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ABSTRACT 

PURPOSE  

Frontotemporal dementia (FTD) is a neurodegenerative disorder associated with a poor 

prognosis and a substantial reduction in quality of life. The rate of misdiagnosis of FTD is 

very high, with patients often waiting for years without a firm diagnosis. This study 

investigates the current state of the misdiagnosis of FTD using a novel artificial intelligence-

based algorithm. 

PATIENTS & METHODS  

An artificial intelligence algorithm has been developed to retrospectively analyse the patient 

journeys of 47 individuals diagnosed with FTD (age range 52-80). The algorithm analysed 

the efficiency of patient pathways by utilizing a reward signal of ‒1 to +1 to assess the 

symptoms, imaging techniques, and clinical judgement in both behavioural and language 

variants of the disease.  

RESULTS  

On average, every patient was subjected to 4.93 investigations, of which 67.4% were 

radiological scans. From first presentation it took on average 939 days for a firm diagnosis. 

The mean time between appointments was 204 days, and the average patient had their 

diagnosis altered 7.37 times during their journey. The algorithm proposed improvements by 

evaluating the interventions that resulted in a decreased reward signal to both the individual 

and the population as a whole.  

CONCLUSIONS 

The study proves that the algorithm can efficiently guide clinical practice and improve the 

accuracy of the diagnosis of FTD whilst making the process of auditing faster and more 

economically viable.  

 

KEYWORDS: frontotemporal dementia, cognitive disorders and dementia, imaging, 

computational neurology, artificial intelligence 
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1. INTRODUCTION 

Frontotemporal dementia (FTD) is a neurodegenerative disorder associated with a poor 

prognosis and dramatic reduction in quality of life [1]. FTD accounts for up to 20% of young-

onset dementias [2] and despite recent advances in imaging techniques, codification of 

diagnostic criteria and epidemiological studies, the rate of misdiagnosis is still very high, 

particularly early on in the disease [3,4]. Because symptoms can mimic various other 

neurological and psychiatric diseases (as indeed shown in the ‘Results’ section of the present 

paper), FTD patients are often subjected to a number of different investigations, clinic visits, 

scans, and biochemical tests before the correct diagnosis can be made [5]. 

New treatments are emerging for the different variants of dementias, and thus an early and 

accurate diagnosis of dementia subtype is increasingly more important [6–8]. An accurate 

panel of diagnostic tests could also minimize the distress for the patient, sparing unnecessary 

investigations and misdiagnoses they currently experience [9]. This will also reduce 

associated healthcare costs by avoiding inappropriate investigations and treatments. 

 

1.1 The variability and inaccuracy of the diagnostic criteria 

FTD presents itself in two major variants: behavioural and linguistic (non-fluent and 

semantic), which complicates the task of standardizing the criteria. The histopathological 

examinations is heterogeneous in FTD cases as different symptoms have been associated with 

various different neuropathologies and genotypes [10].  

There are no universally accepted criteria for the diagnosis of the FTD. The Neary 

criteria [11] recognize all three clinical phenotypes of FTD and incorporate them into a 

universal panel. More recently, however, Rascovsky published a more detailed criteria for 

diagnosing behavioural variant FTD [12] according to its likelihood (possible, probable and 

definite). Semantic and non-fluent variants of FTD are usually assessed using the Gorno-

Tempini criteria [13]. Our study reports an analysis for all three groups of criteria, to 

maximize the clinical application of the paper’s findings. 

To enhance the accuracy of these panels, various improvements have been proposed. 

Apraxia examination [14], neuropsychometry [15,16], or amyloid-β 2-42 CSF analysis [17] 

have all been used to better differentiate FTD from other types of dementia. Nevertheless, 

when subjected to confounders such as Alzheimer’s disease or Lewy Body Dementia, the 

criteria reveal a very poor sensitivity for FTD [18,19]. Indeed, our study reports on the most 

common ones in the ‘Results’ section below.  
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Some point to a better use of imaging techniques as a panacea for the problem. 

However, diagnosing FTD from an MRI scan can be very difficult, particularly in the early 

stages of the disease [20,21]. An addition of a multivariate analysis [22] or a PET scan may 

improve the accuracy [23,24], albeit only to a limited extent [25].  

