,f}i∈[n]

G1,G2 :

S := ∅. Vectors vi are not initialized.
At any point in time: V = Vect({yg}g∈S)

and CS is the set of corrupted parties.

QCor(i)

Pick vi uniformly under the constraint
∀g ∈ S, dki,g = 〈ui,yi,g〉+ 〈vi,yg〉

Return sk′i := (i, si,ui,vi)

QKeyD(f)

dkf := 〈u,yf 〉
For any i ∈ CS, dki,f := 〈ui,yi,f 〉+ 〈vi,yf 〉
If yf /∈ V ,

Pick {dki,f}i/∈CS uniformly under

the constraint
∑
i/∈[n]

dki,f = dkf

Add yf to the set S
If yf ∈ V

Find {µg ∈ ZL}g∈S s.t. yf =
∑
g∈S

µg · yg

Set dki,f :=
∑
g∈S

µg · dki,g

Return {sk′i,f := (si,f , dki,f)}i∈[n]

Fig. 15. Key derivation and corruption oracles in the games for the proof of Theo-
rem 3.2

Lemma A.5. For any PPT adversary A, there exists a PPT adversary B such
that:

|WinG1

A (λ, n)−WinG2

A (λ, n)| ≤ Advxx-yy-IND
MCFE,B (λ, n) .

Proof. We remark that in Games G1 and G2, the values ui are not used directly
by QKeyD(f) as long as slot i is not corrupted. Only the value dkf is used,
which is provided by the key derivation oracle for MCFE (together with si,f), as
skf = ({si,f}i∈[n], dkf). When the slot i is corrupted, we need to learn ui, but
the corruption oracle of MCFE will give us this value, as ui is part of ski. Thus,
the reduction to xx-yy-IND security of MCFE is straightforward. ut

Lemma A.6. G2 and G3 are perfectly indistinguishable, i.e., for any adversary
A, WinG2

A (λ, n) = WinG3

A (λ, n).

38 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Proof. The proof is similar to the one of Lemma A.4. ut

This concludes the proof of the case κ = 1.

General case (κ ≥ 1). The proof is similar, as we can see such a case as κ parallel
and independent executions of the case κ = 1, if we ignore the values which are
independent of k, such as si,f . ut

A.2 Proof of Theorem 3.4

Before proving Theorem 3.4, let us state and prove the following extension of
Lemma A.2:

Corollary A.7. Let IPCor′b(L,M,u) be defined as IPCorb(L,M,u) in Fig. 14
except that QIP(y) aborts if the following condition is satisfied:

y is not in the subspace V = {y′}y′∈S generated by the previous queries
but when performing the Gaussian elimination over the matrix with rows
{y′ᵀ}y′∈S ∪ {yᵀ}, some rows do not have an invertible pivot (a.k.a.,
leading non-zero coefficient).

(We note that this condition is never satisfied when L is prime.) Then for integer
L ≥ 2, any positive integer M , and any vector u ∈ ZML , the games IPCor′0(L,M,
u) and IPCor′1(L,M,u) are perfectly indistinguishable.

Proof. The main difference is that we are now working with modules over a ring
ZL, rather than with vector spaces over a field.

The proof is essentially the same as before, using a similarly modified
Lemma A.1 (using similarly modified games IP′b(L,M,u) where QIP aborts as
in IPCor′b(L,M,u)). We remark that that the condition of non-abort implies
that, at any point in time, the pivots of Gaussian elimination over the set S of
vectors y queried to QIP (and not leading to an abort) are all invertible element
of ZL. Thus, S is not only always a basis of V = Vect(S), but S can also be
extended into a basis S ∪ S′ of ZML . Furthermore, S′ can be chosen as a subset
of the canonical basis {ei}i∈[M] of ZML . This is essentially the only property we
use in the proof that is specific to vector spaces over fields, rather than modules
over rings ZL.

