

Edinburgh Research Explorer

On the implausibility of classical client blind quantum computing

Citation for published version:
Aaronson, S, Cojocaru, A, Gheorghiu, A & Kashefi, E 2017, 'On the implausibility of classical client blind
quantum computing', Paper presented at 7th International Conference on Quantum Cryptography,
Cambridge, United Kingdom, 18/09/17 - 22/09/17.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://www.research.ed.ac.uk/en/publications/4ba24f42-5add-4636-8970-c2db7178a56f

On the implausibility of classical client blind quantum computing

Scott Aaronson∗1, Alexandru Cojocaru†2, Alexandru Gheorghiu‡2, and Elham Kashefi§2,3

1Department of Computer Science, University of Texas at Austin
2School of Informatics, University of Edinburgh

3CNRS LIP6, Université Pierre et Marie Curie, Paris

Abstract

Suppose a large scale quantum computer becomes available over the Internet. Could we
delegate universal quantum computations to this server, using only classical communication
between client and server, in a way that is information-theoretically blind (i.e., the server learns
nothing about the input apart from its size, with no cryptographic assumptions required)? In
this paper we give strong indications that the answer is no. This contrasts with the situation
where quantum communication between client and server is allowed — where we now know,
from work over the past decade, that such information-theoretically blind quantum computation
is possible. It also contrasts with the case where cryptographic assumptions are allowed: there
again, it is now known that there are quantum analogues of fully homomorphic encryption.

In more detail, we observe that, if there exist information-theoretically secure classical
schemes for performing universal quantum computations on encrypted data, then we get unlikely
containments between complexity classes, such as BQP ⊂ NP/poly. Moreover, we prove that
having such schemes for delegating quantum sampling problems, such as BosonSampling,
would lead to a collapse of the polynomial hierarchy. We then consider encryption schemes
which allow one round of quantum communication and polynomially many rounds of classical
communication, yielding a generalization of blind quantum computation. We give a complexity
theoretic upper bound, namely QCMA/qpoly ∩ coQCMA/qpoly, on the types of functions that
admit such a scheme. This upper bound then lets us show that, under plausible complexity
assumptions, such a protocol is no more useful than classical schemes for delegating NP-hard
problems to the server. Lastly, we comment on the implications of these results for the prospect
of verifying a quantum computation through classical interaction with the server. We argue
that if such a procedure is possible, then it must either reveal much of the computation to the
quantum computer or rely on computational assumptions.

1 Introduction

An important area of research in modern cryptography is that of performing computations on
encrypted data. The general idea is that a client wants to compute some function f on some input
x, but lacks the computational power to do this in a reasonable amount of time. Luckily, the
client has access to a computationally powerful server (cloud, cluster etc) which can compute f(x)
quickly. However, due to the nature of the computation (which might involve sensitive or classified
information), or the level of security of the server (which could be compromised remotely), we
would like that the input x is hidden from the server at all times. The client can simply encrypt
x, but then the question arises: how should the server act on this encrypted input so that the
client can, in the end, recover f(x)? The general problem of computing on encrypted data was
first considered by Rivest, Adleman and Dertouzos [1]. Since then, instances of this problem have

∗Email: aaronson@cs.utexas.edu
†Email: a.cojocaru@sms.ed.ac.uk
‡Email: a.gheorghiu@sms.ed.ac.uk
§Email: ekashefi@inf.ed.ac.uk

1

ar
X

iv
:1

70
4.

08
48

2v
1

 [
qu

an
t-

ph
]

 2
7

A
pr

 2
01

7

become commonplace, especially when considering applications such as electronic voting, machine
learning on encrypted data, program obfuscation and others [2–7].

This problem, at least for the case of classical computations, was addressed in 2009 by the
breakthrough result of Gentry in which he introduced a scheme for fully homomorphic encryp-
tion [8]. In homomorphic encryption the client has efficient algorithms for encryption Enc, and
decryption Dec, satisfying the property that Dec(f, x,Eval(f,Enc(x))) = f(x), for any function
f from some set C. In other words, the server computes some evaluation of f on the encrypted
input Enc(x) (using Eval) and returns this to the client which can then decrypt it to f(x). Of
course, the server should not be able to infer information about x from Enc(x), a condition which
is typically expressed through semantic security [9]. The scheme is therefore secure under suitable
cryptographic assumptions. If the set C contains all polynomial-sized circuits then the scheme
becomes a fully homomorphic encryption scheme, commonly abbreviated FHE.

Computing on encrypted data becomes particularly interesting when considering the server to
be a quantum computer. This is because efficient quantum algorithms have been found for various
problems which are believed to be intractable for classical computers. In fact, if one is only given
black-box or oracle access to certain functions then an exponential separation between quantum
computation and classical probabilistic computation is provable [10–13]. Classical clients would
therefore be highly motivated to delegate problems to quantum computers. However, ensuring
the privacy of the inputs to these problems, under cryptographic assumptions, is challenging. In
particular, we’re faced with the following challenges:

• Devise an encryption scheme which is secure against quantum computers and does not leak
information to the server about the client’s input.

• Ensure that the encryption scheme allows the client to recover the output of the computation
from the result provided by the quantum server.

• The whole protocol must be efficient for the client. Ideally, the number of rounds of interac-
tion between the client and the server, as well as the client’s local computations should scale,
at most, polynomially with the size of the input.

Surprisingly, in spite of these stringent requirements, such a scheme already exists and is known
as universal blind quantum computation or UBQC [14,15].

Figure 1: Universal Blind Quantum Computation

In UBQC, a classical client augmented with the ability to prepare single qubits sends these
qubits to the server along with instructions on how to entangle and measure them in order to
perform a computation. Because of fundamental limitations imposed by quantum mechanics (such
as the inability to clone quantum information), it is possible for the server to perform any general
quantum computation without learning anything about it except for an upper bound on its size.
In other words, UBQC provides information-theoretically secure quantum function evaluation with
a minimalistic quantum client. An earlier protocol by Childs [16] achieved the same functionality,

2

but had the client perform more complicated quantum operations. An illustration of the protocol,
adapted from [17], is given in Figure 1.

UBQC is one of the foundations of the field of quantum computing on encrypted data and
has been improved, extended and used in various other works [18–25]. Other approaches to blind
quantum computing also exist such as the previously mentioned protocol of Childs and a more
recent protocol of Broadbent [26] that has also led to a number of applications [27, 28]. However,
the limiting factor of all these approaches is that the client needs to prepare and send single qubits.
We would like to know if this requirement can be removed and so we pose the question:

Is there a scheme for blind quantum computing that is information-theoretically secure, and that
requires only classical communication between client and server?

More precisely, the question is whether it is possible for a classical client running in polynomial
time to obtain the value f(x) through classical interactions with a quantum server, such that f(x)
can be computed by a quantum computer in time polynomial in the length of x (i.e., f ∈ BQP).
Additionally, the number of rounds of interaction should be polynomial in the length of x and at
the end of the protocol the server should learn, at most, the length of x and nothing more, under
no cryptographic assumptions.

In this paper we provide compelling evidence that the answer is no, this is not possible: not
all of these conditions can be met at the same time. Importantly, our result does not contradict
the existence of FHE, based on cryptographic assumptions: we are interested only in information-
theoretic security.

In addition to this result, we also provide a complexity-theoretic upper bound for the types of
functions which can be evaluated by UBQC-type protocols, in which the client has some quantum
capabilities. We show that, under plausible complexity assumptions, this upper bound prohibits
the client from delegating NP-hard functions to the server.

1.1 Organization

Our results are centred around the concept of a generalised encryption scheme (GES) introduced by
Abadi, Feigenbaum and Killian [29] which is formally defined Section 2. Roughly speaking, a GES
is a protocol between a probabilistic polynomial-time classical client (BPP) and a computationally
unbounded server for computing on encrypted data. The client sends the server a description of
some function f , to be evaluated. Using some polynomial-time algorithm denoted E, the client
encrypts its input x, and sends E(x) to the server. The server and the client then interact for a
number of rounds which is polynomial in the size of x. Finally, using a polynomial-time decryption
algorithm, denotedD, the client “decrypts” the server’s responses and obtains f(x) with probability
1/2 + 1/ poly(|x|). Importantly, throughout the protocol the server learns, at most, the size of x.
Having the server be computationally unbounded means the scheme requires information-theoretic
security. Abadi et al. gave a complexity theoretic upper bound on the types of functions that admit
such a scheme. They showed that any function f with a GES protocol is contained in the class
NP/poly∩ coNP/poly. In our work, we explore the implications of having a GES for different types
of quantum computations and show that this leads to highly unlikely containments of complexity
classes.1

Our study of generalised encryption schemes for quantum computations begins in Section 3.
We start by looking at decision problems. Specifically we consider polynomial-time quantum
computations, BQP. From the Abadi et al. result, it immediately follows that having a GES for
all BQP functions implies that BQP ⊂ NP/poly ∩ coNP/poly. This containment seems unlikely
and while we cannot reduce it to something more standard, such as a collapse of the polynomial
hierarchy, we provide oracle evidence in support of the conjecture BQP 6⊂ NP/poly ∩ coNP/poly.
In particular we show that there exists an oracle O such that BQPO 6⊂ (NP/O(nd))O.

1Definitions of complexity classes used in this paper can be found in the Complexity Zoo [30]. In Appendix 7.1,
we provide a brief overview of advice, oracles and sampling classes.

3

To add more weight to our conjecture, we then consider the implications of having a GES
for sampling problems. In particular, we consider BosonSampling, a problem which is efficiently
solvable by a quantum computer but believed to be intractable for classical probabilistic computers
running in polynomial time [31]. We first redefine generalised encryption schemes for sampling
problems, and then show that having such a scheme for exact BosonSampling implies a collapse
of the polynomial hierarchy. A similar result holds for approximate BosonSampling, assuming a
conjecture by Aaronson and Arkhipov, regarding estimating the permanent of a Gaussian matrix,
holds [31].

Next, in Section 4 we define a quantum GES (QGES) which can be viewed as a generalization of
UBQC, in the sense that the client can send one quantum message to the server. While our previous
results seem to rule out GES protocols for BQP computations, we know that giving the client some
minimal quantum capabilities removes this limitation. In the spirit of the Abadi et al. result, it is
then natural to consider QGES protocols, in which the client is no longer classical, and investigate
the complexity-theoretic upper bounds of functions which admit such a protocol, also leaking at
most the size of the input. We find that for QGES protocols, having an extra property known
as offline-ness, such functions are contained in the class QCMA/qpoly ∩ coQCMA/qpoly. Roughly
speaking, an offline protocol is one in which the client does not need to commit to any particular
input (of a given size), after having sent the first encrypted message to the server. In other words,
there is some efficient operation which the client can use to change its input after having initiated
communication with the server. We also show that if NP ⊂ QCMA/qpoly ∩ coQCMA/qpoly, then

a result similar to the collapse of the polynomial hierarchy is true: namely, ΠP
3 ⊆ NPNPPromiseQMA

.
Hence, while QGES does (by definition) allow for delegating BQP computations, it seems to be no
more useful than the regular GES at delegating NP-hard functions.

Lastly, in Section 5 we discuss the implications of our results for quantum verification. Specifi-
cally, we emphasize that many existing protocols for verifying general quantum computations rely
on blindness in the sense of hiding the input from the quantum server, in an information-theoretic
sense, apart from an upper bound on its size [21, 27, 32]. Our results render it unlikely that there
exist classical verification schemes that also rely on this type of blindness.

The motivation for our results is twofold. Firstly, the complexity-theoretic approach we use lets
us determine very precisely what is and what isn’t possible with quantum computing on encrypted
data. In particular, our “no-go” result for classical clients informs the direction of future research in
this field: we either have to consider protocols leaking more information to the server, or consider
schemes with computational security.

Secondly, we emphasize the significance of the complexity theoretic upper bound on functions
which can be computed with a QGES, as well as the result that NP-hard functions are unlikely to
satisfy this bound. Quantum computers could, in principle, solve NP-complete problems quadrati-
cally faster than classical computers, thanks to Grover’s algorithm [33]. Even though the speedup
of Grover’s algorithm is only quadratic, from (say) 2n to 2n/2, our no-go theorem is only con-
cerned with the length of the computation performed on the client side, and therefore applies to
Grover’s algorithm just as it would to a quantum algorithm achieving exponential speedup. Our
result shows that clients cannot exploit the Grover speedup, even when allowing some quantum
communication, if we also want to keep their inputs hidden in an information-theoretic sense.

1.2 Related work

As mentioned, the problem of computing on encrypted data was first considered by Rivest, Adleman
and Dertouzos [1], which then led to the development of homomorphic encryption and eventually
to fully homomorphic encryption with Gentry’s scheme [8]. Since then there have been many other
FHE protocols relying on more standard cryptographic assumptions and having more practical
requirements [34–36].

While FHE is similar to GES in many respects, there are also significant differences. For
starters, FHE protocols have only one round of interaction between the client and the server,
whereas GES allows for polynomially many rounds. Additionally, GES assumes the server is

4

computationally unbounded and hence requires information-theoretic security. In contrast, FHE
relies on computational security. More precisely FHE schemes have semantic security against
polynomial-time (quantum) algorithms [8].

The problem of quantum computing on encrypted data was introduced by Childs [16] and
Arrighi and Salvail [37]. Further development eventually led to UBQC [14, 15] and the scheme of
Broadbent [26]. The latter was followed by the construction of the first schemes for quantum fully
homomorphic encryption (QFHE) [28, 38]. For a review of blind quantum computing and related
protocols see [39].

In existing QFHE schemes, the server is a BQP machine and the client has some quantum
capabilities of its own, although it is not able to perform universal quantum computations. Both the
size of the exchanged messages and the number of operations of the client are polynomial in the size
of the input. Similar to FHE, these protocols rely on computational assumptions for security [40]
and involve one round of back and forth interaction between the client and the server [28,38]. QFHE
with information-theoretic security (and a computationally unbounded server) has been considered
by Yu et al. in [41], where it is shown that it is impossible to have such a scheme for arbitrary unitary
operations (or even arbitrary reversible classical computations). They do not, however, consider an
upper bound on the types of Boolean functions that can be computed in that setting. Importantly,
their result does not rule out an information-theoretic secure QFHE protocol for polynomial-sized
quantum computations. In relation to our work, QFHE with information-theoretic security can
be viewed as a one-round QGES in which the server responds with a quantum message. The
complexity upper bound we prove for QGES computable functions would then apply for QFHE
as well (provided that in QFHE we only leak the size of the input to the server), since our proof
allows a quantum message from the server just as well as a classical message.

The possibility of a classical client delegating a blind computation to a quantum server was
considered by Morimae and Koshiba [42]. They showed that such a protocol in which the client
leaks no information about its input to the server and there is only one round of interaction leads
to BQP ⊆ NP, considered an unlikely containment. We consider the more general setting of a
GES for BQP functions, where the number of rounds can be polynomial in the size of the input
and we allow the encryption to leak the size of the input. In fact, the question of whether a GES,
as defined in Abadi et al., can exist for quantum computations was raised before by Dunjko and
Kashefi [43].

Since our result is primarily about the implausibility of having a GES for BQP computations,
there are a number of caveats which, if circumvented, could still lead to a reasonable scheme for
classically delegating computations to a quantum server. These are:

• The requirement that the client leaks at most the size of the input to the server. If one is
allowed to leak more information then our result no longer applies. Indeed, such a scheme
already exists. Mantri et al. proposed a protocol relying on the measurement-based model
of quantum computation in which a client can delegate a quantum computation to a server
while still retaining some privacy [44].

• The requirement of information-theoretic security. As mentioned, the QFHE schemes, while
not having a fully classical client, are based on computational security. Moreover, for a
subclass of quantum computations called instantaneus quantum computations (IQP), Shep-
herd and Bremner proposed a computationally secure scheme for delegating encrypted IQP
problems to a quantum server [45].

• The requirement that the client interacts with only one quantum server. A number of schemes
have been proposed where a classical client can delegate quantum computations to multiple
servers as long as these servers share entanglement and are not allowed to communicate
during the protocol [32,46,47].

5

2 Cryptographic preliminaries

The basis of most of the results in our paper is the generalised encryption scheme. We state its
definition from [29]:

Definition 1 ([29] Generalised Encryption Scheme (GES)). A generalised encryption scheme
(GES) is a two party protocol between a classical client C, and an unbounded server S, characterized
by:

• A function2 f : ∆→ Σ, where ∆,Σ ⊆ {0, 1}∗.

• A cleartext input x ∈ Domain(f), for which the client wants to compute f(x).

• An expected polynomial-time key generation algorithm K which works as follows: for any
x ∈ Domain(f), with probability greater than 1/2+1/poly(|x|) we have (k, success)← K(x),
where k ∈ {0, 1}poly(|x|). If the algorithm does not return success then we have (k′, fail) ←
K(x), where k′ ∈ {0, 1}poly(|x|).