Single positron emission computer tomography (SPECT) emerged as a potentially 

useful tool, as it attempts to directly measure the perfusion of the affected areas (i.e. frontal 

and temporal lobes). However, there is a mixed picture in the literature concerning these 

scans, with their considerable limitations [26,27]. A recent meta-analysis revealed that there 

is currently insufficient evidence to recommend the use of SPECT scans in routine practice 

[28]. EEG may be helpful [29–31] but it is not usually employed in a dementia clinic. 

Another difficulty is that of the disease progression [32]: the symptoms of the FTD 

can vary at different stages of presentation. 

 

1.2 Machine learning and pattern recognition 

The inaccuracies of human perception could potentially be mitigated by the recent 

developments in the field of computational biology. Several studies demonstrated that 

artificial intelligence (AI)-developed methods of imaging analysis and pattern recognition can 

reliably improve the diagnostic accuracy when compared to a human-based assessment (e.g. 

in classification of fractures [33], dermatological assessment [34], or MRI interpretation [35–

39]).  

We have expanded the scope of that analysis to include the entirety of the patient’s 

journey: from the first presentation to neurology services to the final diagnosis of FTD. 

In this paper, we present a result of a retrospective longitudinal AI-powered study of 

patients with FTD diagnosis, assessing the progression of their disease in time, most common 

misdiagnoses, and the reasons for inaccuracies. The study aims to report on the current state 

of the problem and to propose potential improvements in the clinical practice. 

 

2. PATIENTS AND METHODS 

2.1 Participant selection 

The participants were selected from an anonymized database from the Memory Clinic in the 

Brain Centre, Southmead Hospital, Bristol, UK. This is a tertiary referral centre and a major 

university hospital for neurosciences in the South West of England (5.6m population) [40]. 

The main secondary care service, however, is provided within the Bristol metropolitan and 

Somerset area. The database features the diagnosis of record, and in order to be included, a 
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patient had to have a full diagnosis of any FTD variant. At the time of search, records 

included hospital visits from 2009 to 2017. The selection process is illustrated in Fig. 1. 

 

2.2 Frideswide algorithm set-up 

A total of 47 patient journeys were followed and analysed using the Frideswide AI algorithm 

(FwA) [41]. The input was generated from clinical letters, discharge summaries, request 

sheets and investigation reports available on the hospital’s computer system. The date of 

admission (and the first point on the timeline to be analysed) was set to the first presentation 

with a neurological symptom, be it to the Emergency Department (ED), or via a referral from 

the General Practitioner (GP). The last follow-up was concluded when the patient was given 

a firm diagnosis by a neurologist (Fig. 2). For the secondary analysis of the FTD variants, the 

first point on the timeline was adjusted to the first neurology services encounter: on the ward 

or in clinic, since it would be unlikely for an ED physician or a GP to use criteria-based 

evaluation of the disease. 

 

2.3 Reward assignment 

Amid the healthcare informatics revolution, the “AI” and “machine learning” terms have 

been used in a variety of different situations [42]. For clarity, the FwA is an analytic tool that 

acts as an intelligent agent [43]. It studies the environment composed of the available data 

(clinical information from letters, reports, requests, etc.) in different time frame nodes, each 

healthcare encounter being a different node. It then attempts to achieve the best maximisation 

of the diagnostic efficiency (goal function in AI nomenclature), i.e. so that the patient is 

diagnosed at a minimum time, cost and invasiveness.  

The AI uses the doctor-defined pay-off table to determine the values of different 

decisions it may take. The overall aim is to produce a list of improvements that could achieve 

the most optimal efficiency for the entire hospital. The exact process is described below and 

in Fig 2. 

After the data was imported, each visit to the hospital was represented as a point on 

the timeline, with corresponding symptoms, current differential diagnoses, care plans and 

actions. The appointments were then associated with each other on an action-outcome basis, 

in a chronological order. This data model was then enhanced by adding information about 

diagnostic accuracy, time, cost, and invasiveness of the interventions (Fig.2). 

The utility function [44] of the FwA assigned the BK coefficients to each of the 

action-outcome associations. A BK coefficient is a score that helps the AI understand 
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whether an outcome was clinically desirable. It translates what a human being would consider 

a good or a bad outcome into a numerical figure that the AI can understand. This way, the AI 

was able to evaluate an association, by having a set of standards and values. Each association 

was assigned a pay-off award in the form of a BK coefficient, which represents an association 

that is desirable clinically on the scale of 1 to -1, from the most to the least desired outcome.  