We point out that S might not even be a basis of V = Vect(S) without
the abort: if 2 divides M and the first query to QIP is y1 = (2, . . . , 2), and the
second query is y2 = (1, . . . , 1), then y2 /∈ Vect(y1). Thus after the second query,
S = {y1,y2}, which is not a basis as y1 and y2 are linearly dependent. ut

Proof (Theorem 3.4). The proof is similar to the one of Theorem 3.2. We directly
consider the general case κ ≥ 1. The main difference is the introduction of two
games G0.5 and G2.5 which are similar to G0 and G3 respectively, except that
QKeyD aborts when:

Decentralizing Inner-Product Functional Encryption 39

ykf is linearly dependent of the vectors ykf ′ for previous queries QKeyD(f
′)

but when performing the Gaussian elimination over the matrix with
rows ykᵀf ′ corresponding to the previous queries QKeyD(f ′) and to f ′ =
f , some rows do not have an invertible pivot (a.k.a., leading non-zero
coefficient).

Using a similar proof as before, just replacing Lemma A.2 by Corollary A.7,
we get the following claim.

Claim. For any PPT adversary A, there exists a PPT adversary B such that:

|WinG0.5

A −WinG2.5

A | ≤ Advxx-yy-IND
MCFE,B (λ, n) .

Finally, we have the following claims.

Claim. For any PPT adversary A, there exists a PPT adversary B′ such that:

|WinG0

A −WinG0.5

A | ≤ AdvFactorGenL,B′(λ) .

Proof. The only difference between is when QKeyD(f) aborts. Let us consider
the first aborting query. Gaussian elimination as in the condition above yields a
non-invertible non-zero element µ ∈ ZM . The greatest common divisor (gcd) of
µ and M yields a non-trivial factor of M . ut

Claim. For any PPT adversary A, there exists a PPT adversary B′′ such that:

|WinG2.5

A −WinG3

A | ≤ AdvFactorGenL,B′′(λ) .

Proof. The proof is similar to the one of the previous claim. ut

The theorem follows by combining B′ and B′′ into a single adversary flipping
a coin b at the beginning to decide whether it will behave as B′ or B′′. ut

B Postponed Proof for the Compiler from pos-IND to
any-IND for Labeled DMCFE Schemes (Section 4.2)

Proof (Theorem 4.4). For the sake of simplicity, we suppose that xx = adt. The
proof for xx = sta is simpler.

Let G0 and G3 correspond to the experiments xx-yy-INDDMCFE
β for β = 0 and

β = 1, respectively (see Fig. 16 for the definition of the random oracles H1 and
H2). We denote by νγ the output length of the oracle Hγ . We prove the security
by introducing two hybrid games G1 and G2 (see Figs. 16 and 17).

Essentially in G1 and G2, the keys ki,j,` and the ciphertexts cti are generated
uniformly at random on the fly. The random oracles are programmed to explain
these values, when the adversary corrupts a new slot i or calls the QEnc oracle
for a label ` in such a way that for all the i, Qi,` > 0 after this call. In the latter
case, the programming of the random oracles is done by AdaptEnc.

We have the following claims which prove the result. The first claim is a
straightforward reduction. The last two claims come from bounding the proba-
bility of the event Abort, which comes from collisions.

40 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

G0,G1,G2,G3 :

HT1 and HT2 are two empty arrays
Hγ(z) for γ ∈ {0, 1}
If HT[z] does not exist, HT[z]← {0, 1}νγ

Return HT[z]

G1+β for β ∈ {0, 1} :

pp← Setup(1λ, 1n)

{ski}i∈[n] ← KeyGen(pp)

α← AQCor(·),QEnc(·,·,·,·),QKeyD(·)(pp)

Output: α if Condition (*) is satisfied,
or a uniform bit otherwise

QCor(i)

If already called for the same i, return same answer
Add i to CS
For all j /∈ (CS \ {i}),