• A polynomial-time deterministic algorithm E which works as follows: for any x ∈
Domain(f), k ∈ {0, 1}poly(|x|) and s ∈ {0, 1}poly(|x|) we have that y ← E(x, k, s), where
y ∈ {0, 1}poly(|x|).

• A polynomial-time deterministic decryption algorithm D, which works as follows: for any
x ∈ Domain(f), k ∈ {0, 1}poly(|x|) and s ∈ {0, 1}poly(|x|) we have that z ← D(s, k, x), where
z ∈ {0, 1}poly(|x|).

And satisfying the following properties:

1. There are m rounds of communication, such that m = poly(|x|). Denote the client’s message
in round i as ci and the server’s message as si.

2. On cleartext input x, C runs the key generation algorithm until success to compute a key
(k, success) = K(x). This happens before the communication between C and S is initiated,
and the key k is used throughout the protocol.

3. In round i of the protocol, C computes ci = E(x, k, si−1), where si−1 denotes the server’s
responses up to and including round i−1, i.e. 〈s0, s1...si−1〉. We assume that s0 is the empty
string. C then sends ci to S.

4. In round i of the protocol, S responds with si, such that si ∈ {0, 1}poly(|x|). Additionally,
the server’s responses are drawn probabilistically from a distribution which is consistent with
property 5.

5. At the end of the protocol, C computes z ← D(sm, k, x) and with probability 1/2+1/poly(|x|),
we have that z = f(x).

Let us provide some intuition for this definition. The purpose of a GES is to allow a client to
compute some f(x) which it cannot compute with its own resources. It does this by interacting
with a computationally powerful server for a number of rounds which is polynomial in the size
of the input. Importantly, the GES allows the client to hide some information about x from the
server. We make this statement more precise through the following definition:

Definition 2. An encryption algorithm E for some function f with a priori distributions over the
input denoted by the random variable X, leaks at most L(X) if for all X, and for all l ∈ Range(L),
the random variables X and f(X) are independent given l← L(X).

2Note that f need not be a total function since it is defined on a subset of {0, 1}∗. Whenever we say that
f ∈ C, for some complexity class C, we mean that there exists a total function g ∈ C such that g(x) = f(x), for all
x ∈ Domain(f).

6

Finally, we state the main theorem from [29], which we will use throughout the paper:

Theorem 1 ([29] GES leaking size of input). If a function f admits a GES which leaks at most
the size of the input (i.e. L(X) = |X|), then f ∈ NP/poly ∩ coNP/poly3.

We include a simplified proof of this theorem in Appendix 7.2. It should be mentioned that if
the client is a BPP machine and the functions computable with the GES are contained in NP/poly∩
coNP/poly then we should in fact be working with the class BPPNP/poly∩coNP/poly. However, it is
not very difficult to show that BPPNP/poly∩coNP/poly = NP/poly ∩ coNP/poly. This can be done
using a result of Brassard [48] which shows that PNP∩coNP = NP∩ coNP, together with Adleman’s
theorem (that BPP ⊂ P/poly) [49]. The proof of this fact can also be found in Appendix 7.2.

When working with generalised encryption schemes we will be interested in delegating BQP-
complete problems since these capture the power of polynomial-time quantum computations4. We
therefore state the definition of the canonical BQP-complete problem:

Definition 3 ([27, 28] Q-CIRCUIT). The problem Q-CIRCUIT consists of a quantum cir-
cuit made of a sequence of gates, U = UN , . . . , U1 acting on an n-qubit input |0n〉 (we take
these circuits to be given in the universal gateset GATES = {X,Z,H,CNOT,T}). Let p(U) =
‖|0〉 〈0| ⊗ In−1U |0n〉‖2 be the probability of observing “0” as a results of a computational basis
measurement of the nth output qubit, obtained by evaluating U on input |0n〉.

The input to the problem (not to be confused with the input to the circuit which is the state
|0n〉) is denoted x and consists of the description of the quantum circuit U . The problem is then
to decide whether:

x ∈ Q-CIRCUITYES : p(U) ≥ 2/3

x ∈ Q-CIRCUITNO : p(U) ≤ 1/3

promised that one of these is the case.

We will now give the definition of Universal Blind Quantum Computation (UBQC) adapted
from [14]. Note that the definition relies on elements of measurement-based quantum computation
[50, 51] for which we give a brief introduction in Section 7.1.2.

Definition 4 ([14] Universal Blind Quantum Computation (UBQC)). A Universal Blind Quantum
Computation (UBQC) scheme for input x (resulting from a random variable X) is a two party
protocol between a client C, and a server S which allows the client to decide the Q-CIRCUIT
problem on input x (corresponding to some quantum circuit C), while leaking at most the size of
x to the server. We assume that the circuit C which is used to perform the Q-CIRCUIT problem
has N quantum gates. The protocol then works as follows:

• C prepares M = O(N) qubits initialized in the states |+θi〉, with i going from 1 up to M .
Each angle θi is chosen uniformly at random from the set {0, π/4, 2π/4, ...7π/4}.

• C sends the M qubits to S.

• S entangles the qubits, using CZ operations, according to a graph structure allowing universal
quantum computations (see Section 7.1.2 for an example).

• C instructs S to measure each qubit, i, at the angles δi = θi + (−1)siφi + riπ. The angles
φi are the computation angles, corresponding to the computation of the circuit C. Note that
φi ∈ {0, π/4, 2π/4, ...7π/4}. The terms si, ri ∈ {0, 1} specify a correction to be applied on the
current qubit, based on previous measurement outcomes.

3Note that from the definition of f , Range(f) is not necessarily {0, 1}, corresponding to a decision problem, but
can be any subset of {0, 1}∗. In this case the correct containment would be f ∈ FNP/poly ∩ FcoNP/poly, where FNP
and FcoNP are the relational versions of NP and coNP. This distinction is not crucial for understanding the result
and we can always simply restrict to decision problems.

4Strictly speaking, no BQP-complete problems are known and we are instead referring to PromiseBQP-complete
problems. These are problems which have a certain promise on the input and are solvable by a polynomial-time
quantum algorithm. The Q-CIRCUIT problem, defined above, is a PromiseBQP-complete problem.

7

• S responds with the appropriate measurement outcomes.

The defining feature of UBQC is blindness for which we also provide the definition from [14]:

Definition 5. Let P be a UBQC protocol with input drawn from the random variable X and let
L(X) be any function of this random variable. We say that the protocol is blind while leaking at
most L(X) if, on the client’s input X, for any l ∈ Range(L), the following two hold when given
l← L(X):

1. The distribution of the classical information obtained by the server in P is independent of X.

2. Given the distribution of classical information described in 1, the state of the quantum system
obtained by the server in P is fixed and independent of X.

Note the similarities between UBQC and GES:

• Both are client-server protocols for allowing the client to compute some hard function while
hiding information from the server.

• Both provide information-theoretic security.

• The case of interest for GES is when the scheme leaks at most the size of the input to the
server. In UBQC, already the scheme leaks at most the size of the input to the server.

It thus seems that UBQC is a particular instance of a type of quantum GES (a GES with a quantum
client). We will elaborate more on this in Section 4. As a final remark, notice that Q-CIRCUIT
is a problem in which the input is the description of the quantum computation (circuit) itself.
Therefore, UBQC keeps the description of this circuit private from the server in an information-
theoretic way. This is similar to uses of FHE in which both the data and the algorithm that should
process the data are sent in encrypted form to the server [52].

3 GES for quantum problems

We would like to investigate the possibility of having a GES for efficient quantum problems.
Recall that the GES entails a BPP client delegating problems to an unbounded server. We will
be examining both the cases of a GES for delegating BQP decision problems, as well as the case
for problems like BosonSampling and SampBQP in general. We show that in both instances,
having schemes which leak at most the size of the input lead to very unlikely consequences. In
effect, this provides evidence for the implausibility of classical client blind quantum computation
with information-theoretic security. In Section 5, we will also comment on the implications of this
fact for classical client quantum verification.

As mentioned, the result of Abadi et al. shows that functions which admit a GES are contained
in the complexity class NP/poly ∩ coNP/poly. In fact they use this result to argue that any
class of problems which contains NP is not suitable for delegation through a GES, since if NP ⊂
NP/poly ∩ coNP/poly, then, in particular, NP ⊂ coNP/poly. Using a result of Yap [53], that if
NP ⊂ coNP/poly then ΣP

3 ⊆ ΠP
3 and the polynomial hierarchy collapses at the third level.

In our case, the class of interest is BQP and so, delegating efficient quantum computations using
a GES reduces to asking whether the following containment holds: BQP ⊂ NP/poly ∩ coNP/poly.
Determining the truthfulness of this containment in no more easier than determining whether
P = NP, so we cannot give a definite proof either way. However, we can provide reasonable
evidence that the containment does not hold. Ideally, we would like to construct an oracle O such
that BQPO 6⊂ (NP/poly∩ coNP/poly)O. Unfortunately, this is not easy to do either as having such
an oracle would also separate BQPO from AMO, a problem which has eluded complexity theorists
for some time [54]. However, if we fix the degree of the polynomial determining the size of the
advice, we can prove the following:

8

Theorem 2. For each d ∈ N, there exists an oracle Od, such that BQPOd is not contained in
(NP/O(nd))Od.

The complete proof can be found in Appendix 7.3.
One can argue that oracle results do not constitute compelling evidence regarding the relation-

ship between complexity classes. Indeed, it has been known for a while that there exist oracles
such that PO 6= NPO and oracles such that PO = NPO. Moreover there are non-relativizing results
such as IP = PSPACE even though there exists an oracle such that IPO 6= PSPACEO. However,
oracles allow us to study the query complexity of problems in different models of computation. In
fact there are situations in practice where computer programs are restricted to making black-box
calls to functions in order to determine their properties [55]. Apart from this, past oracle results
have proven to be insightful for the development of algorithms and complexity theory. Most no-
tably Simon’s oracle separation between BPP and BQP led to Shor’s algorithm for factoring and
computing discrete logarithm [56]. More arguments in defence of oracles are provided in Section
1.3 of [54].

As we have seen, providing strong evidence in the case of decision problems is difficult. The
situation is somewhat better in the case of sampling problems, thanks to results such as the
Aaronson-Arkhipov result on BosonSampling and the Bremner, Josza and Shepherd result on
instantaneous quantum computation [31, 57]. In this case, the problem we consider is that of
having a GES for sampling problems. Concretely, the client has as input a string x, which specifies
a distribution Dx, and would like to use the GES to obtain a sample from that distribution. For
example, x could specify a linear optics network and the distribution can represent the probability
of observing certain numbers of photons per each mode of the network. This is the BosonSampling
problem, denoted BosonSampling for which we provide the definition in Section 7.1.3 where we
also give the definition of sampling problems. In this case the server should learn at most the size
of the linear optics network. When we are interested in approximate sampling, we can assume
that the ε from Definition 9 (the variation distance between the distribution that we would like
to sample from and the one that is actually sampled) is fixed in advanced and known to both the
client and the server.

The previously mentioned results show that classical randomized algorithms cannot sample
efficiently from certain distributions, unless the polynomial hierarchy collapses. Importantly, those
distributions can be efficiently sampled by a quantum computer. Using these results we can prove
the following:

Theorem 3. There does not exist a GES for exact BosonSampling, leaking at most the size of
the input, unless PH collapses at the 4th level.

For this theorem we are assuming that the server samples exactly not approximately and hence
the GES allows the client to obtain samples from the distribution defined in the BosonSampling
problem (as opposed to a distribution which is close to it). Formally, we need to first define the
notion of GES for sampling problems, since the definition we have is for deterministic functions.

Definition 6 (Generalised Encryption Scheme for Sampling Problems). A generalised encryption
scheme for sampling problems is a two party protocol between a classical client C, and an unbounded
server S, characterized by:

• A collection of probability distributions (Dx)x∈{0,1}∗, where Dx is a distribution over

{0, 1}poly(|x|).

• A cleartext input x ∈ {0, 1}∗, specifying a particular distribution Dx.

• An expected polynomial-time key generation algorithm K which works as follows: for any x ∈
{0, 1}∗, with probability greater than 1/2 + 1/poly(|x|) we have (k, success) ← K(x), where
k ∈ {0, 1}poly(|x|). If the algorithm does not return success then we have (k′, fail) ← K(x),
where k′ ∈ {0, 1}poly(|x|).

9

• A polynomial-time deterministic algorithm E which works as follows: for any x ∈ {0, 1}∗,
k ∈ {0, 1}poly(|x|) and s ∈ {0, 1}poly(|x|) we have that y ← E(x, k, s), where y ∈ {0, 1}poly(|x|).

• A polynomial-time deterministic decryption algorithm D, which works as follows: for any
x ∈ {0, 1}∗, k ∈ {0, 1}poly(|x|) and s ∈ {0, 1}poly(|x|) we have that z ← D(s, k, x), where
z ∈ {0, 1}poly(|x|).

• A closeness bound ε ≥ 0 specifying the variation distance between the ideal distribution Dx
that the client would like to sample from and the one obtained in the protocol.

And satisfying the following properties:

1. There are m rounds of communication, such that m = poly(|x|). Denote the client’s message
in round i as ci and the server’s message as si.

2. On cleartext input x, C runs the key generation algorithm until success to compute a key
(k, success) = K(x). This happens before the communication between C and S is initiated,
and the key k is used throughout the protocol.

3. In round i of the protocol, C computes ci = E(x, k, si−1), where si−1 denotes the server’s
responses up to and including round i−1, i.e. 〈s0, s1...si−1〉. We assume that s0 is the empty
string. C then sends ci to S.

4. In round i of the protocol, S responds with si, such that si ∈ {0, 1}poly(|x|). Additionally,
the server’s responses are drawn probabilistically from a distribution which is consistent with
property 5.

5. At the end of the protocol, C computes z ← D(sm, k, x) and we have that z is a sample from
some distribution Cx such that ‖Cx −Dx‖ ≤ ε.

With this definition it is clear that in Theorem 3 the collection of distributions are those defined
by BosonSampling and the closeness bound is taken to be zero (ε = 0). Importantly, unlike the
definition for decision problems there is no requirement that the “correct output” is obtained with
high probability since in this case there is no “correct output” to some deterministic function.
Instead, the equivalent notion to “obtaining the correct outcome with high probability” is asking
that the variation distance ε be small. For BosonSampling, having a GES entails the following:

• The client’s input x is essentially the column-orthonormal matrix A from Definition 10 which
specifies a linear optics network and hence a distribution Dx. This input is encrypted and
sent to the server.

• The server has the ability to “query” the BosonSampling oracle O from Definition 10. The
oracle receives as input a description of the linear optics network and a random string and
returns a sample from the distribution obtained by measuring the number of photons per
mode in the network. We say “query” because if the server is a quantum computer then
it does not query some deterministic function O with an input and random string, since
the randomness is intrinsic to the computation. However, since the client only specifies the
input distribution (in encrypted form) one can model the server as if it were querying the
deterministic oracle O with external randomness.

• After a number of rounds of interaction which is polynomial in the size of the optical network
the client obtains a sample from the distribution Dx.

The proof of Theorem 3 relies on showing that if such a GES existed then the BosonSampling
oracle O could be simulated in NP/poly∩ coNP/poly. Combining this with the result of Theorem 7
and other known relations between complexity classes leads to a collapse of the polynomial hier-
archy. The proof can be found in Appendix 7.4.

10

In practice, however, if we want the server to solve a sampling problem for us we need not
require that he sample from the exact target distribution. Sampling from distributions which are
ε-close to the desired one is just as good, for small but non-zero ε. This is also evidenced in the
definitions of sampling classes as they are robust to small deviations from the target distribution.
For this case of approximate sampling we can show the following:

Lemma 1. For any sampling problem P which admits a GES, leaking at most the size of the index
x specifying the distribution to be sampled from, it is the case that P ∈ SampMA/poly.

The existence of a GES such that the client can obtain approximate samples from a distribution
that is efficiently sampleable by a quantum computer reduces to asking whether SampBQP ⊂
SampMA/poly, for which we have:

Lemma 2. If SampBQP ⊂ SampMA/poly and Conjecture 1 is true then PH collapses at the 4th
level.

The complete proofs can be found in Appendix 7.4.

4 Quantum GES

Lastly, motivated by the existence of UBQC for BQP problems, we would like to know which
functions admit a quantum GES or QGES. In a sense, this section is dedicated to ‘quantizing’ the
Abadi et al. result. First of all, we need to define what a QGES is:

Definition 7 (Quantum Generalised Encryption Scheme (QGES)). A quantum generalised en-
cryption scheme (QGES) is a two party protocol between a quantum client C, and an unbounded
server S, characterized by:

• A function f : ∆→ Σ, where ∆,Σ ⊆ {0, 1}∗.

