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Abstract
We have established the COgnitive Science Metrics Online Survey (COSMOS) platform that contains a digital psycho-
metrics toolset in the guise of applied games measuring a wide range of cognitive functions. Here, we are outlining this
online research endeavor designed for automatized psychometric data collection and scalable assessment: once set up,
the low costs and expenditure associated with individual psychometric testing allow substantially increased study
cohorts and thus contribute to enhancing study outcome reliability. We are leveraging gamification of the data acquisi-
tion method to make the tests suitable for online administration. By putting a strong focus on entertainment and
individually tailored feedback, we aim to maximize subjects’ incentives for repeated and continued participation. The
objective of measuring repeatedly is obtaining more revealing multitrial average scores and measures from various
operationalizations of the same psychological construct instead of relying on single-shot measurements. COSMOS is
set up to acquire an automatically and continuously growing dataset that can be used to answer a wide variety of
research questions. Following the principles of the open science movement, this data set will also be made accessible
to other publicly funded researchers, given that all precautions for individual data protection are fulfilled. We have
developed a secure hosting platform and a series of digital gamified testing instruments that can measure theory of mind,
attention, working memory, episodic long- and short-term memory, spatial memory, reaction times, eye-hand coordina-
tion, impulsivity, humor appreciation, altruism, fairness, strategic thinking, decision-making, and risk-taking behavior.
Furthermore, some of the game-based testing instruments also offer the possibility of using classical questionnaire items.
A subset of these gamified tests is already implemented in the COSMOS platform, publicly accessible and currently
undergoing evaluation and calibration as normative data is being collected. In summary, our approach can be used to
accomplish a detailed and reliable psychometric characterization of thousands of individuals to supply various studies
with large-scale neurocognitive phenotypes. Our game-based online testing strategy can also guide recruitment for
studies as they allow very efficient screening and sample composition. Finally, this setup also allows to evaluate
potential cognitive training effects and whether improvements are merely task specific or if generalization effects occur
in or even across cognitive domains.
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Introduction

Objectively measuring inter- and intra-individual differences in
human behavior is a fundamental core mission in psychology as
it provides the solid fundament on which the entirety of research
endeavors in psychology and related fields depend upon
(Jenkins and Lykken 1957). The availability of accurate, reliable,
and comprehensive phenotypicmeasures is not only essential for
psychological hypothesis testing per se, but is also crucial for the
successful elucidation of biological underpinnings of
neurocognitive traits that are amenable to for instance imaging
or genetic studies (Congdon et al. 2010). While computers have
already been used to assist in test evaluations for more than half a
century (Kleinmuntz 1963), advances in computer technology
now allow for the development of completely digitalized assess-
ment strategies with automated scoring and evaluation proce-
dures (Luciana 2003). Automatization of psychometric assess-
ment is a highly valuable approach for meeting for example the
demands that are put forward by the recent revolutions in bio-
technology: while high-throughput cost- and time-efficient indi-
vidual whole genome scans in large cohorts have become a
matter of course, phenotypic assessments typically still rely on
laborious testing batteries, often requiring trained administrators
and stationary attendance time of study participants.

We argue that bringing down the effort for both researchers
and testees involved in collecting repeated phenotypic measure-
ments of healthy large cohorts is feasible through online-based
test administration. Yet, this requires a substantial redesign and
redevelopment of psychometric assessment procedures and in-
struments. Conceptualizing the novel strategies for large-scale
assessments should be led by the idea that participant compen-
sation is essential and constituted by existing ethical guidelines
yet does not necessarily need to bemonetary. Entertainment that
can be achieved through gamification and task design is not
only a highly valued benefit itself, it is also key to nurse the
participant’s motivation required for repeated measurements
(Lumsden et al. 2016). Designing the data collection process
as a rewarding experience itself is a valuable strategy, as previ-
ous studies have found that the demanding nature of data entry
is one of the primary reasons respondents stopped using health
apps (Krebs and Duncan 2015). Additionally, automation of
data collection and evaluation can be used to provide test per-
sons with graphically illustrated feedback on their own perfor-
mance as this also serves as an incentive for repeated and con-
tinuous participation. Finally, computer game-based tests and
experiments provide scientists with a novel technique to test
ecological validity of laboratory-based procedures, which is al-
ways assumed, but rarely tested (Krakauer et al. 2017).

