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Structural Properties of Feasible Bookings
in the European Entry-Exit Gas Market System

Lars Schewe4, Martin Schmidt∗,3, Johannes Thürauf1,2

Abstract. In this work, we analyze the structural properties of the set of
feasible bookings in the European entry-exit gas market system. We present
formal definitions of feasible bookings and then analyze properties that are
important if one wants to optimize over them. Thus, we study whether the sets
of feasible nominations and bookings are bounded, convex, connected, conic,
and star-shaped. The results depend on the specific model of gas flow in a
network. Here, we discuss a simple linear flow model with arc capacities as
well as nonlinear and mixed-integer nonlinear models of passive and active
networks, respectively. It turns out that the set of feasible bookings has some
unintuitive properties. For instance, we show that the set is nonconvex even
though only a simple linear flow model is used.

1. Introduction

Mathematical optimization of gas transport networks has been a highly active
field of research during the last decades. For an overview of the field see, e.g., the
recent book [35] and the recent survey article [44] as well as the references therein.
Most of the research in this field so far dealt with the case of a single pattern of
supplies and withdrawals (which we will call a nomination throughout the paper)
that need to be transported through a given network. In this setting, two major
tasks for mathematical optimization arise:

Feasibility: Given a nomination, check whether it is feasible w.r.t. physical
and technical laws and rules.

Optimization: Given a feasible nomination, determine the cheapest way of
transporting the nomination.

Both questions have been addressed very comprehensively in the literature of the
last 50 years; see, e.g., [2–5, 10, 11, 15, 22, 23, 29–31, 37–39, 41, 43, 47, 54]
to name only a few publications that stem from different fields of mathematical
optimization like mixed-integer linear optimization, nonlinear optimization, robust
optimization, optimization with complementarity constraints, or optimization with
partial differential equations.

However, since the gas market liberalization that started in the 1990s, also other
mathematical questions came up. In Europe, the gas market liberalization lead to
the entry-exit system; see, e.g., [13, 17, 18]. At the core of this system, the interplay
of so-called bookings and nominations has been established. A booking is a mid-
to long-term contract between a gas trader and a gas transport company in which
a capacity right is granted to the trader. This means, that for a booking b ≥ 0,
the trader has the right to nominate (for the day ahead) every amount below, i.e.,
every amount ` with 0 ≤ ` ≤ b, if it is in balance with all other nominations. By
signing such a booking contract, the gas transport company guarantees that every
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balanced set of nominations that is in compliance with the corresponding bookings
can actually be transported.

In contrast to the rich literature on nominations, there is much less literature on
the mathematics of bookings. Among the first mathematical treatments of bookings
are the two PhD theses [32, 53] and the technical report [20]. Moreover, a rather
detailed discussion is given in Part III of the book [35]. From a mathematical point
of view, the feasibility of a booking can be seen as some special case of robust
feasibility in the sense of robust optimization [6]. In this context, an efficient test
for checking the feasibility of a booking in a passive tree-structured network is given
in [45] and the feasibility of bookings as well as complexity results for checking
this feasibility is studied in [36]. Other related problems like the computation of
maximum possible bookings (the so-called technical capacity) are introduced in [40].
Lastly, we also want to mention studies like they can be found in [1, 7], where
entry-exit tariffs are discussed but where the authors do not study feasibility or
optimization questions based on bookings.

Since the concept of bookings is at the interface of gas transport and trading, it
needs to be studied both from a technical and physical as well as from an economic
viewpoint. The latter is, e.g., given in [27], where a mathematical multilevel model of
the European entry-exit system is presented that also includes the trading of booking
contracts. Other modeling approaches for economic questions in gas markets have
been discussed recently in [26]. In mathematical economics, the general hardness of
multilevel or equilibrium models often requires to abstract from certain physical
details of gas flow models. This is why linear flow models are often discussed in this
area; see, e.g., [8, 9, 12, 14, 21, 42, 52] and the references therein. As a consequence,
the consideration of bookings also needs to be done on different levels of physical
and technical modeling of gas transport networks—ranging from very simple linear
models to highly sophisticated nonlinear ones [50].

The above discussion is the main motivation for this paper. We analyze structural
properties of the set of feasible nominations and bookings. As already discussed
above, the structural properties of the set of feasible nominations has already been
discussed in the literature. Thus, we focus on the set of feasible bookings. Moreover,
and in contrast to the existing literature, we do not consider the set of feasible
nominations structurally “only” for the case in passive but also in gas transport
networks that include active elements such as compressors. The analysis of the set of
feasible bookings and nominations is an important prerequisite for deciding feasibility
of bookings or for optimizing over these sets. Our contribution is the following. We
formalize the concept of bookings and study the set of feasible nominations and
bookings for three important and different classes of gas flow models:

(a) a linear flow model with arc capacities;
(b) a nonlinear flow model for passive networks, i.e., for networks without

controllable elements like compressors or valves;
(c) a nonlinear flow model for active networks, i.e., for networks with controllable

elements.
For these models, we prove or present counterexamples for the boundedness, convex-
ity, and connectivity of the set of feasible nominations and bookings and additionally
study whether it is conic or star-shaped. By this, we pave the way for further
studies like, e.g., computing the largest possible bookings, which is of practical
importance for gas transport companies. Our results show that one needs to be
very careful when considering bookings because rather unintuitive properties can
be observed—for instance that we obtain a nonconvex set of feasible bookings even
for linear flow models. This is mainly based on the definition of a feasible book-
ing b, which requires that every balanced and component-wise smaller nomination



STRUCTURAL PROPERTIES OF FEASIBLE BOOKINGS IN THE ENTRY-EXIT SYSTEM 3

0 ≤ ` ≤ b is feasible. At this point, let us note that the rather counter-intuitive
definition considered in this paper is chosen as it is discussed in the respective
legislative texts on the European entry-exit gas market system; see [17, 18]. The
motivation of the notion of bookings in particular and the European entry-exit
system in general is the decoupling of economic trading and the technical transport
through the network. Since a feasible booking guarantees the feasibility of every
balanced and component-wise smaller nomination, no further technical restrictions
for trading booking-compliant nominations exist. Thus, economic trading and the
technical transport of gas are decoupled.