• A cleartext input x ∈ Domain(f), for which the client wants to compute f(x).

• An expected polynomial-time key generation algorithm K which works as follows: for any
x ∈ Domain(f), with probability greater than 1/2+1/poly(|x|) we have (k, success)← K(x),
where k ∈ {0, 1}poly(|x|). If the algorithm does not return success then we have (k′, fail) ←
K(x), where k′ ∈ {0, 1}poly(|x|).

• A quantum polynomial-time algorithm QE, that takes as input classical bit strings and
produces as output a quantum state, which works as follows: for any x ∈ Domain(f),
k ∈ {0, 1}poly(|x|) we have that |y〉 ← QE(x, k), where |y〉 ∈ H and dim(H) = 2poly(|x|).

• A polynomial-time deterministic algorithm E which works as follows: for any x ∈
Domain(f), k ∈ {0, 1}poly(|x|) and s ∈ {0, 1}poly(|x|) we have that w ← E(x, k, s), where
w ∈ {0, 1}poly(|x|).

• A polynomial-time deterministic decryption algorithm D, which works as follows: for any
x ∈ Domain(f), k ∈ {0, 1}poly(|x|) and s ∈ {0, 1}poly(|x|) we have that z ← D(s, k, x), where
z ∈ {0, 1}poly(|x|).

And satisfying the following properties:

1. There are m rounds of communication, such that m = poly(|x|). Denote the client’s message
in round i as ci and the server’s message as si.

2. On cleartext input x, C runs the key generation algorithm until success to compute a key
(k, success) = K(x). This happens before the communication between C and S is initiated,
and the key k is used throughout the protocol. C then runs QE(x, k) to obtain a quantum
encryption of the input, |y〉 and sends it to S.

11

3. In round i of the protocol, C computes ci = E(x, k, si−1), where si−1 denotes the server’s
responses up to and including round i−1, i.e. 〈s0, s1...si−1〉. We assume that s0 is the empty
string. C then sends ci to S.

4. In round i of the protocol, S responds with si, such that si ∈ {0, 1}poly(|x|). Additionally,
the server’s responses are drawn probabilistically from a distribution which is consistent with
property 5.

5. At the end of the protocol, C computes z ← D(sm, k, x) and with probability 1/2+1/poly(|x|),
we have that z = f(x).

The definition of QGES is similar to both that of the GES and that of UBQC. In fact, it is
easy to see the following:

Lemma 3. UBQC is a QGES for f ∈ BQP leaking at most the size of the input x.

The proof can be found in Section 7.5. UBQC is in fact an instance of a more particular type
of QGES as it has the property of being an offline protocol. What this means is that the client can
send a quantum state to the server, representing an encryption of the input, and decide afterwards
which input it intends to use. Essentially the client is free to change its mind about the input and
not commit to a particular input when the protocol commences. More formally, we define offliness
as follows:

Definition 8 (Offline QGES). Let x1, x2 ∈ Domain(f) be two different inputs for f (x1 6= x2)
and let |y〉 ← QE(x1, k) be a quantum encryption of x1 with some compatible key k. A QGES is
offline if there exists a polynomial-sized quantum circuit which the client can apply locally on her
system after having sent |y〉 to the server, such that the state of her system and that of the servers
are compatible with her having chosen as input x2.

One might ask whether this property is not immediately satisfied by a QGES leaking only
the size of the input. Indeed, in the classical case, any encrypted string sent by the client to the
server must be compatible with all possible inputs of the same size. In other words, there exists
an efficient update procedure that the client can perform in order to switch from one input to
another. Thus, a GES leaking only the size of the input is implicitly offline in this view.

But the situation is different in the quantum case. The condition that the QGES leaks only
the size of the input to the server is equivalent to saying that the density matrix corresponding
to the quantum encryption, which the server receives, is the same for all inputs of the same size.
Since the density matrix is the same, that means that there exists a unitary which can map from
one purification of this state, corresponding to one input, to another, corresponding to a different
input. This unitary must be verifiable in the sense that the client can check (using a quantum
SWAP test) whether the unitary maps to the correct purification. In the classical case, this is
sufficient to ensure that the procedure is efficient, since the mapping is just flipping the bits of
one encryption key into another. In the quantum case, however, this unitary need not have a
polynomial-sized quantum circuit representation.

Offliness simply imposes that such a circuit exist. UBQC trivially satisfies this property, since,
no matter which input the client wants to use, it will always send random |+θ〉 states to the server.
In other words, the procedure QE(x, k) does not depend explicitly on x, only on |x|. Because
we know that functions which admit a GES are contained in the class NP/poly ∩ coNP/poly, it is
natural to ask what kind of containment we can find for functions which admit an offline QGES
such as UBQC. This leads us to the following result which we prove in Appendix 7.6:

Theorem 4. If f admits an offline QGES leaking at most the size of the input, then f ∈
QCMA/qpoly ∩ coQCMA/qpoly.

Of course, just like with Theorem 1, one can ask whether the class of interest should in fact
be BQPQCMA/qpoly∩coQCMA/qpoly since the BQP client is using the QGES as an oracle. But just

12

as BPPNP/poly∩coNP/poly = NP/poly ∩ coNP/poly it is the case that BQPQCMA/qpoly∩coQCMA/qpoly =
QCMA/qpoly ∩ coQCMA/qpoly, which we show at the end of Appendix 7.6. Note that the client
need not be a fully BQP-capable machine (and indeed, for UBQC the only quantum capabilities
of the client are to prepare single qubits), however this is the most general way in which we can
model it in our QGES.

Another aspect worth addressing is what happens if we drop the “offline” requirement. As
mentioned, that would imply that the mapping from one purification of the encrypted quantum
state to another can in principle be any unitary operation so long as the client can check that
the correct mapping was performed (with high probability). Having such a weak restriction on
this unitary makes it very difficult to impose an upper bound on the types of computations that
are allowed by such a scheme. Indeed, the offliness condition plays a crucial role in our proof of
Theorem 4. At the same time, it is arguably a very natural condition to have in any realistic
protocol. We therefore leave the online case as an open problem.

Theorem 4 can be viewed as a quantum version of Theorem 1 which, as mentioned, was used
by Abadi et al. to show that there can be no GES for NP-hard functions unless the polynomial
hierarchy collapses. As we have stated before, for quantum computers, the possibility of delegating
NP-complete problems makes, arguably, even more sense since Grover’s algorithm offers a quadratic
speed-up in solving such problems [33]. Alas, we show that even with a QGES, delegating such
problems seems unlikely. This is because of the following result:

Theorem 5. There can be no offline QGES, leaking at most the size of the input, for NP-hard

functions unless ΠP
3 ⊆ NPNPPromiseQMA

.

This is as close to a collapse of the polynomial hierarchy as one can reasonably hope to get,
given a quantum hypothesis. The proof is provided in Appendix 7.7.

Note that in the definition of offline QGES we merely assumed that there exists some efficient
quantum circuit which the client could apply to map one input to another. However, we never
explicitly stated that the client could come up with this circuit in polynomial time. If we also
added this condition then we would find that f ∈ BQP/qpoly (which is of course contained in
QCMA/qpoly ∩ coQCMA/qpoly). In this case, using a result of Aaronson and Drucker which is a
quantum version of the Karp-Lipton theorem [58], it follows that having such a QGES for NP-
hard functions leads to ΠP

2 ⊆ QMAPromiseQMA. Our proof of Theorem 5 uses similar techniques
and in fact strengthens the result of Aaronson and Drucker from NP ⊂ BQP/qpoly implies ΠP

2 ⊂
QMAPromiseQMA, to NP ⊂ BQP/qpoly implies ΠP

2 ⊆ NPPromiseQMA.

5 Implications for quantum verification

So far we have focused on protocols in which a client delegates a computation to a quantum server
while maintaining some level of privacy about the input to the computation. Of course, in a
realistic scenario the client would also be interested in the correctness of the computation. In
other words, even if the server does not learn the client’s input he might deviate from the protocol
and return incorrect results. How could the client detect such malicious behaviour?

When the client has a single-qubit preparation device, Fitzsimons and Kashefi showed that
the UBQC protocol can be made verifiable [21]. The extension they made was to embed certain
“trap qubits” into the graph state of the server. These traps are qubits which the server will
measure in the same basis in which they were prepared. This means that their outcomes are
deterministic and known only to the client. The key element is that the server cannot distinguish
trap qubits from the rest of the states in the computation because of the blindness property
provided by UBQC. Therefore the client can leverage this to test that the server performs his
entanglement and measurement operations correctly. This ensures that with high probability the
MBQC computation was successful. A schematic picture of this protocol, adapted from [17], is
shown in Figure 2.

13

Figure 2: Fitzsimons-Kashefi verification protocol

A number of other protocols have been proposed for the verification of quantum computations,
however they all either require some quantum communication between the client and the server,
or that the server is able to perform PSPACE-complete computations, or that the client is inter-
acting with more than one server [15, 32, 46, 47, 59]. The major open problem is whether a fully
classical client can verify the computations performed by a single server which is restricted to BQP
computations [60].

Because of the success of transforming UBQC into a verification protocol the hope was that
if one could develop a classical client version of UBQC then that protocol could also be made
verifiable. There was, in fact, another reason to favour such an approach, stemming from the
difference between classical and quantum authentication. To give a brief description, an authenti-
cation protocol involves two parties a sender, S, and a receiver, R sharing a common secret key.
S would like to send a message to R through an insecure channel such that R has the guarantee
that the message came from S and was not modified or replaced by some malicious party. For
the case of classical authentication, where the message, the key and the channel are all classical,
there exist protocols in which the message is not encrypted. Surprisingly, however, for quantum
authentication Barnum et al. showed that the message sent by S to R must be encrypted [61]. In
other words, if the message were not encrypted then an eavesdropper would be able to convince the
receiver to accept an incorrect message. We can see that in authentication we are in fact dealing
with a verification task. The receiver must verify the authenticity of his received message.

In fact, the similarity between verification and authentication is even more noticeable in one of
the first protocols for verifying quantum computations which relied on a modified authentication
scheme [15]. This protocol, by Aharonov et al. is based on the observation that verification can be
viewed as the client trying to authenticate the state U |ψ〉, where |ψ〉 is the client’s input and U is
the computation that the server should perform. This is illustrated in Figure 3. One could posit
that the similarity between verification and authentication would imply that quantum verification
requires some form of encryption. However, it has been shown that this is not true. A recent
protocol by Morimae and Fitzsimons for post-hoc quantum verification is able to verify arbitrary
BQP computations without the use of blindness or encryption [47]. Nonetheless, it is still interesting
to investigate whether it is possible to have a blind scheme for classical client verification.

Our result suggests that the answer is no. We have shown that the existence of a classical
client UBQC is contingent on the unlikely inclusion BQP ⊂ NP/poly ∩ coNP/poly, in the case
of decision problems, and the arguably more unlikely collapse of the polynomial hierarchy for
sampling problems. Therefore, should a protocol exist for classical client, single server quantum
verification, it will probably not rely on blindness as it does for UBQC. Some plausible alternatives
are the following:

• As with the proof that IP = PSPACE and hence that any PSPACE computation admits an
interactive protocol (albeit one requiring the server to do PSPACE-complete computations),
it might be possible to have a similar protocol in which the server is restricted to BQP

14

Figure 3: Similarity between quantum authentication and verification

computations [59]. The protocol would reveal the input and the computation to the server,
however the client would rely on the specific structure of the computation in order to check
certain properties that would determine its correctness.

• A recent protocol by Mantri et al. demonstrates how a completely classical client can dele-
gate an MBQC computation to a quantum server while retaining some secrecy about which
computation is being performed [44]. The protocol relies on the fact that measurements in
an MBQC graph are only partially ordered and there are multiple total orderings compatible
with this. This so-called flow ambiguity means that the server is uncertain about which
computation is being performed. Unlike UBQC, however, the client leaks more information
to the server than just the size of the input and computation.

• Both UBQC and the generalised encryption schemes considered in our paper assume
information-theoretic security. It is not implausible to imagine that one could design a
verification protocol which is “merely” computationally secure. Indeed, recent protocols for
quantum fully homomorphic encryption do rely on assumptions about the hardness of cer-
tain lattice problems even in the face of quantum computers [28, 38, 40]. Additionally, for a
more restricted class of quantum computations called instantaneous quantum computations,
IQP, Shepherd and Bremner proposed a procedure whereby a classical client can determine
whether the server has sampled from an IQP distribution. Their protocol also relies on com-
putational assumptions such as the hardness of a problem involving binary matroids [45].

6 Conclusions

The recent surge in development for both cryptography and quantum computation has seen signif-
icant overlap between the two fields. As scalable quantum computers get closer to reality we find
ourselves having to design more clever protocols for performing cryptographic tasks in the presence
of quantum computers. It therefore came as a surprise when Universal Blind Quantum Computing,
introduced almost a decade ago in 2009, showed that quantum computation on encrypted data is
possible with information-theoretic security and minimal quantum requirements for the client.

Similar to the classical setting, quantum computing on encrypted data, whether through UBQC
or other techniques, has led to several novel directions such as verification of outsourced quantum
computations [21, 27] as well as quantum fully homomorphic encryption [28, 38]. This represents
a key application for emerging quantum technologies as it provides information-theoretic security
for delegated computation, whereas classical approaches seem to fail in doing so. Of course, the
trade off is that in all of these cases the client is required to prepare or measure single qubit states.
Is it really the case that no classical encryption scheme leads to the same functionality? Does it
mean that information-theoretically secure verification of encrypted computation or information-
theoretically secure QFHE could not be obtained through a classical encoding?

15

The central result of our paper was to show that this is indeed the case, unless some very
unlikely containments of complexity classes occur. We relied heavily on the major results of
Abadi et. al that bridged computational complexity and efficient hiding by showing that no NP-
hard function could be delegated efficiently and securely by a BPP client, unless the polynomial
hierarchy collapses. Similarly, our result links the concept of quantum hiding with the complexity
of computing and provides a new approach towards the characterisation of quantum complexity
classes within the same formalism.

We also provided an upper bound for the types of functions computable through UBQC and
the more general QGES. We saw that the addition of quantum communication makes the QGES
more powerful than its classical counterpart allowing for the delegation of BQP computations.
However, it seems no more powerful than a GES at delegating NP-hard functions. The latter
result is essentially a quantized version of the Abadi et. al no-go theorem. Additionally, we
explained how this impacts the design of any future protocol for classical client verification of
quantum computation in the single server case. Such a protocol would have to either not be blind
in the UBQC sense, or not enforce information-theoretic security.

As open problems we mention the following:

• Is it possible to strengthen our result from Theorem 2 to provide an oracle separation between
BQP and NP/poly?

• We showed that functions which admit an offline QGES are contained in QCMA/qpoly ∩
coQCMA/qpoly. What upper bound can be placed on functions which admit an online
QGES?

• What if we consider a QGES in which the client’s quantum message is logarithmic in the
size of the input (while the classical communication is still polynomial)? Can such a scheme
allow for the evaluation of arbitrary BQP functions?

• Suppose we relax the demand for information-theoretic security, and settle for security under
a cryptographic assumption. In that case, is it possible to do blind universal QC using only
classical communication between client and server?

Acknowledgements

We would like to thank the following people for useful discussions and comments: Petros Wallden,
Matty J Hoban, Kousha Etessami, Marc Kaplan, Ronald de Wolf, Urmila Mahadev, Umesh Vazi-
rani and Pia Kullik. We are especially grateful to Urmila Mahadev and Umesh Vazirani for pointing
out a mistake in the initial proof of Theorem 4, which we have corrected. A.G. is in particular
grateful to Petros Wallden and Matty J Hoban for their patience and explanations when answer-
ing several questions. E.K. acknowledges funding through EPSRC grant EP/N003829/1. S.A. is
supported by a Vannevar Bush Fellowship from the US Department of Defense.

7 Appendix

7.1 Preliminaries

7.1.1 Quantum information and computation basics

In this subsection we provide a few basic notions regarding quantum information and quantum
computation and refer the reader to the appropriate references for a more in depth presentation
[62,63].

A quantum state (or a quantum register) is a unit vector in a complex Hilbert space, H. We
denote quantum states, using standard Dirac notation, as |ψ〉 ∈ H, called a ‘ket’ state. The dual
of this state is denoted 〈ψ|, called a ‘bra’, and is a member of the dual space H⊥. We will only

16

be concerned with finite-dimensional Hilbert spaces. Qubits are states in two-dimensional Hilbert
spaces. Traditionally, one fixes an orthonormal basis for such a space, called computational basis,
and denotes the basis vectors as |0〉 and |1〉. Gluing together systems to express the states of
multiple qubits is achieved through tensor product, denoted ⊗. The notation |ψ〉⊗n denotes a state
comprising of n copies of |ψ〉. If a state |ψ〉 ∈ H1 ⊗ H2 cannot be expressed as |a〉 ⊗ |b〉, for any
|a〉 ∈ H1 and any |b〉 ∈ H2, we say that the state is entangled.