A large online-based research platform that collects sensitive
personal data requires continuous attention and efforts to ensure
the best possible standard of security for safeguarding partici-
pants’ personal data from security gaps and potential misuse. It
is a question of respect towards the study participants to view and

treat the gathered data as a good that the scientist is only entrusted
with for conducting research, but that ultimately still belongs to
the testees. The fact that the data might be used in currently
undefined future research projects or may yield to potential mon-
etization of research outcomes calls for more control options
through participants during the data life cycle than a single Bopen
ended^ consent form (Lipworth et al. 2017). Yet, despite these
concerns, using a single platform framework to simultaneously
obtain awide variety of different psychometric data comeswith a
set of very appealing options: based on the concepts of Bopen-
science,^ Bopen-data,^ and collaboration, we outline our proto-
type for automatized and smart phenotypic data acquisition,
which holds the potential for reshaping standard procedures in
psychological research practice and for facilitating productivity
and study outcome reliability. Specifically, we plan to implement
a pre-registration system that grants publicly funded scientists’
script-based access to the collected data through the COSMOS
platform. Scientists can develop their scripts on a dummy data-
base system that mimics the database system of the COSMOS
backend. Relying on script-based analyses, whichwill be run in a
secure environment and only return the result of the analysis, is a
safety precaution which eliminates the need to grant access to
raw data. Only revealing combined and summarized data still
allows making highly flexible and efficient use of the existing
data pool, while maximizing the security of the dataset against
identifying individual test participants.

Conveniently, the ongoing automatic data acquisition contin-
uously generates novel samples that can be used for effortlessly
replicating the obtained findings as soon as a large enough ad-
ditional batch of data has been collected. Additionally, the com-
parably low maintenance and personnel costs of data gathering
can contribute to alleviate the time-consuming competition over
limited funding resources. At the same time, the centralization of
longitudinal data gathering enables a higher phenotypic resolu-
tion per individual than single studies could achieve. The large
N high-resolution data allows building models of higher com-
plexity that are better suited to account for confounding factors,
which typically would be out of scope for small N single-
hypothesis testing study designs. Depending on the respective
research question and the hypothesis tested, the available de-
tailed assessment of a large number of individuals allows the
application of sampling strategies that either are currently not
taken into consideration at all or are only feasible at large ex-
penses of cost and time: preselecting subgroups as homogenous
as possible, closely matching experimental groups on potential-
ly confounding factors, evaluating whether a detected correla-
tion can be found in a set of different subgroups, whether it is
largely stable or may be even reversed along the continuum of
the normal distribution of a given trait.

Finally, platforms like COSMOS can facilitate settling the
question, whether so-called brain training (i.e., repeatedly en-
gaging in cognitively demanding tasks) can actually have gen-
eralizing beneficial effects: based on a large N, without taking
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money from the participants and thus without the inherent
conflict of interest the brain training industry-affiliated scien-
tists are faced with.

Game Tests

The COSMOS platform (https://cosmos.psycho.unibas.ch/) is
now in its pilot phase, hosting five prototypes of games that
currently undergo refinement and calibration as psychometric
testing instruments, which are described in more detail below.
Table 1 gives an overview of all developed instruments
together with the phenotypic constructs they have been
designed to measure.

