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ABSTRACT: The spread of antibiotic resistance is one of the most
serious global public-health problems. Here we show that a particular
class of homomers with binding sites spanning multiple protein
chains is particularly suitable for targeting by broad-spectrum
antibacterial agents because due to the slow evolutionary change
of such binding pockets, ligands of such homomers are much more
likely to bind their homologs than ligands of monomers, or
homomers with a single-chain binding site. Additionally, using de
novo ligand design and deep learning, we show that the chemical
compounds that can bind several different receptors have common
structural characteristics and that halogens and fragments similar to
the building blocks existing antimicrobials are overrepresented in
them. Finally, we show that binding multiple receptors selects for
flexible compounds, which are less likely to accumulate in Gram-
negative bacteria; thus there is trade-off between reducing the emergence of resistance by multitargeting and broad-spectrum
antibacterial activity.

■ INTRODUCTION
Currently the world faces an emerging antibiotic resistance crisis
because the rate of developing new antibiotics has not caught up
with the pace of the spread of antibiotic resistance.1,2 This is
caused by several factors: antibiotic resistance is an ancient
evolutionary phenomenon and is unavoidable,1,2 while the small
number of novel antibiotics entering the market might be partly
caused by the limitations of existing compound libraries used in
the pharmaceutical industry and the possible lack of unexplored,
“low-hanging-fruit” drug classes3,4 (but see also ref 5).
Socioeconomic factors also contribute, including the irrespon-
sible use of antibiotics promoting resistance and the relatively
low profitability of novel antimicrobials, which, exactly to
prevent the emergence of resistance, are likely to be used as last-
resort drugs rather than first-line medications. Since antibiotic
resistance can emerge quickly, even in laboratory settings,6

developing drugs that reduce the likelihood of resistance is a
central goal of the field.7−9 Resistance can emerge due to several
factors, like changes in the proteins targeted by the antibiotic,
changes in the rate of removal or uptake of the antibiotic, or
changes in the degradation rate of the antibiotic. However, the
analysis of currently available antibiotics indicates that most
successful antibiotics or antibiotic classes bind several protein
targets, e.g., β-lactam antibiotics, fluoroquinolones (or target
substrates rather than enzymes, e.g., vancomycin10), while
resistance emerges much more quickly for antibiotics that target
only a single protein (e.g., sulfonamides, trimetophrim), and

such drugs are used mostly in combination with other drugs.7,11

The most likely cause of this phenomenon is that in the case of
single target drugs, a fewmutations at a single binding site can be
sufficient to make the drug ineffective, whereas for multitarget
drugs, several binding sites have to be mutated to achieve
resistance.
As a consequence, the strategies that have been employed to

slow down the emergence of resistance typically rely on targeting
several proteins simultaneously, by either a single drug or
“cocktails” of drugs. The central goal is obviously to find novel
drug classes, but an alternative and very promising strategy is to
create hybrid molecules that contain the core pharmacophores
of several existing drugs, connected by a linker.7,12−14 For several
difficult to treat infections like Helicobacter pylori or
Mycobacterium tuberculosis (but also for pathogens like HIV or
Plasmodium), combination therapy is already the only effective
treatment, and multitarget drugs are currently being devel-
oped.15 Additionally, it has been shown that the emergence of
resistance for one antibiotic frequently influences (and some-
times increases) the sensitivity to other antibiotics,16−20

suggesting that, aside from combination therapy, developing
drugs that target the “right” protein combinations may
significantly reduce the speed at which resistance develops.
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A theoretical problem in designing multitarget antibiotics is
that the proteins targeted by them may not be similarly
druggable in different species. First, species that are distantly
related (i.e., Gram positive and Gram negative bacteria) may not
share all the proteins targeted by the drug, even if they are
essential. Second, and more importantly, the binding sites of
homologous proteins in distantly related species may not be
structurally identical, and thus the drugmight not be able to bind
efficiently all of them, even if they are present. These problems
are expected to scale exponentially with the number of targeted
proteins, and as a consequence, drugs that are multitarget in one
species might effectively be single target in another one and
therefore not be “resistance resistant”. Therefore, selecting
targets that have similar binding sites and functions across the
broadest possible spectrum of bacterial species is of great
importance to the selection of antibiotic targets.
Recently, we have found that the structure of ligand binding

sites has profound consequences for the evolution of protein
function and structural divergence of binding pockets,
particularly in proteins that form homomers−protein complexes
made up of multiple copies of the same polypeptide subunit.21 In
prokaryotes, homomers are by far the most common type of
protein complexes, with >50% of bacterial proteins of known
structure falling into this category.21,22 Binding sites that are
formed by multiple protein chains show much higher structural
conservation than sites that are formed by the residues of

individual protein chains, and have more similar ligands than
binding sites of monomers, or homomers with a single chain
binding site.21 Since similar binding pockets generally bind
similar ligands,23 proteins where distant homologs have similar
binding pockets are potentially good candidates for broad-
spectrum antibiotic targets. In this paper, using in silico
experiments, we show that ligands and de novo designed ligands
of homomers with multichain binding sites (MBS, see Figure
1A) are more likely to bind their homologs than ligands of
monomers or homomers with a single-chain binding site (SBS,
see Figure 1B). This shows that considering the quaternary
structure of proteins and the structures of their ligand-binding
sites can aid the selection of protein targets for new broad-
spectrum antibiotics. In addition, using de novo ligand design
and methods based on deep learning, we also test whether the
chemical compounds that can bind several different receptors
have common structural characteristics. We show that fragments
similar to the building blocks of existing antibiotics are
overrepresented in them and that there is likely to be a trade-
off between preventing the emergence of drug resistance and
broad spectrum activity. We expect these findings to be useful in
selecting targets of novel leads and in generating targeted
fragment libraries for antibiotic design.