Define ki,j ← {0, 1}λ and kj,i ← {0, 1}λ

Abort(1) if HT1 contains a key of the form
ki,j‖i‖j‖? or kj,i‖j‖i‖? for j /∈ (CS \ {i})

For all previous queries QEnc(i, ?, ?, `) for some `,
If QEnc(j, ?, ?, `) has not been queried for all j /∈ CS

Let (ct′i, ri, {kj,i,`}j∈[n]) be the output of the QEnc(i, ?, ?, `) query

For all j /∈ CS where QEnc(j, ?, ?, `) has not been called,

Define ki,j,` ← {0, 1}λ

HT1[ki,j‖i‖j‖`] := ki,j,`

Ki,` := ⊕m∈[n]ki,m,`
Abort(2) if HT2 contains a key of the form Ki,`‖ri
cti ← Enc(i, xβi)

Set HT2[Ki,`‖ri] := ct′i ⊕ cti

For all j, ` if ki,j,` is defined, set HT1[ki,j‖i‖j‖`] := ki,j,`

For all j, ` if kj,i,` is defined, set HT1[kj,i‖j‖i‖`] := kj,i,`

For all labels ` such that QEnc(j, ?, ?, `) has been queried for all j /∈ CS,
Run AdaptEnc(`)

Return sk′i = (ski, {ki,j , kj,i}j∈[n])

Fig. 16. Corruption queries QCor of the games for the proof of Theorem 4.4

Decentralizing Inner-Product Functional Encryption 41

G1+β for β ∈ {0, 1} :

QEnc(i, x0i , x
1
i , `)

ri ← {0, 1}λ

ct′i ← {0, 1}|ct
′
i|

If i ∈ CS or if QEnc(j, ?, ?, `) has already been called for all j /∈ CS
If i ∈ CS for all m ∈ [n],

ki,m,` := H1[ki,m‖i‖m‖`]
Ki,` := ⊕m∈[n]ki,m,`
Abort(3) if HT2 contains a key of the form Ki,`‖ri
cti ← Enc(i, xβi)

Set HT2[Ki,`‖ri] := ct′i ⊕ cti

Return (ct′i, ri, {kj,i,`}j∈[n])

For all j /∈ CS, if kj,i,` not defined

Define kj,i,` ← {0, 1}λ

For all j ∈ CS,
kj,i,` := H1(kj,m‖j‖m‖`)

If after this call to QEnc, for all j /∈ CS, QEnc(j, ?, ?, `) has been called
Run AdaptEnc(`)

Return (ct′i, ri, {kj,i,`}j∈[n])

AdaptEnc(`)

Do nothing if it was already called on the same label `
Remark that when AdaptEnc(`) is called, for all j /∈ CS, for all i ∈ [n],

ki,j,` has been defined by a call QEnc(j, ?, ?, `)

For all j ∈ CS, for all i ∈ [n],
ki,j has been defined by QCor(j), and we set ki,j,` := H1(ki,j‖i‖j‖`)

For all i /∈ CS, Ki,` := ⊕m∈[n]ki,m,`
Abort(4) if HT2 contains a key of the form Ki,`‖? for i /∈ CS

For all previous queries QEnc(i, x0i , x
1
i , `) for some i /∈ CS, x0i , x1i , `,

Let (ct′i, ri, {kj,i,`}j∈[n]) be the output of the QEnc query

cti ← Enc(i, xβi)

Set HT2[Ki,`‖ri] := ct′i ⊕ cti

Fig. 17. Encryption queries QEnc of the games for the proof of Theorem 4.4

42 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

Claim. For any PPT adversary A, there exists a PPT adversary B such that:

|WinG1

A (λ, n)−WinG2

A (λ, n)| ≤ Advxx-yy-IND
DMCFE,B (λ, n) .

Claim.

|WinG0

A (λ, n)−WinG1

A (λ, n)| ≤
2 · qH1 + (2n+ 1) · (qH2 · qQEnc + q2QEnc)

2λ
.