HoNk-Back

The HoNk-Back task is a gamified redesign of one of the most
widely used working memory tasks in neuroscience, the N-
Back paradigm (Owen et al. 2005). This gamification of the
task goes beyond simply adding game-like reinforcement me-
chanics such as a score or a progress bar. We put special atten-
tion on developing a setting that lets the actual task of monitor-
ing a sequence of stimuli appear as natural and plausible as
possible, aiming at increasing ecological validity. The task set-
ting makes the test subject to assume the role of a truck driver
who gets overtaken by a constant stream of cars. Cars appearing
in the review mirror trigger the required response signal by the
truck driver which consists of either flashing the headlights at
cars that also gave a light signal or waving at the cars that
overtook the truck without emitting a headlight signal. Tilting
of the rearview mirror controls the N condition as this allows
regulating the number of cars disappearing into the blind spot.

Drag Race

This test in form of a drag race game is designed to measure
reaction times to unpredictable and predictable cues and varia-
tion in response time accuracy. A light signal sequence of two
yellow lights indicates that the driver has to get ready. The
green light that indicates the take-off signal then is given after
a variable random time interval allowing the measurement of
spontaneous reaction time (SRT). The process of shifting gears
requires a defined motor response pattern: releasing the accel-
erator button (spacebar), hitting the gear-shifting button (return)
and releasing it again, and pushing the accelerator button again.
The gear-shifting procedure is used to record the response times
to predictable signals: the revmeter continuously moves to-
wards the optimal switching moment, when the response pat-
tern has to be executed. This allows measuring several reaction
times of simple motor responses in the form of foreseeable
reaction times (FRT). Evaluating repeated runs allows
assessing variation in response time accuracy. We are aware

of software and/or hardware-related issues concerning reaction
time measurements such as monitor response time, operating
system design, and input device-related delay such as key
debouncing time (Garaizar et al. 2014; Salmon et al. 2017) that
impact the accuracy of the response time measurements.
Nevertheless, the provided test should yield rough estimates
of individual response times and allow group comparisons un-
der the assumption of equally distributed noise. Also the argu-
ment has been brought forward that the error introduced by
response devices is bound to be small relative to human vari-
ability and will only exert potential effects in experiments that
lack statistical power in the first place (Damian 2010). Given
that the game will be made freely available as a standalone
application, it can serve as test instrument in a controlled lab-
based environment with identical hard- and software setups
allowing unbiased inter-individual comparisons.

Frog Life

Frog Life is a combinatorial task with increasing difficulty
levels consisting of a go/no-go paradigm to measure sustained
attention and additionally assesses visual vigilance. The task
setting lets participants control a virtual frog in a pond that
feeds on dragonflies (go-condition) while avoiding devouring
hornets (no-go condition). Simultaneously, the testee needs to
escape predators, which are announced through changes in
coloring of three different display details, namely the color
of the water in the pond, the clouds, or a depicted bush
(Fig. 1). Insects only become catchable after they entered the
proximity range outlined by a spherical contour around the
frog. Snatching of the insects is achieved by pressing the cor-
responding left or right cursor buttons of the keyboard de-
pending on which side of the screen the insects emerged from.
Correct responses of the go-task (eating dragonflies) are
rewarded with increasing of the score, while incorrect re-
sponses to the no-go condition (eating hornets) decreases the
score. Color changes of one of the three display details an-
nounce an upcoming predator and require the player to trigger
an escape jump by pressing the spacebar. Faster reaction times
to the color changes are rewarded with more points Yet, press-
ing the spacebar while no actual color change is taking place
causes the player to lose one of three health points indicated
by hearts. If all health points are lost, the player character is
granted Bgame-over.^After every successful escape, the game
mechanics difficulty level is increased. In case the player fails
to detect a color change of the display details, appearance of a
predator terminates the game. The color change thus consti-
tutes an additional go/no-go task based on signal detection.