This was dictated by the following payoff set: {firm diagnosis: 1, ?diagnosis: 0.5, 

very close diagnosis: 0.3, associated diagnosis: 0.25, unknown or entirely different diagnosis: 

–1}. A “?” sign was used to signalize that a diagnosis was not certain at a given point in time. 

This way, the action that resulted in the firm diagnosis of FTD would be ideal (BK=1), and 

the action that resulted in a firm diagnosis of a different disease, e.g. Huntington’s disease 

would be least desirable (BK= – 1) 

The algorithm then attempted to approximate the state of the world [45], i.e. the 

neurology service provided for the patients as analysed in the study, to the ideal overall BK 

coefficient of BK=1.  

To that end, it suggested a number of improvements, which were collected in a matrix. 

An improvement was a FwA-generated suggestion of how the service can be enhanced. In 

this context, an improvement is something that would enhance the diagnostic accuracy. These 

improvements were then tested against their feasibility across the entire population, to see 

whether they would work if they were actually introduced as a routine service element to be 

applied to all patients. 

 

2.4 Improvement analysis and reporting 

If, by removing the negative element from the journey, the entire population were better off 

(overall BK increased), the improvement was deemed significant. If, on the contrary, the 

negative element’s contribution was beneficial to the large sample overall, it was deemed a 

necessary evil, as enough patients in the population benefited from that element to warrant its 

usefulness.  

 

2.5 If it can diagnose, it can misdiagnose 

Some investigations are performed to exclude an alternative diagnosis or to not to miss a 

sinister or less common aetiology. Therefore, to correct for this phenomenon, only 

investigations which at any point reported a diagnosis of FTD were subsequently included in 

the analysis. Those which did not purport to be capable of making that diagnosis were not 

evaluated for that purpose.  
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2.6 Natural history of the disease 

A battery of quantitative panels was also performed to assess the state of the FTD population. 

Since the study collected a large number of symptoms, imaging reports and investigations 

results, we have reported on the natural history of the FTD development, as captured during 

various hospital appointments and examinations. 

Notwithstanding the variability of the available diagnostic tools, we have decided to 

evaluate the accuracy of the FTD diagnosis with the most widely used criteria [11]. These 

include measurements of behavioural change, linguistic problems, pattern of social and 

personality changes over time and supportive information from neuropsychometry, EEG, and 

imagining. One point was awarded for every element on the panel (both sections I and II of 

the criteria [11]). 

The patients were then sub-divided into language (both non-fluent primary 

progressive aphasia and semantic form) and behaviour variants of the disease, and further 

assessed using the Raskovsky and Gorno-Tempini criteria, respectively [12,13]. The 

assessment was used to evaluate any differences in care between the two variants and to 

report a natural history of the disease over time. 

Some participants were offered neuropsychometry as well as genetic tests. However, 

because of the computer system set-up, the dates of these appointments cannot be reliably 

established. Nevertheless, they have still been included in the analysis. Their date was set at 

the time of the patient learning about the outcome, which was the date of the next 

appointment. 

 

2.7 Ethical issues 

The project was reviewed and received a favourable ethical opinion from NHS Health 

Research Authority, IRAS project ID: 209781.  

 

2.8 Statistical analysis 

Descriptive statistics were used to summarize the quantitative sections. Overall effect of the 

improvements was calculated in a meta-analysis statistical panel, including z-test for total 

fixed effects, and Cochrane’s Q and I2 tests for heterogeneity. We appreciate that these 

statistical tools are commonly associated with a meta-analysis of studies; in this context, the 

independence assumption is not valid. Thus, the metrics are intended to aid the understanding 

of the decision-making process and to confirm whether an AI recommendation was 
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statistically significant, i.e. whether a phenomenon indicated in the results could be explained 

by the data used for its evaluation. The odds ratio (OR) and ANOVA were used in secondary 

analysis of the power of a request form. Unpaired two-tailed t-test was used to evaluate the 

differences between variants of FTD. The statistical significance level was set for the p < 

0.05. 

 

3. RESULTS 

3.1 Quantitative panel 

The demographics, times and a categorized breakdown of symptoms and healthcare services 

received by the patients are presented in Table 1. Before reaching the diagnosis, on average, 

every patient was subjected to 4.93 distinct types of investigations, 67.4% of which were 

radiological scans (CT, MRI, 123I-ioflupane nuclear neuroimaging - DaTscan, and SPECT). 