We remark that all models studied in this paper describe stationary flows. Since
unexpected effects w.r.t. bookings already appear in these simplified gas transport
models, it is likely to assume that this is also the case in more detailed gas transport
models—most probably, it will even be more pronounced. The analysis of transient
flow models as well as even more complicated stationary flow models is out of scope
of this paper and part of our future research.

The remainder of the paper is structured as follows. In Section 2 we introduce
the basic definitions and discuss a preliminary example of a very basic gas flow
model in order to illustrate the concepts that we afterward analyze for more
complicated models. The Sections 3–5 then analyze the properties of the set of
feasible bookings for a linear flow model with arc capacities (Section 3), a nonlinear
flow model (Section 4), and a mixed-integer nonlinear flow model (Section 5) in
which controllable elements are modeled using binary variables. Finally, we conclude
in Section 6 and pose some questions for future research.

2. Basic Definitions

We model a gas network as a directed graph G = (V,A) with node set V and arc
set A. The set of nodes is partitioned into the set V+ of entry nodes, at which gas
is supplied, the set V− of exit nodes, where gas is withdrawn, and the set V0 of the
remaining inner nodes. We abbreviate the set V+ ∪ V− by Vb. The orientation of
the arcs is artificial and thus negative flow along an arc can occur. In real-world
gas networks, the arc set is typically partitioned into different types of arcs that
correspond to different elements of the network; e.g., pipes, compressors, etc. We
introduce these sets when we consider them for the first time. Finally, we always
assume in the following that the undirected graph underlying G is connected. We
now introduce basic definitions that we use in the following.

Definition 2.1 (Load flow). A load flow is a vector

` = (`u)u∈Vb ∈ RVb
≥0.

The set of load flow vectors is denoted by L.

A load flow thus corresponds to an actual situation at a single point in time by
specifying the amount of gas that is supplied (`u for u ∈ V+) or withdrawn (`u
for u ∈ V−). Since we only consider stationary flows, we need to impose that the
supplied amount of gas equals the withdrawn amount, which leads to the definition
of a nomination.

Definition 2.2 (Nomination). A nomination is a balanced load flow `, i.e., σ>` = 0

with σ ∈ {±1}Vb , σu = 1 for all u ∈ V+, σu = −1 for all u ∈ V−. The set of
nominations is called N , i.e.,

N := {` ∈ L : σ>` = 0} ⊆ L.
Definition 2.3 (Booking). A booking is a vector b = (bu)u∈Vb ∈ RVb

≥0. The set of
bookings is denoted by B.
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Nominations and bookings are connected by the following definition.

Definition 2.4 (Booking-compliant nomination). A nomination ` is called booking-
compliant with respect to the booking b if ` ≤ b holds, where “≤” is meant component-
wise. The set of booking-compliant (or b-compliant) nominations is given by

N(b) := {` ∈ N : ` ≤ b}.
Obviously, N(b) ⊆ N ⊆ L holds for finite b.
We now define feasible nominations and feasible bookings, where “feasible” is meant

with respect to technical, physical, and legal constraints of gas transport. To this
end, let cE(x, s; `) = 0 and cI(x, s; `) ≥ 0 be the possibly nonlinear, nonconvex, and
nonsmooth constraints that model the full problem of gas transport possibly including
models of nodes, pipes, compressors, etc. Moreover, let z := (x, s) ∈ Rnx ×Zns be
the discrete-continuous variable vector that is required to state this model.

Definition 2.5 (Feasible nomination). A nomination ` ∈ N is feasible if a vector
z := (x, s) ∈ Rnx ×Zns exists such that

cE(x, s; `) = 0, cI(x, s; `) ≥ 0 (1)

holds. The set of feasible nominations is denoted by FN .

We note that the set of feasible nominations FN depends on the chosen model
of gas transport. The only constraint that we need in all formulations is mass
conservation at each node of the network that is modeled by Kirchhoff’s first law,
i.e., ∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = qu for all u ∈ V, (2)

where qu ≥ 0 for entries, qu ≤ 0 for exits, and qu = 0 for inner nodes.
The dependency of the feasible set defined by (1) on the nomination is given by

fixing the entry and exit flows according to the nomination `, i.e.,

qu = `u for all u ∈ V+, qu = −`u for all u ∈ V−.
These constraints are part of cE(x, s; `) = 0 in (1).

We note that to check whether a given nomination is feasible may lead to a
mixed-integer nonlinear and nonconvex problem depending on the constraints cE
and cI . For more information on this problem, see [35] or [43] and the references
therein.

Definition 2.6 (Feasible booking). We say that a booking b is feasible if all booking-
compliant nominations ` ∈ N(b) are feasible. The set of feasible bookings is denoted
by FB .