Quantum mechanics dictates that there are two ways to change a quantum state: unitary
evolution and measurement. Unitary evolution involves acting with some unitary operation U
(so UU † = U †U = I, where the † operation denotes the hermitian adjoint, obtained through
transposing and complex conjugating) on |ψ〉, thus producing the mapping |ψ〉 → U |ψ〉.

Measurement, in its most basic form, involves expressing a state |ψ〉 in a particular orthonormal
basis, B, and then choosing one of the basis vectors as the state of the system post-measurement.
The index of that vector is the classical outcome of the measurement. The post-measurement
vector is chosen at random and the probability of obtaining a vector |v〉 ∈ B is given by | 〈v|ψ〉 |2.
There are more general types of measurement, however this is the only type that is relevant to our
paper.

States denoted by kets are also referred to as pure states as they are states of maximal informa-
tion for a quantum system. In other words, having a pure state for a particular quantum system
means knowing all there is to know about the state of that system. When maximal information is
not available, states are referred to as mixed and can be represented using density matrices. These
are positive semidefinite, trace one, hermitian operators. The density matrix of a pure state |ψ〉 is
ρ = |ψ〉 〈ψ|.

An essential operation concerning density matrices is the partial trace. This provides a way of
obtaining the density matrix of a subsystem that is part of a larger system. Partial trace is linear,
and is defined as follows. Given two density matrices ρ1 and ρ2 with Hilbert spaces H1 and H2,
we have that:

ρ1 = Tr2(ρ1 ⊗ ρ2) ρ2 = Tr1(ρ1 ⊗ ρ2) (1)

In the first case one is ‘tracing out’ system 2, whereas in the second case we trace out system
1. This property together with linearity completely defines the partial trace. For if we take any
general density matrix, ρ, on H1 ⊗H2, expressed as:

ρ =
∑
i,i′,j,j′

aii′jj′ |i〉1
〈
i′
∣∣
1
⊗ |j〉2

〈
j′
∣∣
2

(2)

where {|i〉} ({|i′〉}) and {|j〉} ({|j′〉}) are orthonormal bases for H1 and H2, if we would like to
trace out subsystem 2, for example, we would then have:

Tr2(ρ) = Tr2

 ∑
i,i′,j,j′

aii′jj′ |i〉1
〈
i′
∣∣
1
⊗ |j〉2

〈
j′
∣∣
2

 =
∑
i,i′,j

aii′jj |i〉1
〈
i′
∣∣
1

(3)

An important result, concerning the relationship between mixed states and pure states which
we use in our paper, is the fact that any mixed state can be purified. In other words, for any
mixed state ρ over some Hilbert space H1 one can always find a pure state |ψ〉 ∈ H1 ⊗ H2 such
that dim(H1) = dim(H2)5 and:

Tr2(|ψ〉 〈ψ|) = ρ (4)

Moreover, the purification |ψ〉 is not unique and so another important result is the fact that if
|φ〉 ∈ H1 ⊗ H2 is another purification of ρ then there exists a unitary U , acting only on H2 (the
additional system that was added to purify ρ) such that:

|φ〉 = (I ⊗ U) |ψ〉 (5)

5One could allow for purifications in larger systems, but in our paper we restrict attention to same dimensions.

17

We will refer to this as the purification principle.
Quantum computation is most easily expressed in the quantum gates model. In this frame-

work, gates are unitary operations which act on groups of qubits. As with classical computation,
universal quantum computation is achieved by considering a fixed set of quantum gates which can
approximate any unitary operation up to a chosen precision. The most common universal set of
gates is given by:

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
H =

1√
2

[
1 1
1 −1

]
T =

[
1 0

0 eiπ/4

]
CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

In order, the operations are known as Pauli X and Pauli Z, Hadamard, the T-gate and controlled-
NOT. Note that general controlled-U operations are operations performing the mapping |0〉 |ψ〉 →
|0〉 |ψ〉, |1〉 |ψ〉 → |1〉U |ψ〉. The matrices express the action of each operator on the computational
basis. A classical outcome for a particular quantum computation can be obtained by measuring
the quantum state resulting from the application of a sequence of quantum gates.

The final notion which needs mentioning is the quantum SWAP test. This is a simple procedure
for determining whether two quantum states |ψ〉 , |φ〉 ∈ H are close to each other or far apart. We
express closeness in terms of the absolute value of their inner product | 〈ψ|φ〉 |. The test involves
preparing a qubit in the state (|0〉+ |1〉)/

√
2 and performing a controlled-SWAP operation between

that qubit and the state |ψ〉 |φ〉. SWAP is defined by the mapping |ψ〉 |φ〉 → |φ〉 |ψ〉, so we obtain
the state:

|0〉 |ψ〉 |φ〉+ |1〉 |φ〉 |ψ〉√
2

If one then applies a Hadamard operation to the first qubit and measures it in the computational
basis it can be shown that the probability of obtaining outcome |0〉 is (1 + | 〈ψ|φ〉 |2)/2.

7.1.2 Measurement-based quantum computation

As UBQC is expressed in the model of measurement-based quantum computation (MBQC), de-
fined in [50, 51], we provide a brief description of this subject. Unlike the quantum gates model
of computation, in MBQC a given computation is performed by measuring qubits from a large
entangled state. Traditionally, this state consists of |+〉 = 1√

2
(|0〉+ |1〉) qubits entangled using the

CZ operation, where:

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

They are then measured in the basis (|+φ〉 , |−φ〉), where |±φ〉 = 1√

2
(|0〉 ± eiφ |1〉). These measure-

ments are denoted as M(φ), and depending on the value of φ chosen for each qubit one can perform
universal quantum computation. For this to work, the entangled qubits need to form a universal
graph state. Such a state consists, for example, of N qubits in the state |+〉. These qubits have been
entangled according to some graph structure G, such that there exist measurement patterns (an
order for measuring the qubits in G and the corresponding measurement angles) for each quantum
computation consisting of O(N) gates.

In other words, a universal graph state allows one to perform any quantum computation up
to a certain size. An example of such a state is the brickwork state, defined in [14] from which
we illustrate Figure 4. To be more precise, suppose we would like to perform some quantum
computation described by a circuit consisting of N gates. The corresponding MBQC computation
consists of the following steps:

1. Initialization. Prepare O(N) qubits, each in the state |+〉.

18

...
...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4: Brickwork state

2. Entanglement. Entangle the qubits according to some universal graph state structure, such
as the brickwork state.

3. Measurement. Measure each qubit, i using M(φi), for some angle φi determined based on
the computation we would like to perform. The angles φi are referred to as the computation
angles.

4. Correction. Apply appropriate corrections (Pauli X and Z operations) to the qubits, based
on the measurement outcomes.

The last two steps can be performed together. This is because if we would like to apply a Pauli X
correction to a qubit, i, before measuring it, we can simply measure it using M(−φi). Similarly,
if we would like to apply a Pauli Z correction to that same qubit we measure it using M(φi + π).
Therefore, the general measurement performed on a particular qubit will be M((−1)sφi + rπ),
where s, r ∈ {0, 1} are determined by previous measurement outcomes.

As a final remark, it should be noted that one can translate quantum circuits into MBQC pat-
terns in a canonical way. For instance, the universal gate set mentioned in the previous subsection,
and hence any quantum circuit comprising of those gates, can be translated directly into MBQC.
See for example [14] for more details.

7.1.3 Complexity theory

We refer the reader to the Complexity Zoo [30] for the definitions of standard complexity classes.
Throughout most of the paper we are working with advice classes such as P/poly or NP/poly.

These two classes correspond to computations that can be performed by polynomial-time deter-
ministic and non-deterministic Turing machines, receiving an advice string for each input length.
More formally, for some complexity class C, we say that a language L is in C/poly if there exists a
language L′ ∈ C and a set of advice strings {an}n≥1 with |an| = poly(n) and x ∈ L iff (x, a|x|) ∈ L′.
In other words, the machines will make use of an advice string of length polynomial in the size of
the input that only depends on the size of the input. If we fix this polynomial to be O(nd), for
some constant d, then the corresponding classes will be P/O(nd) or NP/O(nd).

We will also encounter MA/rpoly, where the advice is a polynomial-sized string that is drawn
randomly from a probability distribution which depends only on the input size. So in the above
definition, instead of having a set of advice string {an}n≥1, we will have a set of probability
distributions {Pn}n≥1, such that Pn is a distribution over {0, 1}poly(n) and the advice received for
some input x is drawn from P|x|. The decisions for acceptance or rejection of an input is now
probabilistic, hence MA replaces NP. An important result concerning these classes, which we use
in the paper, is the following:

19

Theorem 6 (Aaronson [64]). MA/rpoly = MA/poly = NP/poly

Lastly, concerning advice, we can also have quantum advice such as with the class QCMA/qpoly.
In this case, we have a set of quantum states {ρn}n≥1, such that ρn is a density matrix over a
2poly(n)-dimensional Hilbert space (i.e. a state of polynomially many qubits), and for some input x
the advice state will be ρ|x|.

Complements of classes are denoted by adding the prefix co, so for instance coNP/poly is the
complement of NP/poly.

We also refer to oracle classes in the paper. Briefly, an oracle is some black box which can be
invoked by a Turing machine in order to obtain the solution to some problem in one time step.
For example, the class of problems which can be solved by a deterministic polynomial-time Turing
machine with access to some oracle O : {0, 1}∗ → {0, 1} is denoted PO. If O is an oracle for some
NP-complete problem, then the corresponding class is PNP. Oracles are used, among other things,
for defining the polynomial hierarchy PH. So the zeroth level of the polynomial hierarchy is defined

as ΣP
0 = ΠP

0 = P, whereas an arbitrary level, k is defined by ΣP
k = NPΣP

k−1 and ΠP
k = coNPΣP

k−1 .
We now transition from decision problems to sampling problems. These are problems for which

we specify a distribution and would like to obtain a sample from that distribution. Formally, we
state the definition from [65] of polynomial-time classical and quantum sampling:

Definition 9 ([65] Sampling Problems, SampP, and SampBQP). A sampling problem S is a
collection of probability distributions (Dx)x∈{0,1}∗, one for each input string x ∈ {0, 1}n, where

Dx is a distribution over {0, 1}p(n), for some fixed polynomial p. Then SampP is the class of
sampling problems S = (Dx)x∈{0,1}∗ for which there exists a probabilistic polynomial-time algorithm

B that, given
〈
x, 01/ε

〉
as input, samples from a probability distribution Cx such that ‖Cx −Dx‖ ≤ ε.

SampBQP is defined the same way, except that B is a quantum algorithm rather than a classical
one.

Similar definitions can be given for SampMA, SampQMA and so on. See for example Definition 11.
An important theorem regarding the possibility of having efficient classical procedures for sampling
distributions resulting from quantum circuits was proven by Aaronson and Arkhipov:

Theorem 7 ([31] Aaronson, Arkhipov). SampP = SampBQP implies that estimating the perma-
nent of a Gaussian matrix is in BPPNP.

The latter statement is believed to be unlikely since it is known that computing the permanent of
a matrix is a #P-complete problem and it is conjectured that estimating the permanent is equally
as hard:

Conjecture 1 ([31,65] Aaronson, Arkhipov). Estimating the permanent of a Gaussian matrix is
#P-complete.

The proof of Theorem 7 relies on the BosonSampling problem. In BosonSampling, identical photons
(bosons) are sent through a linear optics network and non-adaptive measurements are performed
to count the number of photons in each mode. The network can be specified by a matrix, denoted
A, from a set of m× n column-orthonormal matrices Um,n. Here m denotes the number of modes
in the circuit and n the number of photons. One then also specifies a basis state S = (s1, ...sm),
where si denotes the number of photons in mode i (so s1 + ... + sm = n). This then defines the
distribution DA representing the probability of measuring the state S in the circuit defined by A
(i.e. measuring si photons in mode i for all modes). BosonSampling is therefore the problem of
sampling either exactly or approximately from this distribution [31]. Aaronson and Arkhipov then
define a BosonSampling oracle which we also use in our results and so we include the definition
here:

Definition 10 ([31] BosonSampling oracle). Let O be an oracle that takes as input a string

r ∈ {0, 1}poly(n), an m × n matrix A ∈ Um,n, and an error bound ε > 0 encoded as 01/ε. Also,

20

let DO (A, ε) be the distribution over outputs of O if A and ε are fixed but r is uniformly random.
We call O an exact BosonSampling oracle if DO (A, ε) = DA for all A ∈ Um,n. Also, we call O
an approximate BosonSampling oracle if ‖DO (A, ε)−DA‖ ≤ ε for all A ∈ Um,n and ε > 0.

The oracle is a deterministic function which takes as input a description of the optical network
as well as the randomness used for sampling. Importantly O uses no intrinsic randomness other
than the one provided as input. The final result which we utilize from [31] is:

Theorem 8 ([31] Aaronson, Arkhipov). If O is the oracle from Definition 10 then P#P ⊆ BPPNPO .

In other words, if a BPP machine can simulate the behavior of O then P#P ⊆ BPPNP, but since
PH ⊆ P#P, from Toda’s theorem [66], it would follow that the polynomial hierarchy is contained
in BPPNP which implies a collapse at the third level (because BPP ⊆ ΣP

2 by the Sipser-Gács-
Lautemann theorem [67]).

7.2 Proof of Theorem 1

This proof is a simplified version of the one from [29].

Proof. Suppose that f admits a GES which leaks at most the size of the input. To show that
f ∈ NP/poly ∩ coNP/poly we prove that f ∈ NP/poly by constructing an NP/poly algorithm for f
which can also compute the complement of f (thus also proving containment in coNP/poly). We
start by first considering the one round case. In other words, the protocol works as follows:

1. The client runs K(x) until success to produce an encryption key k.

2. The client computes the encrypted string y ← E(x, k, ‘’) (where the last entry is the empty
string) and sends it to the server.

3. The server sends a response r.

4. The client decrypts his response obtaining z ← D(r, k, x). With probability greater than
1/2 + 1/poly(|x|) we have that z = f(x).

Given that this is true, consider the following algorithm which takes x as input and produces f(x)
with probability greater than 1/2 + 1/poly(|x|):

• Denoting |x| = n, the algorithm receives as advice some string xn ∈ Domain(f) such that
|xn| = n as well as rn, where rn is the server’s response when being sent yn ← E(xn, kn, ‘’).
Here kn is simply some key which can be used to encrypt xn. The only reason we include xn
as part of the advice is so that we can check if xn = x. If this is the case then the algorithm
simply decrypts rn obtaining f(x) with high probability. The next steps assume that xn 6= x.

• From the assumption that the GES leaks at most the size of the input, there must be some
key k, such that yn ← E(x, k, ‘’). This is because if there did not exist such a key, then if the
server received yn he would know that the input could not be x and hence more information
would be leaked. Since |k| = poly(n), the algorithm can non-deterministically search for k.

• The algorithm now simply computes z ← D(rn, k, x), which by definition of the GES, will
be f(x) with probability greater than 1/2 + 1/poly(n).

We have therefore given an MA/rpoly algorithm for computing f(x). The MA part comes from
the non-deterministic search for k and the fact that the algorithm is probabilistic. The advice is
rpoly because the server’s response is drawn from some probability distribution (which depends
only on the length of the input). However, we know from Theorem 6 that MA/rpoly = NP/poly,

21

therefore f ∈ NP/poly. Since we can do the same thing for the complement, we also have that
f ∈ coNP/poly6.

We now need to generalize this to the case where the client and the server interact for a
polynomial number of rounds. Because the protocol is leaking at most the size of the input,
denoted n, any transcript of the protocol will only depend on n. Therefore we can make the
algorithm’s advice to be a complete transcript of the protocol drawn from the distribution of all
possible transcripts for input of length n. We would then again search non-deterministically for a
key k which would make the input x compatible with this transcript. From the definition of the
GES this again guarantees that we obtain the right outcome with probability 1/2 + 1/poly(|x|).

In the original paper of Abadi et al., the proof of this step is more elaborate and uses universal
hash functions [29]. The reason is that, at the time, the result MA/rpoly = NP/poly was unknown
and so their proof uses hash functions in order to “derandomize” the algorithm and produce the
correct value for f(x) deterministically.

As mentioned, since the client is a BPP machine and the GES is capable of solving NP/poly ∩
coNP/poly problems, we would like to show that:

Lemma 4. BPPNP/poly∩coNP/poly = NP/poly ∩ coNP/poly

Proof. Clearly NP/poly ∩ coNP/poly ⊆ BPPNP/poly∩coNP/poly, so what we need to show is that
BPPNP/poly∩coNP/poly ⊆ NP/poly ∩ coNP/poly. To do this, we first use Adleman’s theorem
[49], that BPP ⊂ P/poly, which we know is relativizing and have that BPPNP/poly∩coNP/poly ⊆
P/polyNP/poly∩coNP/poly. Next, it is easy to show that P/polyNP/poly∩coNP/poly ⊆ PNP/poly∩coNP/poly.
This is because the advice received by the P/poly machine can just as easily be obtained from the
NP/poly ∩ coNP/poly oracle. In other words, for any given input x and advice a for the P/poly
machine, the P machine can simply query the NP/poly∩coNP/poly oracle with x in order to obtain
the same advice a7. It then simulates the P/poly machine.