From presenting to the hospital with a neurological symptom, be it from a GP referral 

or via the emergency department, an average patient waited 939 days (just under 2 years and 

7 months, range 18-2911 ± 758 days) for their firm diagnosis. The mean time between the 

various hospital appointments (including scans) was 204 days (6 months 3 weeks, range 17-

877 ± 150 days). The average patient had their diagnosis of record changed 7.37 times (range 

3-25 ± 4) during their journey. There was no statistical difference between behavioural and 

language variants of FTD in any of these measurements. The full breakdown is displayed in 

Table 1. 

 

3.2 Diagnostic criteria 

Globally, the mean diagnostic Neary score at the first presentation was (out of 24): 0.89 ± 

1.81 (range 0-8), and the mean culminated score at the time of a firm diagnosis was 9.78 ± 

5.72 (range 2-28). The progression of the mean culminated score over the course of hospital 

appointments is illustrated in Fig. 5A, with sensitivities for a clinical diagnosis with different 

cut-off scores is shown in Fig. 5B.  

The most common categories of symptoms are presented with their prevalence on the 

first and subsequent appointments, along with their overall prevalence throughout the journey 

in Fig. 5C. The progression of the disease in behavioural and language variants of the disease 

is illustrated in Fig. 6 and Fig. 7. 

 

3.3 Conducting differential diagnosis 
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Whilst some patients received their initial indication of FTD fairly promptly (in less than 9 

months) after presenting with their symptoms, others were misdiagnosed or undiagnosed for 

a long time (up to 2911 days). Out of the latter group, one pattern of differential diagnosis 

featured a series of confounding diagnoses initially (Fig. 3), and then a narrowing-down 

process leading to the FTD diagnosis.  

The other pattern consisted of a series of negative pivotal points, whereby an 

indicative diagnosis of FTD was removed from consideration and replaced by either a 

confounding diagnosis or lack of any diagnosis at all. The most common change generating a 

negative BK score was a suspicion of the FTD to unknown (18 cases), other types of 

dementia to unknown (11 cases) and a suspicion of FTD into other types of dementia (6 

cases). 

The breakdown of negative and positive BK results of particular interventions is 

presented in Fig. 4. The total time for computing and analysing of the aforementioned data 

was 13.95 seconds. 

 

 

4. DISCUSSION 

Overall, this work shows that the best and most accurate diagnosis of FTD is still made 

clinically. The usefulness of radiological investigations ranged from borderline helpful to 

being a substantial distractor, especially when used not to exclude an alternative diagnosis but 

to confirm the FTD (Fig 4).  

Based on the obtained data, the large waiting times and stress of coming to the 

hospital could have been substantially alleviated if the diagnosis had been made based on 

clinical picture and biochemical blood investigations only, to exclude other diagnoses (i.e. 

organic causes of the symptoms, such as electrolyte imbalance, liver dysfunction, 

autoimmune and paraneoplastic disorders, etc.). 

The benefits of performing the MRI or SPECT scans were demonstrated to be 

outweighed by the costs, time, and distress to the patient, especially in the case of the MR 

imaging. 

It also must be noted that the invasiveness of the scan may subjectively be more 

significant to a patient experiencing FTD-like symptoms, than to a healthy control. 

However, the value of the actual time saved is difficult to establish. Frequently, the 

follow-up appointment will only happen once the test planned from the previous appointment 
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is done. Furthermore, the progression of the disease in time could be important 

diagnostically, as several neurodegenerative disorders present with distinct natural histories.  

CT scans reported numerous BK=0 neutral scores, as their use was, in many cases, to 

exclude other diagnoses or more acute syndromes. 

 

4.1 Reading letters saves lives 

Interestingly, inability to read the clinical letters was one of the major cause of negative BK 

scores in the diagnostic process of the FTD. Lack of proper familiarization with the current 

patient’s notes resulted in a substantial number of unnecessary referrals and investigations 

that either did not contribute any relevant clinical information or, even worse, distracted from 

the FTD diagnostic pathway.  

One reason for this phenomenon could be a lack of an integrated clinical letter system 

in Southmead Hospital, as indeed is seen in many other hospitals. For instance, Emergency 

Department clinicians may not be aware of clinical letters from the Neurology Department 

and could thus bona fide assume that the current admission is the patient’s first presentation 

with the symptoms. This may be aggravated by the difficulty of obtaining a detailed history 

from a patient with memory and language problems.  