The definition of a feasible booking is very strict and may appear counter-intuitive
at a first glance. However, this definition directly follows from the legislative texts
about the European entry-exit gas market system, which aims at decoupling the
economic trading and the technical transport of the gas.

For later reference, we also state definitions of cones and star-shaped sets; see [33]
for more details.

Definition 2.7 (Cone). The set K ⊆ Rn is a cone, if λx ∈ K holds for any x ∈ K
and λ ≥ 0.

Definition 2.8 (Star-shaped set). The set K ⊆ Rn is star-shaped w.r.t. x0 ∈ K if
for every element x ∈ K and λ ∈ [0, 1] the relation

λx+ (1− λ)x0 ∈ K
holds.
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Table 1. Properties of FN and FB w.r.t. the simple gas transport model (3)

Properties Gas transport constraints (3)

Bounded FN ×
Bounded FB ×
Convex FN X
Convex FB X
Connected FN X
Connected FB X
Star-shaped FN X
Star-shaped FB X
Conic FN X
Conic FB X

From the definition of a star-shaped set K w.r.t. x0 it directly follows that for
each element x ∈ K the line segment [x0, x] is contained in K.

In the remainder of this paper, we always consider the point of view of a transmis-
sion system operator (TSO) and we thus focus on technical and physical restrictions
of the gas network. As a preliminary example let us first consider the case that
except of Kirchhoff’s first law (2) no further restrictions for gas transport exist.
Hence, for a nomination ` ∈ N the Constraints (1) are given by∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa = σu`u for all u ∈ V, (3)

i.e.,
cE(x, s; `) = cE(x; `) = (cE,u(q; `))u∈V

with
cE,u(q; `) =

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa − σu`u

and cI(x, s; `) is empty. Moreover, we set `u = σu = 0 for all inner nodes u ∈ V0 in
Constraint (3).

We now analyze the feasibility of nominations and bookings w.r.t. (3). Each
nomination ` of the set of nominations N is feasible, which can be shown by a direct
proof or by Theorem 7.1 in [34]. The feasibility of each nomination implies that
the set of feasible nominations FN is unbounded, convex, connected, conic, and
star-shaped. Furthermore, it follows that each booking is feasible and that the set
of feasible bookings FB has the same properties as the set of feasible nominations.
We summarized the results w.r.t. linear flow without arc capacities in Table 1.

3. A Capacitated Linear Flow Model

In addition to the model used in the last section, we now further assume lower
and upper flow bounds q−a ≤ q+a to be given for every arc a ∈ A. That means, we
consider a standard capacitated linear flow model. Consequently, for a nomination
` ∈ N the Constraints (1) are given by (3) and the flow bounds

q−a ≤ qa ≤ q+a for all a ∈ A, (4)

i.e.,
cI(x, s; `) = cI(x; `) = (cI,a(q; `))a∈A

with
cI,a(q; `) = (qa − q−a , q+a − qa)
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s1 t1 t2 s2
[−∞,∞] [0, 1] [−∞,∞]

Figure 1. The graph G of Example 3.1

and cE stays the same as in Section 2, i.e.,

cE(x, s; `) = cE(x; `) = (cE,u(q; `))u∈V

with
cE,u(q; `) =

∑
a∈δout(u)

qa −
∑

a∈δin(u)

qa − σu`u.

Note that checking the feasibility of a nomination ` ∈ N w.r.t. Conditions (1) of
this section is a standard `-transshipment problem; see Chapter 11 of the book [51].

In contrast to Section 2, we will see at the end of this section that a nomination
may be infeasible w.r.t. given flow bounds. Hence, infeasible bookings may also
exist. Additionally, for a feasible nomination there may exist a component-wise
smaller nomination which is infeasible. To make this more concrete, we consider the
following example.

Example 3.1. Let G = (V,A) be a directed graph with nodes V = {s1, s2, t1, t2}
and arcs A = {(s1, t1), (t1, t2), (t2, s2)}. The nodes s1, s2 are entry nodes and t1, t2
are exit nodes. Furthermore, we set the flow bounds of the arcs (s1, t1) and (t2, s2)
to [−∞,∞] and for the remaining arc (t1, t2) to [0, 1].

Then, one can show that the nomination

`1 := (s1, t1, t2, s2)> = (5, 5, 5, 5)>

is feasible, i.e., ` ∈ FN . But the component-wise smaller nomination

`2 := (s1, t1, t2, s2)> = (4, 0, 4, 0)>

is infeasible.

Thus, Example 3.1 leads to the following lemma.

Lemma 3.2. The feasibility of a nomination ` ∈ FN does not guarantee, in general,
the feasibility of every component-wise smaller nomination ˜̀≤ `.

Despite the previous result, the set of feasible nominations is still convex.

Lemma 3.3. The set of feasible nominations FN is convex.