We have therefore reduced our problem to showing that PNP/poly∩coNP/poly ⊆ NP/poly ∩
coNP/poly. This can be done by adapting Brassard’s proof [48] that PNP∩coNP = NP ∩ coNP.
The essential part of that proof is to show that PNP∩coNP ⊆ NP, while the containment in coNP
follows by complementation. The idea is that for any PNP∩coNP algorithm, A, deciding some lan-
guage, we can devise an NP algorithm, NA, which also decides that language.

The NA algorithm will simulate A until it makes a query to the NP ∩ coNP oracle. At this
point NA can non-deterministically guess the response to this query. To do so, note that if some
language L ∈ NP∩ coNP then it is the case that L ∈ NP and Lc ∈ NP, where Lc is the complement
of L. In other words, there exist non-deterministic algorithms NL and NLc for deciding L and
Lc, respectively. Assuming A’s query is for the language L, NA will simulate NL, and for each
non-deterministic branch of this simulation it will then also simulate NLc . Since L and Lc are
complementary, it cannot happen that both theNL and theNLc parts of the branches are accepting.
We will therefore have branches in which both NL and NLc were rejecting and branches in which
either NL was accepting or NLc was accepting. These latter branches determine the answer to the
query for the NP ∩ coNP oracle. The NA algorithm will continue simulating A on these branches
and reject on all others.

We can see that the above reasoning would also work if the oracle was NP/poly ∩ coNP/poly
and the algorithm NA were an NP/poly algorithm receiving some advice string whose length
is polynomial in the size of the input. Our modified NA can continue to simulate the ora-
cle queries if we assume that the advice it receives is the concatenation of advices received by
the NP/poly ∩ coNP/poly oracle for all queries. Since the number of queries is polynomial, the
concatenation will also be polynomially bounded and hence constitutes a valid advice string for

6As mentioned in the main text, these containments are valid whenever f outputs one bit, corresponding to a
decision problem. For general functions having a larger range, the technically correct containments would be in the
relational versions of NP and coNP.

7The fact that the oracle responds with a single bit (acceptance or rejection) is not a problem, since the P machine
can query the oracle for each bit of a.

22

an NP/poly algorithm. Therefore PNP/poly∩coNP/poly ⊆ NP/poly and through complementation
PNP/poly∩coNP/poly ⊆ NP/poly ∩ coNP/poly.

Because BPPNP/poly∩coNP/poly ⊆ PNP/poly∩coNP/poly, our result follows immediately.

7.3 Proof of Theorem 2

In order to prove Theorem 2 we will construct an oracle using a version of the complement of
Simon’s problem [11]. Simon’s problem is the following: given a function f : {0, 1}n → {0, 1}n (for
some n ∈ N) which is promised to be either 1-to-1 or have Simon’s property (f is 2-to-1 and there
exists some s ∈ {0, 1}n, s 6= 0n, such that for x 6= y, f(x) = f(y) iff x = s ⊕ y), decide which is
the case. In particular, for Simon’s problem, the deciding algorithm should accept if the function
has Simon’s property and reject if is a 1-to-1 function. The complement of this problem simply
flips these two conditions. If one is not given an explicit description of f but restricts access to
this function through an oracle then Simon’s problem can be used to separate BPP from BQP. To
be precise, the oracle is some function O : {0, 1}∗ → {0, 1}∗ such that for n ∈ N, if we consider
O restricted to the domain {0, 1}n, denoted On : {0, 1}n → {0, 1}n, On is either a 1-to-1 function
or a function satisfying Simon’s property. A language which is then contained in BQPO but not
in BPPO is L(O) = {0n|On is a function with Simon’s property} as shown in [11]. In fact, the
complement of this language8 can be used to separate BQPO and NPO [54]. The reason for this is
that while there is a witness for a function with Simon’s property, namely the string s, there does
not exist a witness for a general 1-to-1 function (in the relativized setting).

In our case, we would like to separate NP/polyO and BQPO. The intuition is the following:
instead of considering a function On for each input length n, we consider a function Ox, for each
input string x ∈ {0, 1}n. In other words, for a fixed input length, n, there will be 2n functions
which need to be decided. But the NPO machine receives only a polynomial amount of advice,
which is the same for all of these 2n functions. Therefore this advice should be insufficient to help
the NPO machine in deciding all of these inputs. Formalizing this intuition for any polynomial
is problematic, as will become clear later in this appendix. Instead, if we fix the degree of the
polynomial, then we can prove a separation.

We start by showing the following:

Lemma 5. There exists an oracle O, based on the complement of Simon’s problem, such that
BQPO 6⊆ NPO.

Proof. The separation of BQP and NP with respect to an oracle has been shown a number of times
before, [10, 68, 69], including with the complement of Simon’s problem. However, we prove this
lemma for our particular version of Simon’s problem where instead of assigning a function to each
input length, we assign different functions to different inputs.

We proceed by defining an oracle O and a language which we refer to as the complement of
Simon’s problem or coSimon(O), such that coSimon(O) ∈ BQPO and coSimon(O) 6∈ NPO. We
start with the latter as it also clarifies what the oracle should do:

coSimon(O) = {〈1n, i〉 |i ∈ {0, 1}n and f defined as f(x) ≡ O(1n, i, x) is a 1-to-1 function} (6)

Strictly speaking, the problem we are defining is a promise problem, so the set defined above is
the set of yes instances to the problem, whereas the set of no instances is not the complement but
the set:

{〈1n, i〉 |i ∈ {0, 1}n and f defined as f(x) ≡ O(1n, i, x) is a Simon function} (7)

Here, by “Simon function” we mean a function having Simon’s property.
It is clear from this definition that the oracle O is the one providing the functions for which

we want test whether they are 1-to-1 or have Simon’s property. Of course, the whole point is to

8Note that Simon’s problem is a promise problem, so when speaking about the complement of L(O) we are in
fact referring to Lc(O) = {0n|On is a 1-to-1 function}.

23

restrict access to the descriptions of those functions and force the algorithm solving the problem to
perform queries to the oracle. It is also clear that for any such O, coSimon(O) will be contained
in BQPO since we can just run Simon’s algorithm on the given input and flip acceptance and
rejection. The algorithm will be linear in the size of the input. As is standard in quantum query
complexity, we assume that the behaviour of the quantum oracle is to perform the unitary operation
|1n〉 |i〉 |x〉 |y〉 →O |1n〉 |i〉 |x〉 |O(1n, i, x)⊕ y〉.

In general, the oracle O can be viewed as some function taking as input the tuple (n, i, x) and
outputting fi(x), where fi : {0, 1}n → {0, 1}n is a function which is either bijective or has Simon’s
property. Essentially n, which is given in unary, specifies the domain size of our functions, i is
an index for a particular function and x is the value on which we evaluate fi. These last two
elements of the tuple are specified in binary and the oracle should be defined for all n ∈ N and all
i, x ∈ {0, 1}n. We will denote the set of functions used by the oracle for domain size n as Fn, in
other words:

Fn = {fi|i ∈ {0, 1}n and fi is defined as fi(x) ≡ O(1n, i, x)} (8)

What are we going to do next is construct an adversarial oracle O, which is equivalent to defin-
ing the family of sets {Fn}n∈N, in such a way that every non-deterministic Turing machine using
the oracle O fails to decide correctly coSimon(O). This is a standard diagonalization argument.

Since the set of non-deterministic Turing machines is countable we consider the k’th machine,
Mk, and check its behaviour when n = k + n0, for some n0 ≥ 0 which we define later on. Suppose
we take some index i ∈ {0, 1}n, and tentatively make the i’th function in Fk a 1-to-1 function. By
simulating the behaviour of Mk on this input we can check to see whether it accepts or rejects. If
it rejects, then we are done, since Mk will incorrectly decide this input. Conversely, if Mk accepts,
then by definition there exists a polynomial-sized path, in the non-deterministic computation tree
of the machine, which leads to acceptance. We denote this path as π, and denote the length of
π as l = poly(n). Mk can make at most l queries to O on this path which we can represent as a
list of tuples: [(x1, fi(x1)), (x2, fi(x2))...(xl, fi(xl))], where x1, ...xl are the queried variables. An
example of such a path is shown in Figure 5.

Figure 5: Computation tree with queries

We now simply consider a Simon function f ′ such that f ′(x1) = fi(x1), ...f ′(xl) = fi(xl). How
do we know such a function exists? The number of possible bit masks s such that f(x) = f(x⊕ s)
is 2n − 1 (since 0n is excluded). By having f ′ match fi on the l queried values it must be that f ′

produces different outputs for each of these values. Therefore for any i, j ≤ l, i 6= j it must be that
s 6= xi ⊕ xj . This means that there are l(l− 1)/2 values of s which are restricted. But l = poly(n)
and since s can take on 2n − 1 possible values, if n is sufficiently large so that 2n − 1 > l(l− 1)/2,

24

then we can simply choose an s which is not restricted. We therefore pick n0 to be large enough
so that 2n− 1 > l(l− 1)/2 and then take s to be some mask from the available 2n− 1− l(l− 1)/2.
We thus have a Simon function which produces the same responses to the queries on path π as
the 1-to-1 function fi. If we now just take fi to be f ′, then π will still be an accepting path and
therefore Mk will decide incorrectly on the input 〈1n, i〉.

Through this construction, all non-deterministic Turing machines will have some input on which
they decide coSimon(O) incorrectly, thus coSimon(O) 6∈ NPO concluding the proof.

Next, we prove:

Lemma 6. For each d ∈ N, there exists an oracle O, such that BQPO 6⊂ (P/O(nd))O.

Proof. To begin with, the class P/O(nd) is the class of problems solved by a deterministic
polynomial-time Turing machine M , which receives an advice of length O(nd), when the input
is of size O(n) (in our case the input size is 2n since we defined n as being the length of inputs to
the 1-to-1 and Simon functions).

In contrast to the previous case, instead of having the ability to non-deterministically choose
one of exponentially many paths, a polynomial-time Turing machine M receives some non-uniform
information to help it in deciding coSimon(O). Each advice determines a new behaviour for M
which can even involve a different sequence of queries to the oracle. What we want to show is that
irrespective of what advice M might receive, it still cannot always correctly decide coSimon(O). To
do this, we consider functions over a larger domain than just n-bit strings. In other words, for each
d we choose D > d such that the set Fn contains 2n functions of the form f : {0, 1}nD → {0, 1}nD

.
The oracle, which we now denote as Od, still receives queries of the form (1n, i, x), where |i| = n,
but now |x| = nD.

First we need to argue that the problem can still be decided in BQPOd . This is indeed the case,
since expanding the domains of the functions simply changes the running time of the quantum
algorithm from O(n) to O(nD). But since D is just a fixed constant, the algorithm still runs in
polynomial time, hence coSimon(Od) ∈ BQPOd .

The harder part is showing coSimon(Od) 6∈ P/O(nd). As before, we will prove this by diagonal-
ization by considering the set of all Turing machines (deterministic, this time) and showing that no
matter which advice the k’th machine receives it cannot correctly decide coSimon(Od). Of course,
we need to be cautious as each advice induces a different behaviour and one must consider the
oracle so that all of them fail to give the correct behaviour. This is in contrast with the previous
case where we were only interested in the behaviour on one accepting path of the non-deterministic
computation tree.

Suppose we take the k’th deterministic polynomial-time Turing machine, Mk, and examine
what happens for an input of length n = k + n0, where n0 will be chosen later (as before). Since

the advice is a binary string of length O(nd) there are 2O(nd) possible advice strings. Whichever
one Mk uses it will be the same for all 2n inputs of length n.

Let us now consider the first index of length n, namely 0n and assign a 1-to-1 function f :
{0, 1}nD → {0, 1}nD

to this index. We can inspect the behaviour of Mk for f and for each possible
advice string. If for more than half of the advice strings Mk rejects, then we keep f at index
0n. This basically means that half of all advice strings have been eliminated (there is at least one
input on which those strings lead to Mk deciding incorrectly). If, however more than half of all
advice strings make Mk accept f , we will attempt to turn f into a Simon function while keeping
acceptance for those advices. This will again lead to the elimination of half of all advice strings.

For each advice aj , where 1 ≤ j ≤ 2O(nd), Mk will make a sequence of polynomially many
queries to f . Denote that sequence of queries together with the responses as:

σj = [(x1j , f(x1j)); (x2j , f(x2j)); ...(xlj , f(xlj))]

where l = poly(n). We now consider a Simon function f ′ : {0, 1}nD → {0, 1}nD
such that for all j

in which Mk with advice aj and queries σj accepts and for all t ≤ l, we have that f ′(xtj) = f(xtj).

25

In other words f ′ will give identical responses to the queries which make Mk accept. Since t ranges
from 1 to l = poly(n) and j ranges from 1 to 2O(nd), the maximum number of variables which are

queried is of order 2O(nd). But unlike in the previous lemma, this number is exponential in the
size of the input, so how can we be sure that such a Simon function even exists? The trick is that
we can choose the domain size through D and make it large enough to accommodate for a Simon
function with this property.

As before, because f is bijective, no two queried variables will produce the same answer.
Therefore, there cannot be a bit mask s (|s| = nD) relating any pair of the 2O(nd) queries. These

will be the restricted values of s. The total number of such values is also of order 2O(nd), however
the total number of possible values is 2O(nD). So if we simply choose D such that 2O(nD) > 2O(nd)

then we can find a Simon function f ′ which matches the responses of f on the 2O(nd) queries.
So for this case if we use f ′ as the function for index 0n we will eliminate half of the possible

advice strings. Thus, no matter how Mk behaves we are able to eliminate half of all possible advice
strings with our first input of length 2n. Clearly this process can be repeated for the next index
and so on until the last index. We are effectively halving the number of potentially useful advice
strings with each index. Since we are doing this 2n times, to eliminate all possible advice strings
we just need to ensure that 2O(nd)/22n < 1 or 2O(nd) < 22n . To achieve this, simply choose n0

(recall that n = k + n0) large enough so that the inequality holds.
We therefore have that for all k, and for all possible advice strings, there will always be an

input to coSimon(Od) which is decided incorrectly, hence coSimon(Od) 6∈ P/O(nd).
Note that the same proof would not work for P/poly. A crucial element in our proof was the

fact that we can make D (which determines the size of the domain of each function) to be much
larger than d (which determines the length of the advice). But this is only possible because d is
fixed from the very beginning. If the advice length could be any arbitrary polynomial then no
matter what constant value of D we decided upon for our oracle, there would always be some
d > D and hence some polynomial length of the advice string for which the proof does not work.
A possible “fix” would be to make D part of the input in some form, so that it can increase. So if,
say, D was included in the input as a g(n) unary string, where g is some monotonically increasing
function, then for sufficiently large n, g(n) > d. But we immediately notice the problem with this
approach. While it is true that in this case the problem cannot be decided in P/polyO it would
also no longer be decidable in BQPO either. This is because the query complexity of the quantum
algorithm becomes O(ng(n)) which is no longer polynomial unless g is the constant function. Hence,
proving separation from P/poly seems to require some non-trivial modification of this proof or a
totally different technique.

Finally, we can prove Theorem 2 by combining the previous two results.

Proof of Theorem 2. The oracle Od will be defined in the exact same way as for the P/O(nd)
case. We go through the same line of reasoning as before. Take the k’th non-deterministic Turing
machine and examine its behaviour for some input 〈1n, i〉, where n = k + n0 and n0 is chosen as
before. For each index, we tentatively pick a 1-to-1 function and examine what the machine does
for each advice of length O(nd). If more than half of the advices lead to rejection then we keep the
bijective function and proceed to the next index. Otherwise we replace it with a Simon function.
In this case, for each advice in which the machine accepts, there will be some polynomial-sized
path leading to acceptance. We will pick one accepting path for each advice on which the machine
accepts and ensure that the Simon function produces the same responses to the queries on those
paths. This reduces the problem to the previous case. We know that for sufficiently large D such
a function exists and therefore each index will render half of the possible advice strings useless.
By also choosing n0 large enough we can make sure that all advice strings are eliminated and thus
that the problem is incorrectly decided by all non-deterministic Turing machines irrespective of
the advice (of length O(nd)). Thus coSimon(Od) 6∈ NP/O(nd), concluding the proof.

The advantage of this proof technique is that the NP/O(nd) case reduces to the P/O(nd) case.