Shortcuts

This game is designed as a two-tier short-term memory perfor-
mance assessment consisting of an episodic picture recognition
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task and a sequence-learning test. At the beginning of every
game round, testees need to memorize a set of picture stimuli
(3 to 10 items). The test participants can choose between differ-
ent categories, such as Bfood,^ Banimals,^ and Bsport,^ and will
be presented a set of pictures to memorize for the current game
round. Additionally (apart from the Beasy^ condition featuring
only three pictorial items to be remembered), a sequence of
differently colored and shaped symbols is presented at the be-
ginning of the game round. The accurate encoding of sequential
information is a key cognitive element in human cognition,
setting humans apart from other species, but also shows large
variation in performance within species (Ghirlanda et al. 2017).
During the actual game, the player controls a panda bear
climbing rock walls that gets rewarded for correctly solving
recognition tasks: at given intervals, the player is presented with
a selection of pictures and required to identify the picture shown
in the beginning. If she clicks on the correct picture, a bird lifts
the panda bear to a higher position in the climbing wall thus
rewarding the player with Bshortcuts^ in the climbing route.
Also, at predefined intervals, buttons appear on the screen that
require the player to reproduce the symbol sequence that was

shown at the beginning of the level. It must be entered correctly
in order for the climbing to continue. If the sequence is not
entered correctly by the player, the entire sequence will be
displayed, so that the player can continue. The player is awarded
with points for correct recognition of the pictures, reproducing
the symbol sequence correctly and for speed.

Joyrate

This task is primarily designed to measure a subtype of theory
of mind (ToM) by employing entertaining stimulus material. At
the beginning of the game, the player is asked to rate the jocu-
larity of 10 items consisting of cartoons, memes, and written
jokes on a scale from 0 to 10. Additionally, the participants also
rate how strongly they agree with 18 statements touching topics
such as politics, religion, society, sports, education, and person-
ality. This initial phase has to be completed only once. The
actual game then consists in guessing as how amusing a given
item has been rated by another person whose ratings the player
is randomly assigned to. Whenever an item appears from the
joke or the statement pool that has not yet been answered by the
player himself, he is asked to make his own rating prior to
estimating/learning the estimation of his/her counterpart. This
way, the pool of rated jokes and statements for all individuals is
constantly increased. The goal of the game is to estimate as
accurately as possible how entertaining a given stimuli was
perceived by the other person. Apart from the demographic info
on the other player that is always provided (gender, age, edu-
cation), the participant can unlock further information on how
the statements were rated using an in-game-generated currency
(JokeCoins). The accuracy of the estimation process is
rewarded with points and JokeCoins.

COSMOS Environment

Individual Data Visualization

All gamified testing instruments developed in the scope of the
COSMOS project feature an application-specific relational SQL
database that records the user’s input. This makes it easy to set
up any application as a standalone implementation and to inte-
grate the applications into a specific laboratory test setting, for
example, as a subtest in a given brain mapping experiment. In
the scope of the COSMOS web platform, all user data is
assigned to unique identifier codes (UIC) and thus to a certain
person, by means of a separate central authentication system
implemented in the secure software framework used to host
the website. All single SQL databases are linked via experience
APIs to a Learning Record System employing a mongoDB that
serves the purpose of graphically representing the obtained data.
We have developed a data visualization application that allows
platform administrators fast and easy creation and configuration

Fig. 1 Scenery examples from the game BFroglife.^ Dragonflies and
hornets constitute a go/no-go paradigm. Eating dragonflies increases the
BMunch Score,^ eating hornets decreases it: upon entering the white
circle that is surrounding the frog, the player can make the frog eat the
insects using the left and right cursor button, depending on the side from
which the insects are entering the white circle. a The dragonfly entered
from the right side is captured by pressing the right arrow cursor button. b
Color changes of the pond, the bush on the right side or the clouds
indicate an approaching predator requiring the player to escape the current
scenery by jumping to a different pond using the spacebar. In the depicted
scene, the hue of the pond is changed
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of interactive plots. COSMOS participants can choose from a
variety of preconfigured plots to learn about their individual
performance over time, compare their scores to all participants
or to specific subgroups only, e.g., a given age range or gender
(examples of plots are depicted in Fig. 2). Visualization of
achieved high scores and selected performance measures like
for instance average reaction times also allows COSMOS par-
ticipants to monitor their performance over the course of the day
to identify peak performance time periods when they usually
achieve the best concentration and attention levels.