Proof. Let ` and ˜̀be feasible nominations, i.e., `, ˜̀∈ FN with corresponding flows q
and q̃ that satisfy Conditions (3) and (4). Additionally, let λ be in [0, 1]. Then,
λ`+ (1− λ)˜̀∈ N is valid because λ`, (1− λ)˜̀∈ RVb

≥0 and

σ>(λ`+ (1− λ)˜̀) = λσ>`+ (1− λ)σ> ˜̀= λ0 + (1− λ)0 = 0

holds. Furthermore,

λσu`u + (1− λ)σu ˜̀
u

=

 ∑
a∈δout(u)

λqa −
∑

a∈δin(u)

λqa

+

 ∑
a∈δout(u)

(1− λ)q̃a −
∑

a∈δin(u)

(1− λ)q̃a


=

∑
a∈δout(u)

(λqa + (1− λ)q̃a)−
∑

a∈δin(u)

(λqa + (1− λ)q̃a)

holds for all u ∈ V and thus λq + (1− λ)q̃ satisfies Constraint (3). Moreover, the
relation q−a ≤ λq+ (1−λ)q̃ ≤ q+a is valid because q and q̃ satisfy the flow bounds (4).
Consequently, λ`+ (1− λ)˜̀ is a feasible nomination. �
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Lemma 3.3 implies the following corollary.

Corollary 3.4. The set of feasible nominations FN is connected and star-shaped
w.r.t. every point x0 ∈ FN .

Despite the set of feasible nominations is convex, connected, and star-shaped, it
is in general not conic.

Lemma 3.5. Let the flow bounds q−a ≤ q+a , a ∈ A, be finite and assume that a
feasible nonzero nomination ` 6= 0 ∈ FN exists. Then, the set of feasible nominations
FN is not conic.

Proof. Let ` ∈ FN be a feasible nonzero nomination. Then, the corresponding flows
satisfying Constraints (3) and (4) contain at least one nonzero arc flow. We can
assume w.l.o.g. that the considered flows are nonnegative. Thus, scaling the nonzero
nomination ` by a parameter λ > 1, increases at least one arc flow. Due to this
and the finite flow bounds, we can scale ` by λ̃ ∈ R>0 such that λ̃` is feasible and
for each ε > 0, the nomination (λ̃+ ε)` is infeasible. Hence, the set FN of feasible
nominations is not conic. �

Moreover, the set of feasible nominations is bounded if we consider finite flow
bounds.

Lemma 3.6. If the flow bounds q−a ≤ q+a are finite for all a ∈ A, then the set of
feasible nominations FN is bounded.

Proof. We assume that the set of feasible nominations is unbounded and conse-
quently, a feasible nomination ` ∈ FN with

∑
u∈V+

`u >
∑
a∈A q

+
a exists. We assume

w.l.o.g. that the corresponding arc flows are nonnegative. Hence, from Constraint (3)
it follows that at least one arc flow violates its upper flow bound because in the
considered nomination the injected flow is larger than the aggregated upper arc flow
bounds. This is a contradiction to the feasibility of `. �

After analyzing the feasibility of nominations, we now turn to the feasibility of
bookings. In contrast to nominations, a feasible booking implies the feasibility of
each component-wise smaller booking.

Lemma 3.7. Let b ∈ FB be a feasible booking. Then, each booking b̃ ≤ b is feasible.
Furthermore, the set of feasible bookings FB is star-shaped w.r.t. the zero booking.

Proof. Let b be a feasible booking and b̃ ∈ B a booking with b̃ ≤ b. Consequently,
N(b̃) = {` ∈ N : ` ≤ b̃} ⊆ N(b) holds. Thus, the feasibility of the booking b implies
the feasibility of b̃. From this it follows that the set FB of feasible bookings is
star-shaped w.r.t. the zero booking. �

Furthermore, we know that the set of feasible bookings is connected due to
Lemma 3.7.

Corollary 3.8. The set of feasible bookings FB is connected.

In analogy to the case of nominations, we can show that the set of feasible
bookings is in general not conic.

Corollary 3.9. Let the flow bounds q−a ≤ q+a , a ∈ A, be finite. Assume further that
a feasible booking b with a b-compliant nonzero nomination ` ∈ FN exists. Then,
the set of feasible booking FB is not conic.

Proof. From the proof of Lemma 3.5 it follows that λ > 0 exists so that λ` is
infeasible. Consequently, the set of bookings B is not conic. �
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s1
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Figure 2. The H-networks H1, H2, H3

With the help of an example, we now show that the set of all feasible bookings
FB is nonconvex in contrast to the set of feasible nominations FN ; see Lemma 3.3.

Definition 3.10 (H-networks). The family of H-networks Hn = (Vn, An) is defined
by

H1 := (V1, A1), V1 = {s1, v1, t1} , A1 = {(s1, v1), (v1, t1)}
and Hn := (Vn, An), n ≥ 2, with

Vn = Vn−1 ∪ {sn, vn, tn} , An = An−1 ∪ {(sn, vn), (vn, tn), (vn, vn−1)} .
See Figure 2 for the networks H1, H2, H3. The nodes si are entry nodes, ti are

exit nodes, and vi are inner nodes. The family of H-networks is also considered
in [20] and in the chapter [25] of the book [35].

Example 3.11. We now consider the network H2 and only impose a lower flow
bound of zero of arc (v2, v1). All other flow bounds are formally set to [−∞,+∞].
One can show that

b1 := (bs2 , bs1 , bt2 , bt1)> = (2, 2, 0, 2)>

and
b2 := (bs2 , bs1 , bt2 , bt1)> = (2, 0, 2, 0)>

are feasible bookings, i.e., b1, b2 ∈ FB. Consider now the convex combination b3
with convex coefficient λ = 1/2, i.e.,

b3 := (bs2 , bs1 , bt2 , bt1)> = (2, 1, 1, 1)>.

Obviously, the nomination

(bs2 , bs1 , bt2 , bt1)> = (0, 1, 1, 0)>

is b3-compliant but not feasible.