Proof. Without loss of generality, we assume that the adversary only makes
queries such that Condition (*) (defined in Section 2 on page 10) is satisfied.

Let us consider the q-th query QCor(i) and bound the probability of the
event Abort(1). Let j /∈ CS \ {i}, we start by bounding the probability that
HT1 contains a key of the form ki,j‖i‖j‖? or kj,i‖j‖i‖?. Since ki,j and kj,i are
drawn uniformly random and independently from {0, 1}λ, for any key of HT1

of the form ?′‖i‖j‖? or ?′‖j‖i‖?, the probability that ?′ = ki,j or ?′ = kj,i is
exactly 1/2λ. Thus, by union bound, the probability that HT1 contains a key of
the form ki,j‖i‖j‖? or kj,i‖j‖i‖? is at most:

qH1,i,j + qH1,j,i

2λ
,

where qH1,i,j is the number of queries to H1 of the form ?′‖i‖j‖? and qH1,j,i the
number of queries of the form ?′‖j‖i‖?, respectively. (Even if keys of HT1 are also
added by the challenger and not only when the adversary queries H1, the keys
added by the challenger can never create an abort, so we are ignoring them.) By
union bound over j /∈ CS \ {i}, we get that the probability that the q-th query
aborts is at most:∑

j /∈CS\{i}

qH1,i,j + qH1,j,i

2λ
≤ qH1,i + qH1,i

2λ
=

2 · qH1,i

2λ
,

where qH1,i,j is the number of queries to H1 of the form ?′‖i‖ ?′′ ‖? and qH1,j,i

the number of queries of the form ?′‖ ?′′ ‖i‖?, respectively.
By remarking that only the first query QCor(i) for a given i might abort (if

the query happens for an already queried i, the same result gets returned) and
by union bound, the probability for the execution of Abort(1) is at most:∑

i∈[n]

2 · qH1,i

2λ
=

2 · qH1

2λ
.

To determine the probability for Abort(2)-(4), we introduce q′H2
= qH2

+
qQEnc, which is an upper bound on the number of (table) keys set in the table
HT2, either generated by the adversary directly querying the oracle H2, or added
by QCor, QEnc, and AdaptEnc. The number of the second kind of keys is bounded
by the number of queries to QEnc, because keys added by QCor and AdaptEnc
correspond to queries QEnc(i, ?, ?, ?) where i was not corrupted before and hence
no key was added to HT1 at the time QEnc was called (furthermore if AdaptEnc(`)

Decentralizing Inner-Product Functional Encryption 43

is called on a label `, no more keys related to QEnc(?, ?, ?, `) can be added to
HT2 by QEnc). Recall that we did not need to introduce such quantity for H1

because there was no risk of collisions between keys added by QCor and QEnc
and keys that might produce Abort(1).

In the next step, we consider the probability of Abort(2) in the q-th query
of QCor(i). Let i /∈ CS, we start by bounding the probability that HT2 contains
a key of the form Ki,`‖ri for a fixed ri. Since Ki,` is constructed by taking the
XOR of the sampled keys ki,m,`, because we sample at least one new random
key (namely, ki,i,`) in the corruption query, Ki,` is also a random value. This
results in the probability of 1/2λ for any key of HT2 to be of the form ?‖ri
with ? = Ki,`. Thus, by union bound, the probability that HT2 contains a key
of the form Ki,`‖ri is at most q′H2

/2λ. By remarking again that only the first
query QCor(i) for a given i might abort and by union bound, the probability of
Abort(2) is at most:

n · qQEnc · q′H2

2λ
.