Automated Data Processing Pipeline

The independent SQL databases that all games running
on the COSMOS platform are equipped with facilitate a
streamlined and automated data analysis pipeline. While
there may be specific deviations for single games, the
general rule is that data will be marked as an unfinished

run or simply not stored in the database, if the level was
aborted due to player inactivity, closing of the browser,
or loss of internet connection. All user responses and
summary statistics generated by the games are recorded
and stored along with a timestamp and linked to a spe-
cific UIC in the games’ databases. The UIC is generated
when an account is registered and thus pertains to spe-
cific login credentials. This procedure allows data to be
uniquely assigned to a specific person and therefore en-
ables data collection over multiple trials, time-points,
levels, and different tasks. Since the exact timestamp of
each reaction is always stored in the database, it is easy
to calculate for example the average reaction time per
game round: large intervals between stimulus presenta-
tion and the reaction of the player or a large variance
in task performance indicators can be used to detect a
lack of concentration or distraction and thus can be used
to create QC filters. Of course, those statistical filters

Fig. 2 Example of a typical
visualization of test results
generated by the mongoDB-
based visualization feature of the
COSMOS web platform. The
generated graphical
representations are partially
configurable and allow the user to
customize which data is
displayed. Any data fed into the
mongoDB can be visualized in
either bar charts, pie charts, or
progress charts. Database schema
of the game Frog Life
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themselves can be evaluated if participants are asked to
rate for example the attention or level of concentration
they were exhibiting during gameplay after a level is
completed.

The use of standard SQL databases allows accessing the
data with all common statistical analysis tools/languages like
R, python, matlab, octave (Eaton et al. 2014; MATLAB
Optimization toolbox 2017; R Core Team 2018), etc. This
allows the creation of standard query scripts that are custom-
izable to retrieve the data best suited to answer a given re-
search question: e.g., retrieve all data for game x, y, and z
for all individuals meeting a given age range, gender, or edu-
cational level that finished at least 10 trials per game within a
specified time period. The exact procedure of reading, pro-
cessing, summarizing, and blending data may of course de-
pend on the specifics of the research question to be answered.

Figure 3 depicts a description of the SQL database schema for
the game Frog Life. This description together with the infor-
mation on the different response types (as shown in Table 2)
helps understanding how simple database queries can be used
to sum up different correct answers and/or errors depending
on the difficulty level of the task in order to serve as a data
basis for modeling.

Modeling Phenotypes

In order to understand and analyze complex behaviors, a
promising approach has been computational models
(Corrado and Doya 2007; Luksys and Sandi 2011; Mars
et al. 2012; Nassar and Frank 2016). Most widely popularized
in the field of reinforcement learning (Tanaka et al. 2004; Daw

Fig. 3 The SQL database schema for Frog Life. The games-table records
all the games (numbered incrementally starting from 1) a given user
(user_id defined by the UIC) has played, along with the scores s/he
achieved and the timestamp the game was started (creation_time) and
finished (modification_time). The finished field contains the info
whether the game was normally finished or prematurely terminated. All
lines between the tables are dotted, since the UIC serves as foreign key for
all other tables. The rounds-table contains information about every single
round played as indicated by the Bone to one or many^ relationship (since
many rounds per game are possible). A round starts either directly at the
beginning of the game or after the player escaped an upcoming predator