The caregivers of the patient attending the hospital may not have the copies of clinical 

letters at hand. For an assessing physician, the collateral history may offer a limited degree of 

reassurance. Thus, they may be requesting additional scans to confirm the diagnosis of a 

neurodegenerative disorder. We appreciate there may be many further reasons for not being 

able to read the cognitive neurology letters.  

 

4.2 The art and power of a request form 

Whilst the SPECT scan is widely requested for the diagnosis of FTD, the clinical evidence 

for its use is still lacking [28]. This type of investigation was the only FTD-specific non-

clinical benchmark identified in the study and its overall performance was positive, albeit 

with a substantial number of occasions where its negative findings severely delayed the 

diagnosis. 

Secondary analysis of the reports and requests for the SPECT scan revealed a very 

interesting relation: by putting the suspicion of the FTD on the request form, there was an 

OR=5.75 (z=2.101, p=0.036) of receiving a positive report (i.e. one reporting that the scan 

was in keeping with FTD), whereas a negative finding was independent of a request form. 

Not putting the FTD on the form resulted in a random chance of getting an either positive or a 
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negative report. There was no difference (F3=0.446; p=0.72) between the groups in terms of 

symptoms or clinically-assessed progression of the disease. 

This may either indicate a confirmation bias in clinicians over-diagnosing the FTD 

after a positive scan or a more diligent scan interpretation prompted by the suggestion on the 

form. 

 

4.3 Towards an accurate diagnosis  

There have been several attempts to assess the sensitivity of the FTD scoring panels in the 

past: 79% [46] and 36.5% [47] were reported for the Neary criteria. These figures would be 

replicated in our study by applying a cut-off point of 5. 

Interestingly, we have been able to demonstrate how the mean culminated score on 

the Neary criteria is changing over time, which allows for the application of a cut-off point 

not only in terms of desired sensitivity (relative to clinical diagnosis), but also within a 

specified timeframe. 

We have, however, deliberately exercised caution in reporting the sensitivity figures, 

as they may not be very reliable in the absence of a gold standard independent of the 

consensus criteria. Specificity was also not available because of ethics constraints on the 

current study, disallowing the inclusion of non-FTD cases.  

Per analogiam, we have refrained from proposing our own adjustments to the 

diagnostic criteria at this stage.  

 

4.4 Concrete problems of AI implementation 

Putting the FwA to a real-life test revealed several phenomena that were not displayed during 

the initial simulation [41] (Fig 2A). Interestingly, these were hypothesized in the landmark AI 

paper before [48] and thus the study is of an immense value to the computer scientists 

exploring this unchartered territory. 

 

4.4.1 Avoiding negative side effects 

Since the model of reality presented to the algorithm differs from the one perceived by the 

consultant, it is difficult to prescribe all the negative side effects [48] that a neurologist would 

have taken for granted, e.g. an acute confusion and slurred speech warrant a CT scan with 

suspected cerebrovascular event. The algorithm, however, perceives it as a deviation from its 

goal and is willing to sacrifice the patient’s health, ignore the stroke, and allow the ischemia 

to go on, only to get to the FTD diagnosis quicker. We have alleviated the impact of this 
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phenomenon with a supervised learning of these side effects, yet we appreciate that there is a 

vast number of potential negative and positive side effects that are still unaccounted for. 

 

4.4.2 Avoiding reward hacking 

The FwA quickly acquired a skill of evading our intended outcomes. It managed to accelerate 

the process of getting to the reward quicker by generating improvements that would not be 

clinically feasible.  

One of these phenomena was a genius effect, whereby by removing a confounding 

factor, e.g. a test result, the consultant in the latter part of the association appeared to have 

made the diagnosis out of their skill, whereas in fact, they would have been aware of the 

result that was artificially removed. 

We managed to largely eradicate this by introducing more distinct, sometimes 

conflicting dimensions contributing to the BK coefficient. This made the algorithm consider 

several factors when making a decision, a situation similar to the one faced by a clinician.  

We anticipate that further sophistication of the coefficient would not only make the result 

more clinically applicable but will contribute to minimizing the reward hacking. 

 

4.4.3 The scalable oversight and safe exploration 

These problems were avoided by a sheer volume of data which did not require separate 

supervised teaching exercises. Furthermore, the algorithm was not allowed to make decisions 

about the treatment or diagnosis at this stage.  