We consider the probability of the first abort in the encryption procedure
QEnc, Abort(3). We start by bounding the probability that HT2 contains a
key of the form Ki,`‖ri. Because we sample a value ri uniformly random and
independently in every encryption query QEnc, we get a probability of 1/2λ for
any key of HT2 to be of the form Ki,`‖? with ? = ri. Thus, by union bound, the
probability that HT2 contains a key of the form Ki,`‖ri is at most q′H2

/2λ. By
taking the union bound over the encryption queries for all the different labels,
we get that the probability of the event Abort(3) is at most:

q′H2
· qQEnc

2λ
.

In the last step, we consider the q-th query of the AdaptEnc procedure and de-
termine the abort probability for Abort(4). Without loss of generality, we sup-
pose that the q-th query of AdaptEnc is for a label `, such that AdaptEnc(`) was
never called before (as otherwise, AdaptEnc does nothing and in particular does
not abort). Let us also consider a slot i∗ /∈ CS. We start by bounding the prob-
ability that HT2 contains a key of the form Ki∗,`, where Ki∗,` = ⊕m∈[n]ki∗,m,`.
We will show that Ki∗,` is uniformly random and independent of all previous
keys in HT2, by showing that at least one share ki∗,m,` is uniformly random and
independent of everything else.

We consider two cases:

Case 1: AdaptEnc(`) was called by QEnc(i, ?, ?, `). In this case, necessarily i /∈
CS (otherwise AdaptEnc would not have been called) and ki∗,i,` is freshly
sampled during the execution of QEnc(i, ?, ?, `). This implies that Ki∗,` is
uniformly random and independent of all previous keys in HT2.

Case 2: AdaptEnc(`) was called by QCor(i). In this case, QEnc(i, ?, ?, `) was
never called before (otherwise AdaptEnc(`) would have been called before).
This implies that no key shares kj,i,` for j /∈ CS under label ` have been
defined so far, which also means that HT1[kj,i‖j‖i‖`] does not exist for all

44 M. Abdalla, F. Benhamouda, M. Kohlweiss, H. Waldner

j /∈ CS (as otherwise Abort(1) in the QCor(i) query would have been trig-
gered). Thus, in the AdaptEnc(`) procedure, kj,i,` gets set for all j /∈ CS, as
kj,i′,` := H1(kj,i′‖j‖i′‖`), and hence is freshly sampled uniformly at random.
In particular, ki∗,i,` is uniformly random and independent of all previous
keys in HT2, and so is Ki∗,`.

Hence in both case, the probability that HT2 contains a key of the form
Ki∗,`‖? is at most 1/2λ. By union bound over i∗ ∈ CS ⊆ [n], in each call
AdaptEnc(`) for a label on which it was never called, Abort(4) happens with
probability at most n · q′H2

/2λ. By union bound over all the labels queried by
the adversary, since there are at most qQEnc such labels, the probability that
Abort(4) happens is at most:

n · qQEnc · q′H2

2λ
.

This concludes the proof of the claim. ut

This concludes the proof of Theorem 4.4. ut

	Introduction
	Contributions
	Technical Overview
	Additional Related Work
	Concurrent Work
	Organization

	Definitions and Security Models
	Multi-Client Functional Encryption
	Decentralized Multi-Client Functional Encryption
	Inner-Product Functionality
	Symmetric Encryption

	From MCFE to DMCFE
	Special Key Derivation Property
	Instantiations
	Compiler for Prime Moduli
	Extension to Hard-to-Factor Moduli

	From xx-pos-IND to xx-any-IND Security
	Compiler for DMCFE Schemes without Labels
	Compiler for Labeled DMCFE Schemes

	Security of the MCFE from Abdalla et al. against Adaptive Corruptions
	Inner-Product FE with Two-Step Decryption and Linear Encryption
	One-Time Inner-Product MCFE over Z_L
	Inner-Product MCFE over Z

	Postponed Proofs for the Compiler from MCFE to DMCFE (Section 3)
	Proof of Theorem 3.2
	Proof of Theorem 3.4

	Postponed Proof for the Compiler from pos-IND to any-IND for Labeled DMCFE Schemes (Section 4.2)