Let us note at this point that a feasible booking, in contrast to a feasible
nomination, does not need to be balanced.

Example 3.11 leads to the following theorem.

Theorem 3.12. The feasible set of bookings FB is, in general, nonconvex.

Note this means that even a linear gas physics or engineering model may lead to
a nonconvex set of feasible bookings.

Remark 3.13. For arbitrary Hn = (Vn, An), n ≥ 2, we see that the following holds:
If b ∈ FB is a feasible booking with btk > 0 it follows bsj = 0 for all j < k. Thus,
an exit node tk, k ≥ 2, can exclude every entry node sj , j < k, from the market.
Consider now for a moment the multicriteria optimization problem for which the
feasible region is given by B. Moreover, the |Vn| objective functions fu, u ∈ Vn, are
given by eu, u ∈ Vn, with eu being the uth unit vector; see, e.g., [16] for general
multicriteria optimization. Then, from the above discussion and Example 3.11
it follows that the ideal point (in the sense of multicriteria optimization) is not
bookable.
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Table 2. Summary about properties of FN and FB w.r.t. gas
transport model (3)–(4)

Properties Gas transport constraints (3)–(4)

Bounded FN X, see Lemma 3.6
Bounded FB ×, see Lemma 3.14
Convex FN X, see Lemma 3.3
Convex FB ×, see Example 3.11
Connected FN X, see Corollary 3.4
Connected FB X, see Corollary 3.8
Star-shaped FN X, see Corollary 3.4
Star-shaped FB X, see Lemma 3.7
Conic FN ×, see Lemma 3.5
Conic FB ×, see Corollary 3.9

Furthermore, the set of feasible bookings is unbounded.

Lemma 3.14. If the set of feasible bookings FB is nonempty, then it is unbounded.

Proof. The zero nomination is booking-compliant for every booking. Due to FB 6= ∅,
the zero nomination is feasible. Consequently, for each node u ∈ V and nonnegative
value M the booking b with bu = M and bv = 0, v ∈ V, v 6= u, is feasible because
the zero nomination is the only booking-compliant nomination for b. �

We note that for gas transport with flow bounds, the set of feasible bookings is
unbounded in contrast to the set of feasible nominations; see Lemma 3.6 and 3.14.
This is due to the definition of a feasible booking that only requires the feasibility
of every balanced and component-wise smaller nomination. Consequently, bookings
exist that only contain a single feasible booking-compliant nomination and scaling
this booking does not change the set of balanced and booking-compliant nominations.

With the help of the following example, we show that even in the case of linear
constraints of gas transport like (3) and (4) the set of feasible nominations and
bookings can be empty. We consider the graph H1. Additionally, we set the lower
and upper flow bounds of arc (s1, v1) to 1 and of arc (v1, t1) to 2. For a given
nomination ` ∈ N the flows q satisfying Conditions (3) are unique because G is a tree.
Furthermore, the flow qa on each arc a ∈ A equals `t1 . Thus, no feasible nomination
for G exists due to the chosen lower and upper arc flow bounds. Especially, the
zero nomination, which is always b-compliant, is infeasible. Consequently, the set of
feasible bookings is empty.

Finally, we summarize the results for a gas transport model using capacitated
linear flows in Table 2.

4. A Nonlinear Flow Model for Passive Networks

We now extend the model of the last section to a more realistic model of gas physics
by introducing a bounded pressure variable pu for every node u ∈ V . Additionally,
the pressure levels are coupled to arc flows. Hence, for a nomination ` ∈ N the
Constraints (1) are given by (3), (4), and the classical Weymouth pressure drop
conditions

p2v = p2u − Λa |qa| qa for all a = (u, v) ∈ A, (5)
where Λa > 0 is a constant for every arc a ∈ A. Furthermore, the pressures are
bounded, i.e.,

0 < p−u ≤ pu ≤ p+u for all u ∈ V. (6)
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Consequently, the Constraints (1) are represented by

cI(x, s; `) = cI(x; `) =

(
(cI,u(q; `))u∈V
(cI,a(q; `))a∈A

)
with

cI,u(q; `) = (pu − p−u , p+u − pu)

and the arc flow bounds

cI,a(q; `) = (qa − q−a , q+a − qa)

as well as
cE(x, s; `) = cE(x; `) =

(
(cE,u(q; `))u∈V
(cE,a(q; `))a∈A

)
with the flow conservation

cE,u(q; `) =
∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa − σu`u

and
cE,a(q; `) = p2u − p2v − Λa |qa| qa.

We now analyze the feasibility of nominations and bookings in this extended
setting. In contrast to Sections 2 and 3, the set of feasible nominations FN is now,
in general, nonconvex. This follows from a small counterexample in Section 5.1
of [24].

Lemma 4.1. The set of feasible nominations FN is, in general, nonconvex.

Despite the nonconvexity of the set of feasible nominations, we can guarantee
that the set of feasible nominations is star-shaped w.r.t. the zero nomination under
certain pressure and flow bound requirements. The main idea behind the proof is
the following observation: When we fix the pressure at one node, then decreasing
the flow to another node will also decrease the pressure drops along this path.

Lemma 4.2. Suppose that q−a ≤ 0 ≤ q+a , a ∈ A, and
⋂
u∈V [p−u , p

+
u ] 6= ∅ holds.

Then, the set of feasible nominations FN is star-shaped w.r.t. the zero nomination.