26

We therefore conjecture that if there is some modification of our proof allowing it to work for
P/poly it would also work for NP/poly. Of course, this technique relies on the crucial aspect of
knowing an asymptotic bound for the polynomial which determines the length of the advice. This
allows us to always choose a larger polynomial for the size of the domain of the functions to be
queried.

7.4 Proof of Theorem 3

Proof. As mentioned in the main text, when considering a GES for exact BosonSampling it is as
if the server has the ability to query the oracle O from Definition 10. The client has the description
of an optical network, denoted x, and wants to obtain O(x, r) for a uniformly random r. As a slight
abuse of notation, we denote such a sample as O(x). If we assume that the client can obtain O(x)
through the GES, then there is an MA/rpoly algorithm for producing O(x). This follows from the
same reasons as in the proof of Theorem 1. From Theorem 6 we know that MA/rpoly = MA/poly
so in fact there is an MA/poly algorithm for O(x). But the MA/poly algorithm can be viewed as
an NP/poly algorithm that also receives a uniformly random string as input, which it uses as its
only source of randomness. In other words, for given x and r there exists an NP/poly algorithm
for computing O(x, r).

Combining this with the Aaronson and Arkhipov result of Theorem 7 we would have that
P#P ⊂ BPPNPNP

/poly. By Toda’s theorem this means PH ⊂ BPPNPNP
/poly and in particular

NPNPNP ⊂ BPPNPNP
/poly. But Adleman’s result, that BPP ⊂ P/poly [49], relativizes and so this

becomes equivalent to NPNPNP ⊂ PNPNP
/poly.

Lastly, this is just a more general version of the precondition in the Karp-Lipton theorem (that
if NP ⊂ P/poly then ΣP

2 ⊆ ΠP
2 and PH collapses at the second level [70]) and since we know that

result is also relativizing it follows that if the containment is true then ΣP
4 ⊆ ΠP

4 and the polynomial
hierarchy collapses at the fourth level.

We also prove the two related lemmas from the section on sampling problems. We start with
Lemma 1.

Proof of Lemma 1. First of all we need to define SampMA/poly. We will also be using
SampMA/rpoly. We define both these classes as well as the “base class” SampMA:

Definition 11 (SampMA, SampMA/poly and SampMA/rpoly). A sampling problem P defined by
the collection of distributions (Dx)x∈{0,1}∗ belongs to the class SampMA if there exists a probabilistic
polynomial-time algorithm A (known as Arthur) and a deterministic polynomial-time algorithm V
(known as verification algorithm) such that the following is true for all x ∈ {0, 1}∗ :

• If there exists a y ∈ {0, 1}poly(|x|) such that V accepts on input 〈x, y〉, then A on input〈
x, y, 01/ε

〉
, produces a sample from some Cx such that ‖Cx −Dx‖ ≤ ε.

• If for all y ∈ {0, 1}poly(|x|) V rejects on input 〈x, y〉, then A on input
〈
x, y, 01/ε

〉
, produces a

sample from some Cx such that ‖Cx −Dx‖ ≥ ε.

For the class SampMA/poly, A and V will also receive as input an advice string s ∈ {0, 1}poly(|x|)

which only depends on the length of x. Lastly, for SampMA/rpoly V is a probabilistic polynomial-
time algorithm and A produces the correct sample when V accepts with probability greater than 2/3
and an incorrect sample when V accepts with probability less than 1/3. Furthermore, both A and V
receive as input an advice string s ∈ {0, 1}poly(|x|), drawn from a distribution D|x| that only depends
on the size of the input x.

Similar to the proof of Theorem 1, for a problem that admits a GES it is easier to define an
algorithm that receives randomized advice. Therefore, we will give a SampMA/rpoly algorithm for
sampling problems P that admit a GES. To then show that P ∈ SampMA/poly we need to first
prove that SampMA/poly = SampMA/rpoly.

27

Lemma 7. SampMA/poly = SampMA/rpoly

Proof. In the decision case we already know that MA/poly = MA/rpoly = NP/poly (from Theo-
rem 6), but the equality among the corresponding sampling problems does not follow immediately.
This is because, when dealing with decision problems, for each input one only needs to decide
whether it belongs to a certain language or not. The proof is then a derandomization argument
whereby one can show that if a randomized algorithm (with randomized advice) can decide a prob-
lem with bounded error, then there is some deterministic advice which will make the algorithm
always decide correctly. In the case of sampling classes, however, the problems themselves are
not deterministic yes/no problems. Hence, we can never have a sampling algorithm that does not
utilize randomness. What we can show, however, is that the only randomness which is necessary
comes from the coin flips that Arthur performs and that the advice can be made deterministic.
We do this in a manner similar to the proof that MA/poly = MA/rpoly, from [64], by boosting and
derandomizing the verification circuit of a SampMA/rpoly algorithm.

Clearly SampMA/poly ⊆ SampMA/rpoly, since the randomized advice can simply be drawn from
a distribution peaked at a single point. We show the other direction. Consider a SampMA/rpoly
instance consisting of the tuple of algorithms (V,A) as per Definition 11. We know that V is a
BPP/rpoly machine acting on z = 〈x, y, r〉, where x is the input to the sampling problem, y is
the witness to be verified and r is the randomized advice. We are also assuming that 01/ε is part
of this input but ignore it for simplicity, as it does not affect the proof. Whenever A produces
a correct sample, V (z) accepts with probability greater than 2/3 and whenever A produces an
incorrect sample, V (z) accepts with probability less than 1/3. The probabilities, in this case,
are over the random string r ∈ D|x|, for some distribution D|x|. As in the proof of Theorem 6
from [64], define R = (r1, r2...rp(|x|)) to be a collection of independent samples from D|x|, such that
p(|x|) = |x|+ poly(|x|). Then, there exists a boosted verifier V ′ such that, whenever A produces a
correct sample, V ′(〈x, y,R〉) accepts with probability greater than 1−1/(2|x|+poly(|x|)) and whenever
A produces an incorrect sample V ′(〈x, y,R〉) accepts with probability less than 1/(2|x|+poly(|x|)).
Therefore, by a counting argument, there exists a fixed advice string r′ such that whenever A
produces a correct sample V (〈x, y, r′〉) accepts and whenever B produces an incorrect sample
V (〈x, y, r′〉) rejects. In other words, V is a P/poly algorithm. Hence, there exists a SampMA/poly
algorithm for each problem in SampMA/rpoly.

We have thus shown that SampMA/poly = SampMA/rpoly.

Returning to our proof of Lemma 1, suppose now that we have a GES for some sampling problem
P consisting of the distributions (Dx)x∈{0,1}∗ as per Definition 6. Throughout the proof we assume
that ε is known in advance to both the client and the server. We can define a SampMA/rpoly
algorithm (and hence a SampMA/poly algorithm) for P just like in the proof of Theorem 1. In
other words, consider a one round GES for P :

1. The client runs K(x) until success to produce an encryption key k.

2. The client computes the encrypted string y ← E(x, k, ‘’) (where the last entry is the empty
string) and sends it to the server.

3. The server sends a response r.

4. The client decrypts his response obtaining z ← D(r, k, x) such that z is a sample from Cx
and ‖Cx −Dx‖ ≤ ε.

To show that P ∈ SampMA/rpoly we need to define the two algorithms A and V . We start with
the verification algorithm, V . The input to V is x, the witness we denote as k and the advice
will consist of 3 strings of length n = |x|, namely 〈xn, yn, rn〉. V ignores xn and rn and accepts iff
yn ← E(x, k, ‘′). Essentially V is just running the encryption algorithm with input x and key k
and checking to see whether it equals the middle part of the advice string, yn. We now define A:

28

• Again, denoting |x| = n, the algorithm receives as advice some string xn ∈ {0, 1}n, yn ←
E(xn, kn, ‘’), where kn is simply some key which can be used to encrypt xn, as well as rn,
where rn is the server’s response when being sent yn. The string xn is included to check
whether xn = x. If this is the case then the algorithm simply decrypts rn obtaining a sample
from Cx and ‖Cx −Dx‖ ≤ ε. The next steps assume that xn 6= x.

• From the assumption that the GES leaks at most the size of the input, there must be some
key k, such that yn ← E(x, k, ‘’). This is because if there did not exist such a key, then if the
server received yn he would know that the input could not be x and hence more information
would be leaked. In other words the verification algorithm V accepts when given as input x,
witness k and advice containing yn.

• With the key k that is accepted by V , A can simply compute z ← D(rn, k, x) and z will be
a sample from Cx such that ‖Cx −Dx‖ ≤ ε.

Thus, any sampling problem P which admits a GES leaking at most the size of the index specifying
the distribution is contained in SampMA/rpoly = SampMA/poly. This concludes the proof.

Lastly we give the proof for Lemma 2.

Proof of Lemma 2. This is simply a combination of the previous two results. If BosonSampling ∈
SampMA/poly and Conjecture 1 is true (estimating the permanent of a Gaussian matrix is #P-

complete), then just like in Theorem 3 we would have that P#P ⊂ BPPNPNP
/poly. But we have

already shown that this would lead to a collapse of the polynomial hierarchy at the fourth level.
Hence, since BosonSampling ∈ SampBQP we have that SampBQP ⊂ SampMA/poly leads to a
collapse of the polynomial hierarchy.

7.5 Proof of Lemma 3

Proof. To show that UBQC is a type of QGES we only need to give implementations for the
algorithms K, QE, E and D which are consistent with UBQC and the properties of a QGES
leaking at most the size of the input.

• Key generation, K. This is the step in which the client chooses the random angles for
the |+θ〉 states that it will send to the server as well as the bits for randomly flipping
the measurement outcomes. Thus, K simply takes as input x and produces M = poly(|x|)
random angles 〈θ1, θ2, ...θM 〉 drawn at random from the set {0, π/4, 2π/4, ...7π/4} and random
bits 〈r1, r2...rM 〉. Thus the classical key is k = {〈θ1, θ2, ...θM 〉, 〈r1, r2...rM 〉}.

• Quantum encryption, QE. In this step the client uses to key to prepare the qubits that it
will send to the server. In other words QE(x, k)→ |+θ1〉 |+θ2〉 ... |+θM 〉.

• Computation, E. In round i, the output of E will be the angles ∆i = 〈δi,1, δi,2...δi,k〉 which
the server should use to measure the qubits in layer i. These are computed based on x, k
and the result of the server’s previous responses. Concretely, for a particular qubit j, E will
compute δj = (−1)sjφj + θj + r′jπ, where φj is the computation angle (in part determined by
x), θj is the randomization of the measurement and is contained in the key k, and r′j is the
randomization of the measurement outcomes (computed by xor’ing previous measurement
outcomes and the random parameter rj , contained in k).

• Decryption, D. The decryption procedure simply involves xoring previous measurement
outcomes and the random parameter rj for the output qubit to determine its true value.

Since this is a BQP computation, the probability of obtaining the correct outcome will be at
least 2/3 > 1/2 + 1/poly(|x|). This shows that UBQC is a QGES. Additionally, since we already
know that UBQC leaks at most the size of x to the server, this particular QGES leaks the same
information.

29

7.6 Proof of Theorem 4

Proof. For an input x for which the client wants to compute f(x), consider the state:

|ψx〉 =
1√
|KC(x)|

∑
kxi ∈KC(x)

|kxi 〉K |y
x
i 〉E (9)

Where KC(x) is the set of encryption keys which are compatible with x (i.e. could have resulted
from the key generation algorithm acting on x, K(x)) and |yxi 〉E ← QE(x, kxi) is the quantum
encryption of x using the key kxi . The indices K and E specify whether the kets are quantum
registers in the key register or the encrypted state register, respectively. Essentially |ψx〉 is the
equal superposition of all keys and encryptions of the string x. If we trace out the key register, K,
the resulting density matrix is the mixed state of possible encrypted states which the server will
receive:

ρx =
1

|KC(x)|
∑

kxi ∈KC(x)

|yxi 〉 〈yxi | (10)

The assumption that the protocol only leaks the size of the input x to the server implies that for
any two inputs x1, x2 it is the case that ρx1 = ρx2 . In fact, something stronger is true. Recall
that the definition of blindness says that the quantum state of the server’s system as well as the
distribution of his classical messages are independent of x, given the size of x. Therefore, we should
consider a state comprising of his system and his response after receiving the quantum encryption,
for a particular input, x:

|φx〉 =
1√
|KC(x)|

∑
kxi ∈KC(x)

|kxi 〉K UERS |yxi 〉E |0〉
⊗t
R |anc〉S (11)

Here, UERS is the unitary performed by the server in order to produce his response, which will
be stored in the response register, initially set to |0〉⊗tR , where t = poly(|x|). This unitary will of
course involve the encrypted state provided by the client and the server’s private ancilla, denoted
as |anc〉S (but will not involve the key register). Note that in the actual protocol, the key register
and the encrypted state register are not necessarily entangled. For example, in UBQC they are
only classically correlated. However, since we are considering the most general case, we take the
state to be entangled. Essentially the client’s system can be thought of as a purification system
for the encrypted quantum state sent to the server. Additionally, it should be mentioned that
the server’s response is a classical bit string. Hence, the state in the response register, obtained
through the application of the unitary UERS , will be a probabilistic mixture over computational
basis states. This, however, makes no difference in our proof and we can just as well assume that
his response is a general quantum state.

If we again trace out the register K we obtain some state σx = TrK(|φx〉 〈φx|). This state
encodes the distribution of possible messages exchanged by the client and the server in one round of
interaction, as well as the server’s private system. Since ρx1 = ρx2 , it is also the case that σx1 = σx2 .
This is exactly the blindness condition. By the purification principle (see Appendix 7.1.1), this
means that if we consider the states:

|φx1〉 =
1√

|KC(x1)|

∑
k
x1
i ∈KC(x1)

|kx1i 〉K UERS |yx1i 〉E |0〉
⊗t
R |anc〉S (12)

|φx2〉 =
1√

|KC(x2)|

∑
k
x2
i ∈KC(x2)

|kx2i 〉K UERS |yx2i 〉E |0〉
⊗t
R |anc〉S (13)

there exists a local unitary, VK , acting only on the key register which can map |φx1〉 to |φx2〉, for
any two inputs x1 and x2. In fact, let us examine the states of the system for inputs x1 and x2

30

before UERS is applied:

|χx1〉 =
1√

|KC(x1)|

∑
k
x1
i ∈KC(x1)

|kx1i 〉K |y
x1
i 〉E |0〉

⊗t
R |anc〉S = |ψx1〉KE |0〉

⊗t
R |anc〉S (14)

|χx2〉 =
1√

|KC(x2)|

∑
k
x2
i ∈KC(x2)

|kx2i 〉K |y
x2
i 〉E |0〉

⊗t
R |anc〉S = |ψx2〉KE |0〉

⊗t
R |anc〉S (15)

These states are also related by VK . This can be inferred from the following relations. First, we
know that:

(VK ⊗ IERS) |φx1〉 = |φx2〉 (16)

And also that:
(IK ⊗ UERS) |χx1〉 = |φx1〉 (IK ⊗ UERS) |χx2〉 = |φx2〉 (17)

Therefore:
(IK ⊗ U †ERS)(VK ⊗ IERS)(IK ⊗ UERS) |χx1〉 = |χx2〉 (18)

But (IK ⊗ U †ERS) and VK ⊗ IERS commute because they act on different systems and therefore

(IK ⊗ U †ERS) and (IK ⊗ UERS) will cancel out, leaving:

(VK ⊗ IERS) |χx1〉 = |χx2〉 (19)

This is also illustrated in the following diagram:

|χx1〉
VK⊗IERS //

IK⊗UERS

��

|χx2〉

|φx1〉
VK⊗IERS // |φx2〉

IK⊗U†ERS

OO

But because the protocol is offline, we know that VK must be a polynomial-sized quantum circuit.
Note that even if we trace out the server’s ancilla from the states |φx1〉 and |φx2〉, the resulting
states are still related by VK on the key register. This allows us to define a QCMA/qpoly algorithm
computing any function which admits a QGES. To do so we first introduce some notation. We will
consider the following states:

|κx〉 =
1√
|KC(x)|

∑
kxi ∈KC(x)

|kxi 〉K (20)

|κx′〉 =
1√

|KC(x′)|

∑
kx
′

i ∈KC(x′)

∣∣∣kx′i 〉
K

(21)

Which are simply superpositions over the valid keys for two different inputs x and x′. Next we
consider:

|φx〉 =
1√
|KC(x)|

∑
kxi ∈KC(x)

|kxi 〉K UERS |yxi 〉E |0〉
⊗t
R |anc〉S (22)

|φx′〉 =
1√

|KC(x′)|

∑
kx
′

i ∈KC(x′)

∣∣∣kx′i 〉
K
UERS

∣∣∣yx′i 〉
E
|0〉⊗tR |anc〉S (23)

31

which include the encrypted states and the server’s response. Lastly, we trace out the server’s
ancilla from both these states resulting in:

ωx = TrS(|φx〉 〈φx|) (24)

ωx′ = TrS(|φx′〉 〈φx′ |) (25)

From the above argument the two states |κx〉 and |κx′〉 and the two states ωx and ωx′ are related
through the same polynomial-sized quantum circuit VK acting only on the key register.