and jumped to a new scenery. After every round, the difficulty level
is increased (and the current difficulty level gets stored in the
difficulty field), i.e., the speed of the insects accelerates, the color
change time decreases, and the hue intensity change gets less
pronounced. The action table stores all the actions that are exhib-
ited by the player during a given round. The action_types-table
comprises all the possible response types a player can display (see
Table 1 for action type definitions). The levels-table holds the
information about the background sceneries, which is recorded
in the rounds-table (level_id). Currently, three different sceneries
are available
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et al. 2006; Behrens et al. 2007; Frank et al. 2007; Luksys
et al. 2009), they have also been applied to study working
(Collins and Frank 2012; Collins et al. 2014) and episodic
(Luksys et al. 2014, 2015) memory as well as decision-
making (Forstmann et al. 2008), including strategic reasoning
(Zhu et al. 2012; Seo et al. 2014). The main principle is that a
computational model is fitted to experimental data (based on
how well model-produced behaviors match experimentally
observed ones), and then the best-fitting model parameters
and/or variables are used as correlates for neurobiological data
such as neuron recordings (Samejima et al. 2005), fMRI acti-
vations (Tanaka et al. 2016; Daw et al. 2006, Behrens et al.
2007), genetic differences (Frank et al. 2007; Set et al. 2014;
Luksys et al. 2014, 2015), levels of stress (Luksys et al. 2009),
and neuropsychiatric disorders (Collins et al. 2014). The main
advantage of model-based analysis is that it can test
neurocomputational mechanisms of behavior, which different
candidate models aim to represent, and reduce a variety of
behavioral measures, which can strongly depend on the spe-
cific task, to fewer model parameters that are directly compa-
rable between the tasks. For example, reinforcement learning
can model behavior in a number of tasks where rewards or
punishments of some kind (sometimes implicit) are involved,
and despite different formalizations, most of these models
have common parameters such as the learning rate,
exploration-exploitation tradeoff, and future discounting
(Tanaka et al. 2004; Frank et al. 2007; Schweighofer et al.
2008; Luksys et al. 2009). Due to unusual richness of the
acquired data, gamification provides a special opportunity to
convincingly show usefulness of computational models com-
pared to traditional analyses of behavior, andmost importantly
link platform-derived behaviors to laboratory-based tasks,
which can be analyzed using more simple models that share
parameters with more complex models of games. Where

explicit modeling of games is not practical (e.g., due to their
complexity), the recorded patterns of game-derived data could
be linked to laboratory-based behaviors (or their model pa-
rameters) using machine learning tools. Finally, a game-
based psychometric assessment platform such as COSMOS
provides a unique chance to test and compare different candi-
date models using a much wider variety of tasks and popula-
tions than used in most model-based analysis studies, where
usually a narrow range of models are tested against each other
based on one or few tasks selected by authors (which may
benefit their favorite models compared to alternatives).

Discussion

The pervasive problem of low-powered studies in the behav-
ioral and social sciences leading to non-replicable and spuri-
ous findings has already been identified more than 60 years
ago. Yet today, it does not only still persist, but is even being
exacerbated by system design faults (Ioannidis 2015;
Smaldino and McElreath 2016; Szucs and Ioannidis 2017):
using the amount of published original research as a quality
criterion for awarding funding or tenured positions incentiv-
izes increasing the number of publications. This creates a con-
flict of interest with the researcher’s intrinsic goal to maximize
study outcome reliability. In addition, the novelty of findings
based on a small number of observations is often valued
higher than replication in large cohorts (Higginson and
Munafo 2016; Nosek et al. 2015; Vinkers et al. 2015). In
combination with short-term contracts for the junior scientific
staff (Kreeger 2004; Langenberg 2001) that render planning
and implementing of larger-scale projects almost impossible
as they require substantially more time than single-hypothesis
small N studies, the scientific community has formed an

Table 2 Description of possible action types a user can display
during playing Frog Life. Only if a given response as defined by
an action type is exhibited, one of the described database entries
in the Description column is triggered. Thus, e.g., if no entry for

action type HORNET_EATEN exists in a given round table, the
player did not make this type of mistake during that round. Type
describes the psychometric characteristics attached to the potential
user responses