Proof. Let ` ∈ FN be a feasible nomination with corresponding flow q satisfying
Conditions (3) and (4). Additionally, let pu ∈ [p−u , p

+
u ], u ∈ V , be the corresponding

pressure levels satisfying Condition (5) and let λ ∈ [0, 1]. We now show that FN is
star-shaped w.r.t. the zero nomination by proving that λ` is a feasible nomination
for any λ ∈ [0, 1]. To this end, we consider the nomination λ` with corresponding
flows λq. The latter satisfies q−a ≤ λqa ≤ q+a for every arc a ∈ A, because q satisfies
the flow bounds, the requirement q−a ≤ 0 ≤ q+a for all a ∈ A holds, and λ ∈ [0, 1]. We
now have to find feasible pressure levels for the nomination λ`. From Theorem 7.1
in [34] it follows that we can compute an assignment p̃ of the pressure variables that
satisfies Condition (5) with p̃u ≤ p+u for all u ∈ V and such that at least one node
u ∈ V satisfies p̃u = p+u . We assume w.l.o.g. that the pressure level of the arbitrary
node w is at its upper bound, i.e., p̃w = p+w holds.

We now contrarily assume that pressure levels p̃ do not satisfy the pressure
bounds at each node. Due to the construction of p̃, the pressure level at every node
satisfies its upper pressure bound. Due to this and the infeasibility of p̃, a node
v ∈ V with p̃v < p−v exists. We can further assume that λ ∈ (0, 1] holds, because
for λ = 0 we obtain the zero nomination, which is feasible with zero arc flows and
a constant pressure level pv = p ∈ ⋂u∈V [p−u , p

+
u ] 6= ∅ for every node v ∈ V . The

existence of p is guaranteed by the requirements.
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Case 1: The relation p̃v > p̃w holds. This together with
⋂
u∈V [p−u , p

+
u ] 6= ∅,

the assumption w.r.t. p̃, and p̃w = p+w leads to the following relations

p+v ≥ p−v > p̃v > p̃w = p+w ≥ p−w .
From the latter relations follows that [p−v , p

+
v ] ∩ [p−w , p

+
w ] = ∅, which is a

contradiction to
⋂
u∈V [p−u , p

+
u ] 6= ∅.

Case 2: The relation p̃v ≤ p̃w holds. We assume w.l.o.g. that p̃v is nonnegative
(otherwise we would consider |p̃v|), which again satisfies Condition (5), and
thus, we are either in Case 1 or again in Case 2. Additionally, we assume
w.l.o.g. that P (w, v) is a directed path from w to v. Furthermore, p̃ satisfies
Condition (5) and, thus,

p̃2w −
∑

a∈P (w,v)

Λa |λqa|λqa = p̃2v (7)

holds. Due to the last equation, p̃w ≥ p̃v ≥ 0, and λ ∈ (0, 1], the relation

0 ≤
∑

a∈P (w,v)

Λa |λqa|λqa ≤
∑

a∈P (w,v)

Λa |qa| qa

is valid. This relation together with Equation (7), λ ∈ (0, 1], p̃v ≥ 0,
Condition (5), (p+w)2 = (p̃w)2 ≥ p2w, and the assumption leads to

(p−v )2 > p̃2v = p̃2w −
∑

a∈P (w,v)

Λa |λqa|λqa

≥ p2w −
∑

a∈P (w,v)

Λa |λqa|λqa ≥ p2w −
∑

a∈P (w,v)

Λa |qa| qa

= p2v,

This is a contradiction to the feasibility of ` with corresponding feasible
pressure levels pu, u ∈ V . �

Note that a related result is given in Theorem 3.7 of [28]. Lemma 4.2 directly
implies that the set of feasible nominations FN is connected.

Corollary 4.3. The set of feasible nominations FN is connected.

If the pressure requirement
⋂
u∈V [p−u , p

+
u ] 6= ∅ is not valid, then the set of feasible

bookings is empty.

Lemma 4.4. If
⋂
u∈V [p−u , p

+
u ] = ∅ is satisfied, then FB = ∅ holds.

Proof. Due to the requirement
⋂
u∈V [p−u , p

+
u ] = ∅, the zero nomination is not feasible,

which directly shows the claim. �

The model of gas transport of this section is more restrictive than the model of
Section 2. Thus, we can transfer Lemmas 3.5 and 3.6 to the nonlinear flow model
on passive networks. Consequently, we know that the set of feasible nominations is
not conic and that it is bounded. We now turn to the analysis of the bookings.

From Lemma 3.12, it follows that the set of feasible bookings is, in general,
nonconvex. Furthermore, the statements in 3.7–3.9 and 3.14 are valid for the
nonlinear flow model on passive networks and can be shown in analogy to Section 3.
Consequently, the set of feasible bookings is connected and star-shaped w.r.t. the zero
booking. Furthermore, the set of feasible bookings is unbounded if it is nonempty
and examples with an empty set of feasible bookings exist; see Lemma 4.4.

We summarize the results for gas transport w.r.t. the nonlinear flow model on
passive networks in Table 3. The main difference about the structural properties of
nominations and bookings between the linear flow model of Sections 2 and 3 and the
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Table 3. Summary about properties of FN and FB w.r.t. gas
transport model (3)–(6)

Properties Gas transport constraints (3)–(6)

Bounded FN X, see Lemma 3.6
Bounded FB ×, see Lemma 3.14
Convex FN ×, see Lemma 4.1
Convex FB ×, see Example 3.11
Connected FN X, see Corollary 4.3
Connected FB X, see Corollary 3.8
Star-shaped FN X, see Lemma 4.2
Star-shaped FB X, see Lemma 3.7
Conic FN ×, see Lemma 3.5
Conic FB ×, see Corollary 3.9

nonlinear flow model on passive networks is that the set of feasible nominations is
convex in case of the linear flow model, which is not valid anymore in the nonlinear
flow model.