We can now present the algorithm. Let us first consider the one round case. The algorithm
would work as follows:

1. The input to the algorithm is some string x for which we want to compute f(x).

2. The algorithm receives as advice the string x′ which is simply some string of the same length
as x. Additionally, it receives the state ωx′ . It is clear that both of these only depend on |x|
and have a length which is polynomial in |x| hence constituting a valid advice.

3. From the definition of the key generating function, the algorithm can efficiently produce the
states |κx〉 and |κx′〉.

4. The classical witness is a description of the quantum circuit V †K .

5. The algorithm tests that V †K maps |κx′〉 to |κx〉. This can be done through a quantum SWAP
test.

6. Use V †K to map ωx′ to ωx.

7. By measuring the response register of ωx, the algorithm obtains the response that the server
would have produced in an interaction with the client in the QGES protocol. Applying the
decryption algorithm to this response will yield the correct result f(x) with high probability.

The probability of success of the algorithm can be boosted by providing polynomially many copies
of ωx′ as advice and performing multiple SWAP tests. Additionally this algorithm can be made to
compute the complement of f(x) as well which would gives us a coQCMA/qpoly containment.

For the general case of polynomially many rounds, the only difference is that the state ωx′

would also be entangled with a superposition of all possible transcripts of the protocol. Since we
know that transcripts are polynomially bounded in length this is still a valid advice state. The
application of V †K would map this state to one containing the transcripts for input x. When the
state is measured the algorithm will obtain a sample transcript of the interaction between the
client and the server. This is then used together with the decryption algorithm to produce f(x).
By the definition of the QGES we know that the possible transcripts are such that the correct f(x)
is obtained with high probability.

Note that depending on how we define the offline property of the protocol we can get con-
tainments in different classes. For example, in this proof we have assumed that while there is a
polynomial-sized circuit allowing the client to map from one input to another the client might not
be able to arrive at this circuit in polynomial time for any possible pair of inputs. This is why the
description of the circuit is given as a witness (since the client can always test the validity of this

circuit). However, if we additionally assumed that V †K can always be obtained efficiently by the
client, then we would no longer need the witness and we would have that f ∈ BQP/qpoly.

We also prove that:

Lemma 8. BQPQCMA/qpoly∩coQCMA/qpoly = QCMA/qpoly ∩ coQCMA/qpoly

32

Proof. This proof is similar to the one showing that BPPNP/poly∩coNP/poly = NP/poly ∩ coNP/poly.
Just like in that case, the inclusion QCMA/qpoly ∩ coQCMA/qpoly ⊆ BQPQCMA/qpoly∩coQCMA/qpoly

is immediate and we need only show that BQPQCMA/qpoly∩coQCMA/qpoly ⊆ QCMA/qpoly. The con-
tainment in coQCMA/qpoly follows by complementation.

Consider a quantum algorithm QA for deciding problems in BQPQCMA/qpoly∩coQCMA/qpoly. We
will show that this algorithm can be simulated by a QCMA/qpoly algorithm, denoted NQA. Since
BQP, QCMA and coQCMA have bounded error in deciding problems, we can assume, from standard
amplification techniques, that this error is of order 2−poly(n), where n is the size of the input. We
will also assume that for all quantum algorithms measurements are postponed until the end of the
circuit.

We will treat the case without advice first, and then explain how to deal with the quantum
advice at the end. To start with, NQA will simulate QA until it makes a query to the oracle.
In the standard definition of oracles the oracle is just a classical function that solves a decision
problem. However, when dealing with quantum algorithms such as QA it is also possible to speak of
quantum oracles, where the oracle can be viewed as some unitary operation (technically a sequence
of unitary operations for each possible input length, see [71] for more details) which QA can query
even in superposition. Our result will cover this more general case of quantum oracles. We would
therefore like the NQA algorithm to be able to simulate this quantum oracle.

Firstly, just like in the classical case we have that if some language L ∈ QCMA∩ coQCMA then
L ∈ QCMA and Lc ∈ coQCMA, where Lc is the complement of L. This means that there exist
polynomial-sized quantum circuits QL and QLc which take some input x along with classical wit-
nesses w1 and w2, respectively, and decide correctly, when the output is measured, with probability
at least, 1−2−poly(|x|). In other words, QL receives as input |x〉 |w1〉 |0m〉 and QLc receives as input
|x〉 |w2〉 |0m〉, respectively, where m = poly(|x|). If we were to run both QL and QLc on x, because
L and Lc are complementary, the output qubits, when measured, will also be complementary with
high probability.

Assume that QL and QLc are circuits which act on t = poly(|x|) qubits. We define a new
quantum circuit called SimQuery which operates on 2t+ 1 qubits. SimQuery applies QL to the
first t qubits and QLc to the next t qubits. It then applies a Pauli X to the output qubit of QLc

and a CCNOT operation from the output qubits of QL and QLc onto the the 2t + 1’th qubit. It
then applies X again to the output qubit of QLc and then Q†L and Q†Lc on the first 2m qubits. An
illustration of this circuit (acting on an all |0〉 input) is given in Figure 6.

|0〉

QL Q†L
|0〉

· · · · · ·

|0〉 •

|0〉

QLc Q†Lc

|0〉

· · · · · ·

|0〉 X • X

|0〉

Figure 6: Quantum circuit for SimQuery acting on an all |0〉 input.

The CCNOT operation flips its target qubit if the control qubits are in the state |11〉. The effect
of the first Pauli X is to flip the outcome when the control qubits are in the state |10〉. Roughly

33

speaking, SimQuery will flip the final qubit if QL accepts and QLc rejects. The reason for then
applying the two circuits in reverse is to ‘uncompute’ their result and only leave the 2t + 1 qubit
flipped whenever QL accepts and QLc rejects.

We can now explain how NQA can use SimQuery to simulate a query of QA. Suppose QA
queries the oracle for some input x testing to see if it is in L, for some L ∈ QCMA ∩ coQCMA.
In other words, |x〉 |0〉 → |x〉 |1〉, with high probability, if x ∈ L and |x〉 |0〉 → |x〉 |0〉, with high
probability, if x 6∈ L. NQA will then run SimQuery with input |x〉 |w1〉 |0m〉 |x〉 |w2〉 |0m〉 |0〉, where
w1 and w2 are the witnesses from before and m = poly(|x|). The effect of this will be to flip the
final qubit if x ∈ L and leave it unchanged if x 6∈ L, with high probability. This is true because
of the complementarity of QL and QLc (when one accepts the other rejects and viceversa, except
with small probability).

This procedure will simulate the query that QA performs. NQA then uses the last qubit from
SimQuery as the query response qubit and continues to do this for all other queries of QA and
otherwise simulate QA exactly. Note that each simulated query has some small probability of
not matching the actual query of QA when a measurement is performed. However, as mentioned,
this probability is exponentially small. Since there are polynomially many queries in total, by a
union bound, the probability that at least one simulated query behaves incorrectly will still be
exponentially small.

Adding quantum advice to this picture does not change much. Just like in the classical case,
we can assume that NQA receives as advice a concatenation of all advice states used by the oracle
of QA. The quantum circuits QL, QLc and SimQuery are then extended with polynomially many
qubits to act on this advice as well.

It is therefore the case that BQPQCMA/qpoly∩coQCMA/qpoly ⊆ QCMA/qpoly ∩ coQCMA/qpoly and
our result follows directly.

7.7 Proof of Theorem 5

In this appendix, we prove Theorem 5. Since we have shown that functions which admit an
offline QGES are contained in QCMA/qpoly ∩ coQCMA/qpoly, and since if NP ⊂ QCMA/qpoly ∩
coQCMA/qpoly then coNP ⊂ QCMA/qpoly∩coQCMA/qpoly, to prove Theorem 5, it suffices to show
that if coNP ⊂ QCMA/qpoly then the polynomial hierarchy “comes about as close to collapsing
as one could reasonably hope to prove given a quantum hypothesis”—and more specifically, that

ΠP
3 ⊆

(
ΣP

2

)PromiseQMA
. Here a PromiseQMA oracle means an oracle for some PromiseQMA-complete

promise problem (ΠYES,ΠNO), whose responses can be arbitrary on inputs x /∈ ΠYES ∪ ΠNO that
violate the promise. We don’t even demand that the oracle’s responses, on promise-violating
inputs, be consistent from one query to the next. On the other hand, it does need to be possible
to query the PromiseQMA oracle on some promise-violating inputs, without such queries causing
the entire algorithm to abort.

The starting point for all such collapse results, of course, is the Karp-Lipton Theorem [70],
which says that if NP ⊂ P/poly then ΠP

2 ⊆ ΣP
2 , and hence the polynomial hierarchy collapses to

the second level. An easy extension of the Karp-Lipton theorem, proved by Yap [53], which we
now reprove for completeness, shows that if coNP ⊂ NP/poly, then PH collapses to the third level.

Proposition 1. If coNP ⊂ NP/poly, then ΠP
3 ⊆ ΣP

3 .

Proof. Abusing notation, here and later in this appendix we’ll use Φ, Ψ, etc. to refer not only to
SAT instances but to strings encoding those instances. Also, if (say) Φ (x, y, z) is a SAT instance
taking multiple strings as input, then by Φ (x, y), we’ll mean the instance obtained from Φ by
fixing the variables in x and y, and leaving only the variables in z as free variables.

A ΠP
3 sentence has the form

S = “∀x∃y∀z Φ (x, y, z) ”

where x, y, z are strings of some given polynomial size, and Φ is a polynomial-time computable
predicate (without loss of generality, a SAT instance). Under the stated hypothesis, we need to
show how to decide S in ΣP

3 .

34

Let C be the assumed NP/poly algorithm for coNP, and let a be its advice. Then by hypothesis,
for all SAT instances Ψ, if Ψ is unsatisfiable then there exists a witness w such that C (Ψ, w, a)
accepts, while if Ψ is satisfiable then C (Ψ, w, a) rejects for all w.

Our ΣP
3 rewriting of S is now as follows:

There exists an advice string a, such that

(1) (Completeness of C) For all SAT instances Ψ, either there exists a z that satisfies Ψ, or
else there exists a w such that C (Ψ, w, a) accepts.

(2) (Soundness of C) For all SAT instances Ψ, all satisfying assignments z for Ψ, and all w,
the procedure C (Ψ, w, a) rejects.

(3) (Truth of S) For all x, there exists a y as well as a witness w such that C (qΦ (x, y) , w, a)
accepts. (In other words, there is no z that makes Φ (x, y, z) false.)

Proposition 1 is what we seek to imitate in the quantum setting, getting whatever leverage we
can from the weaker assumption coNP ⊂ QCMA/qpoly.

Note that, had we assumed (say) coNP ⊂ QCMA/poly, it would be routine to mimic the usual
Karp-Lipton argument, merely substituting the class PromiseQCMA for NP at appropriate points

in the proof of Proposition 1. This would give us the collapse ΠP
3 ⊆

(
ΣP

2

)PromiseQCMA
. However,

the fundamental difficulty we face is that our hypothesized nonuniform algorithm uses quantum
advice states. And while a PromiseQMA machine can simply guess a quantum advice state σ, it
can’t then pass σ to an oracle, at least not with conventional oracle calls. (To allow the passing
of quantum states to oracles, we would need quantum oracles, as studied for example by Aaronson
and Kuperberg [71].)

To get around this difficulty, we’ll rely essentially on a 2010 result of Aaronson and Drucker
[58, 72], characterizing the power of quantum advice. These authors proved that BQP/qpoly is
contained in QMA/poly—and even more strongly,

Theorem 9 (Aaronson-Drucker [72]). BQP/qpoly = YQP/poly.

Here YQP, known as Yoda quantum polynomial-time, is the class of problems solvable by a
polynomial-time quantum algorithm with help from a polynomial-size untrusted quantum advice
state that depends only on the input length n. In other words, Theorem 9 says that we can
simulate trusted quantum advice by trusted classical advice combined with untrusted quantum
advice, by using the classical advice to verify the quantum advice for ourselves.

By using Theorem 9, to replace a quantification over quantum advice states by a quantification
over classical advice strings, Aaronson and Drucker were able to show the following:

Theorem 10 (Aaronson-Drucker [72]). If NP ⊂ BQP/qpoly, ΠP
2 ⊆ QMAPromiseQMA.

By adapting our argument from later in this appendix, one can actually improve Theorem 10,
to show that if NP ⊂ BQP/qpoly then ΠP

2 ⊆ NPPromiseQMA. In any case, we now seek a common
generalization of the proofs of Proposition 1 and Theorem 10, to get a collapse from the assumption
coNP ⊂ QCMA/qpoly.

As Aaronson and Drucker [72] pointed out, a simple extension of their proof of Theorem 9 gives
QCMA/qpoly ⊆ QMA/poly, and even the following.

Theorem 11 (Aaronson-Drucker [72]). QCMA/qpoly = YQ · QCMA/poly.

Here the YQ· operator simply adds untrusted quantum advice to whatever (quantum) com-
plexity class it acts on. Thus YQ · BQP = YQP, while for completeness:

35

Definition 1. YQ · QCMA is the class of languages L for which there exist polynomial-time quan-
tum algorithms C and V , such that for all input lengths n:

• There exists a polynomial-size quantum advice state σn such that V (0n, σn) accepts with
probability at least 0.99. If V (0n, σ) accepts with probability at least 0.98, then we call the
advice state σ “valid” for input length n.

• For all inputs x ∈ {0, 1}n ∩L and all valid σ, there exists a polynomial-size classical witness
w such that C (x,w, σ) accepts with probability at least 2/3 .

• For all inputs x ∈ {0, 1}n\L, all classical witnesses w, and all valid σ, we have that C (x,w, σ)
accepts with probability at most 1/3.

In what follows, we’ll need one additional observation about the proof of Theorem 11. Namely,
in our YQ · QCMA/poly simulation of QCMA/qpoly, without loss of generality we can choose the
classical advice string a = an in such a way that there’s essentially just one valid quantum advice
state compatible with a. Or more precisely: we can ensure that, for all ρ1, ρ2 such that V (0n, a, ρ1)
and V (0n, a, ρ2) both accept with probability at least 0.98, and all x and w, we have (say)

|Pr [C (x,w, a, ρ1) accepts]− Pr [C (x,w, a, ρ2) accepts]| < 1

20
.

This is because Theorem 11, like Theorem 9, is proven via the method of “majority-certificates,”
in which given a polynomial-time quantum algorithm Q, one verifies that an unknown quantum
state ρ leads to approximately the desired values of Pr [Q (x, ρ) accepts] for each of exponentially
many different inputs x, via a measurement of ρ that takes only polynomial time. We note that
this works only because of special structure in ρ—but for any state σ, there exists another state ρ
that has the requisite special structure, as well as a modified quantum algorithm Q′, such that

Pr
[
Q′ (x, ρ) accepts

]
≈ Pr [Q (x, σ) accepts]

for all x.
We’re finally ready to prove Theorem 5.

Theorem 12. Suppose coNP ⊂ QCMA/qpoly. Then ΠP
3 ⊆

(
ΣP

2

)PromiseQMA
.

Proof. A ΠP
3 sentence has the form

S = “∀x∃y∀z Φ (x, y, z) ”

where x, y, z are strings of some given polynomial size, and Φ is a polynomial-time computable

predicate. Under the stated hypothesis, we need to show how to decide S in NPNPPromiseQMA
.

By Theorem 11, the hypothesis coNP ⊂ QCMA/qpoly is equivalent to coNP ⊂ YQ · QCMA/poly.
In other words: we can assume that there exists a polynomial-time quantum algorithm
C (Φ, w, a, σ), which takes as input a SAT instance Φ, a classical witness w, a classical advice
string a, and a quantum advice state σ. Assuming a and σ are the correct YQ · QCMA/poly
advice, C checks whether w is a witness to Φ’s unsatisfiability. This is a sound and complete
proof system for coNP, in the sense that, again assuming the correctness of a and σ,

(i) for every unsatisfiable Φ, there exists a w such that C (Φ, w, a, σ) accepts with probability at
least 2/3,

(ii) for no satisfiable Φ does there exist a w such that C (Φ, w, a, σ) accepts with probability more
than 1/3.

36

Moreover, as discussed above, there exists an a such that the state σ is essentially unique, in
the sense that

Pr [C (Ψ, w, a, ρ1) accepts] ≈ Pr [C (Ψ, w, a, ρ2) accepts]

for all valid ρ1, ρ2.