Action Description Type

DRAGONFLY_EATEN Time difference between required action trigger and correct response Correct response

DRAGONFLY_NOT_
EATEN

Time span of omission error Omission
error/go-error

HORNET_EATEN Time difference between no-go trigger and incorrect response No-go error

HORNET_NOT_EATEN Time span of correct omission Correct response

WRONG_LEFT_PRESS Timestamp of pressing the opposite of the required arrow key Motor control error

WRONG_RIGHT_PRESS Timestamp of pressing the opposite of the required arrow key Motor control error

COLOR_REACTION Time difference between upcoming predator warning and pressing the spacebar (finish current
round)

Correct response

COLOR_NO_REACTION Time difference between upcoming predator and game over Visual attention error

CAUSELESS_JUMP Timestamp of pressing spacebar without predator approaching Visual threshold error

ARROW_NO_INSECT Timestamp of pressing an arrow button in vain Motor control error
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optimal hotbed for keeping the well-known problems alive
and prospering.

The ongoing replication crisis of psychological research
presses us to figure out how the above-mentioned systemic
shortcomings can be overcome. Luckily, computerization and
automatization in combination with interdisciplinary cooper-
ation and an open-data philosophy offer a solution to a very
basic but crucial problem: in our eyes, sample size is the ele-
phant in the room for improvement of psychological research
that needs to be addressed promptly. Towards this end, we
have initiated the COSMOS platform: we are striving to facil-
itate recruitment of study participants through automatization,
i.e., creating experimental setups that no longer require staff to
implement them and to observe and record behavior.
Although our platform is still in its pilot phase, we argue that
digitally oriented research endeavors like COSMOS will
eventually serve the scientific community in several ways.
Online screening platforms can be used to either carefully
preselect individuals or to simply increase sample size without
skyrocketing costs. Being able to substantially increase the
number of study participants is arguably a compelling strategy
to counteract the overestimation of effect sizes and the non-
replicability of study findings.

For the scaling of psychometric assessment, especially for
the online-based test setting, our overall philosophy is that the
testing instruments need to be as fun and absorbing for the
participants as possible to increase the intrinsic motivation to
engage. At the same time, tests should require minimal effort
with regard to manual data entry in order to prevent significant
issues with subject adherence. Finally, the novel assessment
tools should provide investigators in the psychological and
biomedical sciences with research-grade cognitive and psy-
chological metrics. Technological advances along with a
strongly grown computer literacy in the general population
and widespread familiarity with computer games (Granello
and Wheaton 2004; Palaus et al. 2017) open up a plethora of
possibilities for the operationalization of psychological re-
search questions. Leveraging gamification to repeatedly obtain
behavioral samples paves the way for a next-generation high-
throughput psychometric toolset. Hence, the COSMOS plat-
form is conceptualized to collect a vast array of psychometric
and cognitive data from a large pool of study participants in a
highly automated and thus very cost- and time-efficient way.

It is obvious that the goal of gathering in-depth phenotypic
data by employing web-based administration of psychometric
tests in the guise of entertaining serious games chaperoned by
individual automatic performance feedback requires a highly
interdisciplinary skill set: social, computer, and data scientists
need to work closely together to design, develop, refine, and
validate the tools and put them to work. Yet, this aggregate
competence is often readily available in university settings
and easily accessible through close collaborations between
disciplines.

The possibilities of the outlined web platform go way be-
yond the scope of only gathering data, if additional opportu-
nities offered by the digital era are harnessed: it could also
provide a framework to present, discuss, and continuously
update scientific findings. We think that eventually such ap-
proaches will not only help online participants better under-
stand their own behavior and detect patterns that may be early
signs of neuropsychiatric disorders; they could also open up
venues for the development of efficient, individualized, and
most importantly scientifically sound methods of cognitive
enhancement.
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