5. A Mixed-Integer Nonlinear Flow Model for Active Networks

Besides nonlinear models of gas flow in pipes, real-world gas transport networks
also comprise so-called active elements that can be controlled by the dispatcher.
Examples for such devices are valves or compressors. Detailed descriptions of these
active elements are, e.g., given in the chapters [19, 46] of the book [35]. For our
nonlinear gas transport model, we focus on compressors as an example for active
elements.

A compressor is represented by an arc a = (u, v) ∈ Acs ⊆ A and we use the
following simplified model (for more complicated models see, e.g., [48–50]). A
compressor can be in bypass mode or active. In bypass mode, the in- and outflow
pressures of the compressor are the same (pv = pu) and the flow through the
compressor is arbitrary (within certain arc-specific bounds). If the compressor is
active, it can compress the gas, i.e., the compressor increases the pressure. This
capability is limited by lower and upper bounds on the obtained compression ratio,
i.e.,

pv
pu
∈ [ε−a , ε

+
a ] for all a = (u, v) ∈ Acs

with 1 ≤ ε−a ≤ ε+a . Both states of a compressor can be modeled by the constraints
pv
pu
sa ≥ ε−a sa + (1− sa)(pu − pv) for all a = (u, v) ∈ Acs, (8)

pv
pu
sa ≤ ε+a sa + (1− sa)(pu − pv) for all a = (u, v) ∈ Acs, (9)

where the binary variable sa ∈ {0, 1}, a ∈ Acs, equals 1 if only if the compressor is
active. Otherwise the compressor is in bypass mode. In addition, the compressor
has a nonnegative lower arc flow bound q̂− in the active state for which we assume
that q̂−a > q−a holds. (Otherwise we can neglect this lower arc flow bound of the
compressor because of its standard arc flow bound.) We model this tightened lower
flow bound of the compressor by modifying the lower arc flow bound constraint
in (4) as follows:

qa ≥ (1− sa)q−a + saq̂
−
a . (10)
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s1 v1 v2 t1

Figure 3. The graph of Example 5.1

Consequently, the Constraints (1) are given by

cI(x, s; `) =

(
(cI,u(q; `))u∈V
(cI,a(q; `))a∈A

)
with

cI,u(q; `) = (pu − p−u , p+u − pu)

and

cI,a(s; q; `) =


(sa(pv/pu − ε−a )− (1− sa)(pu − pv))a=(u,v)∈Acs

(sa(ε+a − pv/pu) + (1− sa)(pu − pv))a=(u,v)∈Acs

(qa − (1− sa)q−a − saq̂−)a∈Acs

(qa − q−a )a∈A\Acs

(q+a − qa)a∈A\Acs

 .

Additionally, we have the constraints

cE(x, s; `) = cE(x; `) =

(
(cE,u(q; `))u∈V

(cE,a(q; `))a∈A\Acs

)
with the flow conservation equations

cE,u(q; `) =
∑

a∈δout(u)

qa −
∑

a∈δin(u)

qa − σu`u

and the pressure drop conditions

cE,a(q; `) = p2u − p2v − Λa |qa| qa.
We again analyze the set of feasible nominations and bookings in this extended

setting. In contrast to Sections 2–4, the set of feasible nominations FN is, in general,
not connected anymore, which we will show by the following example.

Example 5.1. We consider the graph G = (V,A) with nodes V = {s1, v1, v2, t1},
where s1 is an entry, v1, v2 are inner nodes, and t1 is an exit. Additionally, the graph
contains three arcs (s1, v1), (v1, v2), and (v2, t1), where the arc (v1, v2) represents a
compressor. A graphical representation is given in Figure 3. We set the pressure
bounds to [2, 2] for node s1 and to [1, 2] for the remaining nodes. Furthermore, the
lower and upper bounds for the compression ratio are given by [ε−, ε+] = [2, 3] and
the pressure drop coefficient Λa equals 0.5 for every arc a ∈ A \Acs. We neglect flow
bounds in this example. The graph G is a tree with one entry and one exit. Due
to this and Definition 2.2, a nomination in G equals (`, `), ` ∈ R≥0, with the arc
flows qa = `, a ∈ A, where ` is the amount of gas which is injected at the entry and
withdrawn at the exit of the network. If the compressor is in bypass mode, then
each feasible nomination has to satisfy the pressure Constraints (5) and (6), i.e.,

ps1 = 2, pv1 = 2− 0.5`2 = pv2 ≥ 1, pt1 = pv2 − 0.5`2 = 2− `2 ≥ 1.

Thus, the set of feasible nominations is {(`, `) : ` ∈ [0, 1]} in this case. If the
compressor is active, then each feasible nomination (`, `), ` ∈ R≥0, has to satisfy

ps1 = 2, pv1 = 2− 0.5`2 ≥ 1, 2 ≤ pv2
pv1
≤ 3, 1 ≤ pv2 ≤ 2, pt1 = pv2 − 0.5`2 ≥ 1.

and consequently, only the nomination (
√

2,
√

2) is feasible. Hence, the set of feasible
nominations is FN = {(`, `) : ` ∈ [0, 1]} ∪

{
(
√

2,
√

2)
}
, which is not connected.