Our job is to rewrite S as an NPNPPromiseQMA
sentence. Our rewriting will be as follows:

There exists a classical advice string a such that

(1) for all valid quantum advice states ρ1, ρ2, all SAT instances Ψ, and all assignments w, we
have

|Pr [C (Ψ, w, a, ρ1) accepts]− Pr [C (Ψ, w, a, ρ2) accepts]| < 1

10
.

(In words: the classical advice string a uniquely determines the behavior of C, once we find
a valid quantum advice state σ that’s compatible with a.)

(2) For all SAT instances Ψ, there exists a valid quantum advice state σ, as well as either an
assignment z that satisfies Ψ, or else a classical witness w such that C (Ψ, w, a, σ) accepts
with probability at least 2/3.

(In words: the advice a leads to a complete procedure for deciding the class coNP, and
specifically the UNSAT problem, in YQ · QCMA/poly. That is, once we find a valid advice
state σ, the quantum algorithm C then accepts every SAT instance Ψ that has no satisfying
assignment.)

(3) For all valid quantum advice states σ, all SAT instances Ψ, all z, and all w, if z satisfies Ψ
then C (Ψ, w, a, σ) rejects with probability at least 2/3.

(In words: a leads to a sound procedure for deciding UNSAT. That is, once we find a valid
σ that’s compatible with a, the quantum algorithm C accepts no SAT instance Ψ that has a
satisfying assignment.)

(4) For all x, there exists a valid quantum advice state σ, as well as a y and a classical witness
w, such that C (qΦ (x, y) , w, a, σ) accepts with probability at least 2/3.

(In words: C verifies that for all x, there exists a y such that qΦ (x, y) is unsatisfiable. In
other words, C verifies that for all x, there exists a y such that for all z, we have Φ (x, y, z).
In other words, C verifies the truth of the ΠP

3 -sentence S.)

As a point of clarification, whenever we quantify over quantum states (such as σ), we can
actually take a tensor product of a polynomial number of copies of the states, as needed. Of
course, we can’t rule out the possibility that we’ll get a state that’s entangled across all the
registers. Fortunately, though, we don’t use the witness state registers in such a way that it ever
matters whether they’re entangled or not.

As a second point of clarification, in forming the statement above, whenever we have a condition
that involves a quantum algorithm (say, V or C) accepting with probability at least 2/3, it’s implied
that if the condition fails, then the algorithm accepts with probability at most 1/3. This makes
verifying the condition a quantum polynomial-time operation. Likewise, for part (1), it can be
guaranteed that there exists an a such that, for all ρ1, ρ2 consistent with a and all Ψ and w, the
difference between the two acceptance probabilities is at most (say) 1/20. In such a case, one can
verify in quantum polynomial time that the difference is at most 1/10.

With these clarifications, it’s not hard to see that we’ve given an NPNPPromiseQMA
procedure. The

NP at the bottom guesses the classical advice string a. The NP in the middle guesses Ψ for part (2)
and x for part (4), and is not needed for parts (1) and (3). Finally, the PromiseQMA on top guesses
the quantum advice state σ (or ρ1, ρ2 for part (1)), as well as Ψ, w, y, and z as needed. Crucially,

37

quantum states are only ever guessed in the topmost, PromiseQMA quantifier: once guessed, they
never need to be passed on to another quantifier, which is impossible with conventional oracle calls.

But why does the procedure we’ve given correctly decide the ΠP
3 -sentence S? Well, firstly, if

a is a correct trusted advice string, then part (4) of the procedure just directly expresses S, using
the assumed YQ · QCMA/poly algorithm for coNP to eliminate one of the three quantifiers in the
usual manner of Karp-Lipton theorems.

That leaves the problem of verifying that a is a correct trusted advice string. Parts (2) and
(3) of the procedure verify the latter, by quantifying over all possible SAT instances Ψ of the
appropriate polynomial size, and checking that for each one, either Ψ has a satisfying assignment
or else there’s a witness w that causes C to accept Φ, but not both. (In other words, C decides
coNP in YQ · QCMA/poly.)

Now, for parts (2) and (4), we additionally needed an existential quantifier over the untrusted
quantum advice state σ, which is then verified using the trusted classical advice string a. The
reason is that, in parts (2) and (4), the third and final quantifier needed, over the classical strings
y, z, or w, happens to be existential—so that third quantifier simply must do “double duty” by
also guessing the state σ. As mentioned before, passing a quantum state from an earlier quantifier
to a later one is impossible with conventional oracle calls.

However, this need to quantify existentially over σ opens up a problem. Namely, what if the
existential quantifiers, in parts (2) or (4), can be satisfied by different advice states σ—states that
are all compatible with a, but that lead to different behaviors of C on some inputs? For example,
perhaps there exists an a such that some σ’s compatible with a give rise to a complete verification
procedure for UNSAT, while other σ’s compatible with a give rise to a sound verification procedure
for UNSAT, but the same σ never gives rise to both. If so, then the σ that we find in part (4)
need not give rise to a correct YQ · QCMA/poly algorithm for coNP.

Fortunately, we can fix this problem using part (1). In part (1), we enforced that every state σ
compatible with a must give rise to essentially the same behavior on every input. Thus, from that
point forward, it doesn’t even matter whether we find σ via a universal quantifier or an existential
one: every σ that passes verification will give rise to the same behavior, and parts (2), (3), and (4)
are all talking about the same YQ · QCMA/poly procedure that correctly decides coNP.

References

[1] Ronald L Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. 1978. Foundations of secure computation, 4(11):169–180.

[2] Ivan Damg̊ard, Jens Groth, and Gorm Salomonsen. The Theory and Implementation of an
Electronic Voting System, pages 77–99. Springer US, Boston, MA, 2003.

[3] Thore Graepel, Kristin Lauter, and Michael Naehrig. ML Confidential: Machine Learning on
Encrypted Data. In Proceedings of the 15th International Conference on Information Security
and Cryptology, ICISC’12, pages 1–21, Berlin, Heidelberg, 2013. Springer-Verlag.

[4] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon, Stefano Tes-
saro, and David A. Wilson. On the Relationship between Functional Encryption, Obfuscation,
and Fully Homomorphic Encryption, pages 65–84. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

[5] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In Pro-
ceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
FOCS ’13, pages 40–49, Washington, DC, USA, 2013. IEEE Computer Society.

38

[6] Arjan Jeckmans, Andreas Peter, and Pieter Hartel. Efficient Privacy-Enhanced Familiarity-
Based Recommender System, pages 400–417. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[7] Kristin E. Lauter. Practical applications of homomorphic encryption. In Proceedings of the
2012 ACM Workshop on Cloud Computing Security Workshop, CCSW ’12, pages 57–58, New
York, NY, USA, 2012. ACM.

[8] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-
first Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–178, New York,
NY, USA, 2009. ACM.

[9] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press, 2014.

[10] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM J. Comput.,
26(5):1411–1473, October 1997.

[11] Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997.

[12] J Niel De Beaudrap, Richard Cleve, John Watrous, et al. Sharp quantum versus classical
query complexity separations. Algorithmica, 34(4):449–461, 2002.

[13] Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates quan-
tum from classical computing. In Proceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’15, pages 307–316, New York, NY, USA, 2015. ACM.

[14] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum compu-
tation. In Proceedings of the 50th Annual Symposium on Foundations of Computer Science,
FOCS ’09, pages 517 – 526. IEEE Computer Society, 2009.

[15] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum computa-
tions. In Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 453–469, 2010.

[16] Andrew M. Childs. Secure assisted quantum computation. Quantum Info. Comput., 5(6):456–
466, September 2005.

[17] Alexandru Gheorghiu, Petros Wallden, and Elham Kashefi. Rigidity of quantum steering
and one-sided device-independent verifiable quantum computation. New Journal of Physics,
19(2):023043, 2017.

[18] Tomoyuki Morimae and Keisuke Fujii. Blind quantum computation protocol in which alice
only makes measurements. Phys. Rev. A, 87:050301, May 2013.

[19] Vittorio Giovannetti, Lorenzo Maccone, Tomoyuki Morimae, and Terry G. Rudolph. Efficient
universal blind quantum computation. Phys. Rev. Lett., 111:230501, Dec 2013.

[20] Atul Mantri, Tommaso F. Demarie, and Joseph F. Fitzsimons. Universality of quantum com-
putation with cluster states and (x,y)-plane measurements, 2016. Eprint:arXiv:1607.00758.

[21] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind computation, 2012.
Eprint:arXiv:1203.5217.

[22] Atul Mantri, Carlos A. Pérez-Delgado, and Joseph F. Fitzsimons. Optimal blind quantum
computation. Phys. Rev. Lett., 111:230502, Dec 2013.

[23] Tomoyuki Morimae, Vedran Dunjko, and Elham Kashefi. Ground state blind quantum com-
putation on aklt state. Quantum Info. Comput., 15(3-4):200–234, March 2015.

39

http://arxiv.org/abs/1607.00758
http://arxiv.org/abs/1203.5217

[24] Elham Kashefi and Petros Wallden. Garbled quantum computation, 2016.
Eprint:arXiv:1606.06931.

[25] Elham Kashefi, Luka Music, and Petros Wallden. The quantum cut-and-choose technique and
quantum two-party computation, 2017. Eprint:arXiv:1703.03754.

[26] Anne Broadbent. Delegating private quantum computations. Canadian Journal of Physics,
93(9):941–946, 2015.

[27] Anne Broadbent. How to verify a quantum computation, 2015. Eprint:arXiv:1509.09180.

[28] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits of low
T-gate complexity. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 609–
629, 2015.

[29] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from an oracle. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages 195–
203, New York, NY, USA, 1987. ACM.

[30] Complexity Zoo. https://complexityzoo.uwaterloo.ca/Complexity_Zoo.

[31] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In Pro-
ceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC ’11,
pages 333–342, New York, NY, USA, 2011. ACM.

[32] Ben W. Reichardt, Falk Unger, and Umesh Vazirani. A classical leash for a quantum system:
Command of quantum systems via rigidity of CHSH games. In Proceedings of the 4th Confer-
ence on Innovations in Theoretical Computer Science, ITCS ’13, pages 321–322, New York,
NY, USA, 2013. ACM.

[33] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages
212–219, New York, NY, USA, 1996. ACM.

[34] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In Proceedings of the 2011 IEEE 52Nd Annual Symposium on Foundations
of Computer Science, FOCS ’11, pages 97–106, Washington, DC, USA, 2011. IEEE Computer
Society.

[35] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference, ITCS ’12, pages 309–325, New York, NY, USA, 2012. ACM.

[36] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Proceedings of the 29th Annual International Conference on
Theory and Applications of Cryptographic Techniques, EUROCRYPT’10, pages 24–43, Berlin,
Heidelberg, 2010. Springer-Verlag.

[37] Pablo Arrighi and Louis Salvail. Blind quantum computation. International Journal of Quan-
tum Information, 04(05):883–898, 2006.

[38] Yfke Dulek, Christian Schaffner, and Florian Speelman. Quantum Homomorphic Encryption
for Polynomial-Sized Circuits, pages 3–32. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[39] Joseph F Fitzsimons. Private quantum computation: An introduction to blind quantum
computing and related protocols. 2016.

40

http://arxiv.org/abs/1606.06931
http://arxiv.org/abs/1703.03754
http://arxiv.org/abs/1509.09180
https://complexityzoo.uwaterloo.ca/Complexity_Zoo

[40] Gorjan Alagic, Anne Broadbent, Bill Fefferman, Tommaso Gagliardoni, Christian Schaffner,
and Michael St. Jules. Computational Security of Quantum Encryption, pages 47–71. Springer
International Publishing, Cham, 2016.

[41] Li Yu, Carlos A. Pérez-Delgado, and Joseph F. Fitzsimons. Limitations on information-
theoretically-secure quantum homomorphic encryption. Phys. Rev. A, 90:050303, Nov 2014.

[42] Tomoyuki Morimae and Takeshi Koshiba. Impossibility of perfectly-secure delegated quantum
computing for classical client, 2014. Eprint:arXiv:1407.1636.

[43] Vedran Dunjko and Elham Kashefi. Blind quantum computing with two almost identical
states, 2016. Eprint:arXiv:1604.01586.

[44] Atul Mantri, Tommaso F. Demarie, Nicolas C. Menicucci, and Joseph F. Fitzsimons.
Flow ambiguity: A path towards classically driven blind quantum computation, 2016.
Eprint:arXiv:1608.04633.

[45] Dan Shepherd and Michael J Bremner. Temporally unstructured quantum computation.
In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, volume 465, pages 1413–1439. The Royal Society, 2009.

[46] Matthew McKague. Interactive proofs for BQP via self-tested graph states. Theory of Com-
puting, 12(3):1–42, 2016.

[47] Tomoyuki Morimae and Joseph F. Fitzsimons. Post hoc verification with a single prover, 2016.
Eprint:arXiv:1603.06046.

[48] G. Brassard. A note on the complexity of cryptography (corresp.). IEEE Transactions on
Information Theory, 25(2):232–233, Mar 1979.

[49] Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the 19th
Annual Symposium on Foundations of Computer Science, SFCS ’78, pages 75–83, Washington,
DC, USA, 1978. IEEE Computer Society.

[50] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys. Rev. Lett.,
86:5188–5191, May 2001.

[51] H. J. Briegel, D. E. Browne, W. Dur, R. Raussendorf, and M. Van den Nest. Measurement-
based quantum computation. Nat Phys, pages 19–26, Jan 2009.

[52] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption
be practical? In Proceedings of the 3rd ACM workshop on Cloud computing security workshop,
pages 113–124. ACM, 2011.

[53] Chee K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26(3):287 – 300, 1983.

[54] Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the Forty-second ACM
Symposium on Theory of Computing, STOC ’10, pages 141–150, New York, NY, USA, 2010.
ACM.

[55] Thomas Jansen. On the black-box complexity of example functions: The real jump function.
In Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII,
FOGA ’15, pages 16–24, New York, NY, USA, 2015. ACM.

[56] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Review, 41(2):303–332, 1999.

41

http://arxiv.org/abs/1407.1636
http://arxiv.org/abs/1604.01586
http://arxiv.org/abs/1608.04633
http://arxiv.org/abs/1603.06046

[57] Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of commut-
ing quantum computations implies collapse of the polynomial hierarchy. In Proceedings
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, page
rspa20100301. The Royal Society, 2010.

[58] Scott Aaronson and Andrew Drucker. A full characterization of quantum advice. In Pro-
ceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10, pages
131–140, New York, NY, USA, 2010. ACM.

[59] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, October 1992.

[60] The Aaronson $25.00 prize. http://www.scottaaronson.com/blog/?p=284.

[61] Howard Barnum, Claude Crépeau, Daniel Gottesman, Adam D. Smith, and Alain Tapp.
Authentication of quantum messages. In 43rd Symposium on Foundations of Computer Science
(FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, pages 449–458,
2002.

[62] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition,
2011.

[63] John Watrous. Quantum computational complexity. In Encyclopedia of complexity and sys-
tems science, pages 7174–7201. Springer, 2009.

[64] Scott Aaronson. QMA/qpoly PSPACE/poly: de-merlinizing quantum protocols. In in Pro-
ceedings of 21st IEEE Conference on Computational Complexity, 2006.

[65] Scott Aaronson. The equivalence of sampling and searching. In Proceedings of the 6th In-
ternational Conference on Computer Science: Theory and Applications, CSR’11, pages 1–14,
Berlin, Heidelberg, 2011. Springer-Verlag.

[66] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

[67] Clemens Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,
17(4):215 – 217, 1983.

[68] Scott Aaronson. Quantum lower bound for recursive Fourier sampling. Quantum Info. Com-
put., 3(2):165–174, March 2003.

[69] J. Watrous. Succinct quantum proofs for properties of finite groups. In Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, FOCS ’00, pages 537–, Washington,
DC, USA, 2000. IEEE Computer Society.

[70] Richard M. Karp and Richard J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28:191–201, 1982.

[71] Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. In Com-
putational Complexity, 2007. CCC’07. Twenty-Second Annual IEEE Conference on, pages
115–128. IEEE, 2007.

[72] Scott Aaronson and Andrew Drucker. A full characterization of quantum advice, 2010.
Eprint:arXiv:1004.0377.

42

http://www.scottaaronson.com/blog/?p=284
http://arxiv.org/abs/1004.0377

	1 Introduction
	1.1 Organization
	1.2 Related work

	2 Cryptographic preliminaries
	3 GES for quantum problems
	4 Quantum GES
	5 Implications for quantum verification
	6 Conclusions
	7 Appendix
	7.1 Preliminaries
	7.1.1 Quantum information and computation basics
	7.1.2 Measurement-based quantum computation
	7.1.3 Complexity theory

	7.2 Proof of Theorem ??
	7.3 Proof of Theorem ??
	7.4 Proof of Theorem ??
	7.5 Proof of Lemma ??
	7.6 Proof of Theorem ??
	7.7 Proof of Theorem ??