However, an argument could be put forward that the sandbox simulation omitted the 

unexpected consequences of these decisions. This is inevitable in clinical practice, where a 

great deal of caution must be exercised when trailing the AI systems. We envisage that a slow 

and methodological implementation of the suggestions and a re-audit cycle would be a safe 

approach to this problem, as is in the case of a standard clinical audit. 

 

4.5 The advantage of AI use  

The data analysis and results presented in this report could have been achieved by standard 

statistics and by using auditing methods currently available. However, the AI use offers 

certain advantages. 

First, the superiority of the FwA is in the time saved in performing the analysis. The 

overall process took 24.5 seconds on a standard PC machine (Intel ® Core ™ i7-4790 CPU 

@ 3.60GHz, 16.0 GB RAM, Windows 10 64-bit, x64-based processor). During that, the FwA 
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analysed 1,597 clinical findings and 515 clinical decisions, generated 44 hypotheses and 

conducted 249 experiments, where it re-evaluated the patients’ journeys, back to back, to test 

whether a hypothesis is clinically feasible. This volume of data would require considerably 

more time and resources to be analysed by human means. 

Furthermore, a classic audit would usually involve testing a hypothesis that is known 

to the researcher before starting the analysis. The FwA not only has the capacity to test 

multiple hypotheses without a significant increase of time required but can also generate new 

hypotheses on its own. This means that the FwA-generated audit can reveal a clinically 

valuable answer to the question that is not known a priori.  

It is also possible to adapt the FwA for other clinical scenarios e.g. time taken to diagnose 

lung cancer. The same program can perform multiple different analyses across different 

specialties. 

 

4.6 Limitations of the study 

The design of the study was aimed at analysing the FTD population only. Hence, the FwA 

had a limited impact of confounding diagnoses or indeed the journeys whereby the FTD was 

mentioned as a differential and an alternative firm diagnosis was made at the end. Thus, the 

improvements suggested by the algorithm can enhance the sensitivity but not specificity of 

the FTD diagnosis. 

Furthermore, since the firm diagnosis of FTD was made by the consultant, there is a 

limited space to scrutinize the clinical assessment efficacy. To alleviate this, an alternative 

gold standard could be introduced, e.g. a histopathological examination, which would provide 

an independent indicator of accuracy. We appreciate that this can limit the applicability of the 

statistical results; this is a common problem in diseases that cannot be definitely diagnosed 

ante mortem. 

We appreciate that there may be further difference to be elucidated in non-fluent vs. 

semantic variants of the language FTD. However, the study was not powered to investigate 

these in detail and thus the groups were displayed together in the figures and tables. 

Nevertheless, the Gorno-Tempini diagnostic criteria have been applied appropriately to the 

respective variants.  

The study presents the analysis of the population under care of a major neurology 

centre in the South West of England. We appreciate that a multi-centre study is warranted for 

a better external validity.  
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Furthermore, since the FTD incidence is 2.4-4.1 per 100,000 [1], it is difficult to obtain a 

large dataset of patients for the analysis. This is a major limitation in the generalisability of 

the FwA. However, large data requirement can limit many smaller audits in clinical practice. 

This paper can serve as an indication that smaller studies, e.g. on rare diseases or on a small 

population are still feasible.   

 

5. CONCLUSIONS 

Frontotemporal dementia is still a very difficult to diagnose condition. Patients often wait for 

years to receive their diagnosis, and during that time they are subjected to a number of 

potentially distressing and sometimes unnecessary investigations. They are often given 

different disease names to explain their memory and language problems, and each of those is 

associated with a shock and stress of learning about the condition. This comes at a cost to the 

patient’s psychological wellbeing and puts an extra pressure on the already stretched 

healthcare service resources.  

Since FTD is associated with a shorter life expectancy and poorer prognosis than 

more conventional dementias, an accurate and prompt diagnosis is of a paramount 

importance in planning of treatment and making personal life choices by the patient.  

This can be achieved by a constant audit cycle, implementation of improvements in 

diagnostic technique and a repeated evaluation of patient journeys. Normally, that process 

would require extensive amount of effort, funds, and staff hours.  

This study, however, proves that by using an AI-powered algorithm, the process could 

be made more economically viable and could easily produce the results to guide a better 

clinical practice and to significantly improve the patients’ experience in a cognitive 

neurology clinic. 
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