Example 5.1 leads to the following lemma.
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Lemma 5.2. The set of feasible nominations FN is, in general, not connected—even
if no arc flow bounds are considered.

We now present another example, which also proves Lemma 5.2. While in
Example 5.1 the set of feasible nominations is not connected due to bounds on the
compression ratio, in the next example the feasible set of nominations is disconnected
due to the presence of a lower arc flow bound of the compressor.

Example 5.3. We again consider the network G = (V,A) of the last example. We
modify the lower and upper pressure bounds to [0.875, 2] for v1 and to [1, 3] for v2
and t1. Furthermore, the lower and upper bounds for the compression ratio are set
to [1, 3]. The set of feasible nominations is FN = {(`, `) : ` ∈ [0, 1.5]} because each
feasible nomination (`, `), ` ∈ R≥0, has to satisfy the following pressure constraints

ps1 = 2, pv1 = 2− 0.5`2 ≥ 0.875,

1 ≤ pv2
pv1
≤ 3, 1 ≤ pv2 ≤ 3, pt1 = pv2 − 0.5`2 ≥ 1.

We note that the set of feasible nominations is connected and that pv2/pv1 = 1
corresponds to the bypass mode. If the compressor is inactive, the nominations
{(`, `) : ` ∈ [0, 1]} are feasible and with the help of the compressor the remaining
nominations of FN are feasible. We now add the lower flow bound q̂− = 1.25 for
the compressor, which comes into play if the compressor is active. Consequently,
the set of feasible nominations is FN = {(`, `) : ` ∈ [0, 1] ∪ [1.25, 1.5]}, which is not
connected. Hence, we see that the lower flow bound of the compressor may also
lead to a disconnected set of feasible nominations.

From Lemma 5.2 it follows that the set of feasible nominations is, in general,
neither conic, star-shaped, nor convex.

Corollary 5.4. The set of feasible nominations FN is, in general, neither conic,
star-shaped, nor convex.

Furthermore, from Lemma 3.6 it follows that the set FN of feasible nominations
is bounded.

We now turn to the analysis of the bookings. The nonlinear flow model on
passive networks is a special case of the considered nonlinear flow model on active
networks. Hence, we can conclude from Section 4 that the set of feasible bookings is,
in general, nonconvex and that examples with an empty set of feasible bookings exist.
Additionally, we can prove in analogy to Section 4 that the set of feasible bookings
is, in general, connected and star-shaped w.r.t. the zero booking. Moreover, the set
of feasible bookings is unbounded if it is nonempty.

We summarize the results for gas transport w.r.t. the nonlinear flow model on
active networks in Table 4. The main difference about the structural properties
of nominations and bookings between the nonlinear flow model on passive and on
active networks is that the set of feasible nominations is connected and star-shaped
on passive networks, which is not the case anymore on active networks.

6. Conclusion

In this work, we analyzed the structural properties of the set of feasible nomi-
nations and feasible bookings in the European entry-exit gas market system. We
presented a formal definition of (feasible) bookings and then studied whether this
set is bounded, convex, connected, conic, and star-shaped—which are all important
properties if one wants to optimize over this set. We carried out the analysis for
different gas flow models on a network, ranging from a simple capacitated linear
flow model to a mixed-integer nonlinear model of an active network. The results
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Table 4. Summary about properties of FN and FB w.r.t. gas
transport model (3)–(6), (8)– (10)

Properties Gas transport constraints (3)–(6), (8)–(10)

Bounded FN X, see Lemma 3.6
Bounded FB ×, see Lemma 3.14
Convex FN ×, see Corollary 5.4
Convex FB ×, see Example 3.11
Connected FN ×, see Example 5.1
Connected FB X, see Corollary 3.8
Star-shaped FN ×, see Corollary 5.4
Star-shaped FB X, see Lemma 3.7
Conic FN ×, see Corollary 5.4
Conic FB ×, see Corollary 3.9

Table 5. Summary about properties of FN and FB w.r.t. different
gas transport models

Gas transport constraints

Properties (3) (3), (4) (3)–(6) (3)–(6), (8)–(10)

Bounded FN × X X X
Bounded FB × × × ×
Convex FN X X × ×
Convex FB X × × ×
Connected FN X X X ×
Connected FB X X X X
Star-shaped FN X X X ×
Star-shaped FB X X X X
Conic FN X × × ×
Conic FB X × × ×

are summarized in Table 5. It turns out that some of the results on the feasible set
of bookings are rather counter-intuitive. For instance, one can see that all models
(except for the very simplified linear one without arc capacities) lead to nonconvex
sets of feasible bookings. This is remarkable because this already happens for the
model that only uses a very simple linear flow model with arc capacities. It also
indicates that it can be expected that optimizing over these sets is hard. This is in
line with results from the literature like in [32], where it is shown that checking the
feasibility of a booking is a coNP-hard problem on general graphs—even for linear
flow models. However, the results in [45] imply that the same problem is easy for
nonlinear flow models on trees. One interesting question for future research thus
is to exactly draw the line between the easy and the hard cases. The analysis of
feasible bookings in the context of instationary gas flow models is also part of our
future work. However, with respect to stationary models, it can be seen in Table 5
that the only desirable properties of bookings that still hold in the nonlinear flow
model with active elements are purely based on the nature of feasible bookings and
thus do not depend on the chosen physical and technical models of gas transport.
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