Figure 1. Examples of homomers with multichain binding sites (MBS), single-chain binding sites (SBS), and an overview of binding site identification
in homologs. (A) Structure of nitroreductase ydjA from E. coli (PDB code 3bm1). The dimer structure has two multichain binding sites, both
“sandwiched” between the two chains of the complex. The ligand (flavin-mononucleotide) is displayed in red, and ligand binding residues are in yellow.
(B) Structure FabH protein from E. coli (PDB code 1ebl). The dimer has two binding sites, both restricted to a single chain. The ligand (coenzyme A)
is displayed in red, and ligand binding residues are in yellow. (C) Structure of SiaP protein fromHaemophilus inf luenzae (PDB code 2wyk). The protein
is a monomer, and has a single binding site, with its ligand (N-glyconeuraminic acid) displayed in red. (D) We searched for similar binding sites in
homologous proteins with ProBiS and defined the region of binding sites for grid building and docking through local structural alignments. The
structural alignment shows the H. inf luenzae SiaP protein binding site superposed with the binding site (identified by ProBis) of the homologous c4-
dicarboxylate-binding protein of Pseudomonas aeruginosa (PDB code 4nf0); the red box indicates the region of the binding sites. Note that the
alignment optimized the superposition of the binding sites and not the global protein structures. (E) Once the binding site has been identified in c4-
dicarboxylate-binding protein, the ligand of H. inf luenzae SiaP protein was docked into it, and the binding energies (i.e., grid score) in the two
structures were compared.
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■ RESULTS

Ligands of MBS Homomers Bind Their Homologs
Significantly Better than Ligands of SBS Homomers or
Monomers. In the first step of the analysis we identified
bacterial proteins that are likely to be suitable targets for
antibiotics. Using BLAST and the prokaryotic proteins present
in the Protein Data Bank (PDB), we compiled a data set of 687
pairs of homologous bacterial proteins. We only used proteins
that form homomers or monomers. The proteins of the
homologous pairs were selected according to the following
criteria: (1) none of the proteins have a homolog in the human
genome with BLAST e-value <10−3; (2) the pairs have
homologous regions, with BLAST e-value <10−5; (3) at least
one protein of the pair is essential; (4) the sequence similarity
between them is less than 40% because above 40% protein
structures are very similar (see ref 24 for examples); (5) both
proteins have a biologically relevant ligand, i.e., present in the
BioLiP database;25 and (6) their quaternary structure and
binding site type (MBS vs SBS) are similar. Next, in each PDB
structure of the protein pairs, the ligand-binding site of every

small molecule ligand was identified (Figure 1C), and we
identified the best binding site candidate in the structures of
their homologs with ProBiS26,27 (Figure 1D). Once the location
of the putative binding site was determined in the homolog, we
docked the ligand with DOCK28 to the original binding site and
the binding site in the homolog and compared their estimated
binding energies (i.e., grid score, Figure 1E). Only those pockets
(and proteins) were used where the performance of DOCK was
acceptable; i.e., it could reproduce the position of the original
ligand in the top 10 scoring poses (see Methods for details). In
addition, the binding sites of metals and cofactors were excluded
from the analysis because metals typically have very small
binding sites, while the binding pockets of cofactors are
structurally so conserved that they are likely to be similar in
bacterial and mammalian proteomes.21 This procedure resulted
in a set of 1007 binding pocket pairs (78 inMBS homomers, 212
in SBS homomers, and 717 in monomers) between 1464
different binding pockets of 262 different proteins (see Table S1
for a list of pocket pairs). Note that the pocket pairs contain
redundancies; the number of nonredundant pockets (excluding

Figure 2. Ligands of homomers are more likely to bind their homologs than the ligands of monomers. (A) Frequency of homologous protein pairs
without similar ligand binding sites, (ProBiSZ score of >2). See also ref 21 for general trends in ligand binding site evolution.MBS homomers aremuch
more likely to have an identical binding site in their homologs than SBS homomers (p = 0.029, test of proportions) or monomers (p = 0.00011, test of
proportions). (B) The difference between the estimated ligand binding energies (grid score) in the original binding sites and homologous binding sites
shows that homomers, and particularly MBS homomers, are much more likely to bind the ligands of their homologs than monomers. Normalized grid
score difference was calculated as (scoreoriginal − scorehomolog)/scoreoriginal. All three possible comparisons are significant (p = 0.013 for MBS vs SBS
homomer; p≪ 0.005 forMBS/SBS homomer vsmonomers; Kruskal−Wallis rank sum tests). (C) Pose reproduction success rate of DOCK for ligands
of different sizes. The high flexibility of ligands above 40 heavy atoms in this particular data set results in a relatively low (∼50%) success rate for large
ligands. (D−F) The relationships between ligand size and binding energy (grid score) follow a linear trend in the original ligand binding sites and the
binding sites of homologs. The difference between the original binding sites and the binding sites of homologs is lowest in MBS homomers and largest
in monomers (ANCOVA).
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pockets with metals and cofactors) is 524 in the original PDB
receptors and 940 in their homologs.
The binding pocket searches with ProBiS indicate that this

data set, despite its much smaller size, shows a qualitatively
similar pattern of binding pocket similarity as the entire PDB in
our previous study:21 the frequency of MBS homomer pairs that
have no highly similar (ProBiS Z score >2) binding pockets is
much smaller than in SBS homomers or monomers (Figure 2A,
p = 0.029 and p = 0.0001, respectively; tests of proportions).
Docking of the ligands into their original binding site and the
best binding site of their homologs shows a similar trend (Figure
2B). The normalized grid score [(scoreoriginal − scorehomolog)/
scoreoriginal] indicates that forMBS homomers, the binding of the
ligand in their homolog is nearly as strong as in the original
binding site, while in SBS homomers and especially monomers,
ligands bind much more weakly at the homologous biding sites
(Figure 2B, p = 0.013 between MBs and SBS homomers, and p
≪ 0.001 for other comparisons, Dunn’s test [Kruskal−Wallis
rank sum test]). The performance of DOCK was highly
dependent on the size of the ligand (and number of rotatable
bonds), as reported previously28,29 (Figure 2C), and performed
best on ligands with 10−30 heavy atoms. The estimated binding
energy of ligands (i.e., DOCK grid score, which estimates
interaction strength based on a simplified force field) generally

follows a linear trend in all three quaternary structure types, with
the ligands of monomers having many more clashes in their
homologs than homomers (Figure 2D−F). Statistical analyses
with ANCOVA indicate a similar trend as the normalized grid
scores: there is a marginally significant difference between MBS
homomers and their homologs (Figure 2E), and the difference is
largest between monomers and their homologs (Figure 2F).
Taken together, these findings indicate that ligands of MBS
homomers bind much more strongly in their homologs than
ligands of SBS homomers or monomers.

Characteristics of Antibiotics and de Novo Ligands.
We next determined whether de novo designed ligands show
similar trends as the previous analysis of the original ligands of
the PDB structures. We used de novo DOCK30 to design novel
ligands in each binding site where the pose reproduction of the
original ligand was successful, excluding cofactor and metal
binding sites and also sites where the original ligand had only
one or no rotatable bonds (see Methods for details), with a
maximum molecular weight cutoff of 550 Da. This resulted in
453 binding sites where de novo ligands were built (see Table S3
for the full list). From all de novo ligands that were generated in
each receptor we selected the 50 with the lowest grid scores (i.e.,
the 50 best binders) and used only these in the further analyses,
altogether 22 650. Note that de novo ligands were not designed

Figure 3. General properties of antibiotics and de novo ligands. For each receptor, the 50 best scoring ligands were included. (A) Molecular weight
distribution of Drugbank antibiotics, below 600 Da. (B) Molecular weight distributions of de novo ligands in MBS homomers and monomers. The de
novo ligands ofMBS homomers are significantly larger than of monomers, while the ligands of SBS homomers (Figure S1) do not show the same trend.
(C) The frequency of ligands that bind similarly in homologs and their original binding site is significantly higher among MBS homomers than
monomers above 300 Da (∗∗, p≪ 0.005, tests of proportions). (D) The log P values of antibiotics and de novo ligands. For most antibiotics log P is
below 3, but for a significant number of de novo ligands it is above 3, particularly above 300 Da. (E) The druglikeness of antibiotics and de novo ligands
follows the same trend and declines above molecular weight of 300. (F) Below 300 Da the synthetic accessibility of de novo ligands is considerably
worse than of real antibiotics.
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in receptors identified through homology. We also downloaded
the SMILES strings of FDA approved antibiotics present in
DrugBank31 from the ZINC15 database32 to compare the
properties of de novo ligands with real antimicrobial agents.
Antibiotics with molecular weight of >600 Da were not included
for two reasons. First, only a relatively small number of
compounds fall into this size category (glycopeptides [e.g.,
vancomycin], lipopeptides [e.g., daptomycin], or macrolides),
and these are typically active only against Gram positive
bacteria.33 Additionally, these compounds generally have
complex, cyclic structures, and designing functional ligands of
this size and complexity is beyond the capabilities of the current
de novo design tools. The list of antibiotics included is available
in Table S2.
The comparison of molecular weight distributions of

antibiotics and de novo ligands shows that the de novo ligands
ofMBS homomers are somewhat biased toward larger molecular
weights than antibiotics, which have a peak between 400 and 500
Da (Figure 3A,B), while monomers (Figure 3B) and SBS
homomers (Figure S1A) are characterized by more uniform
distributions. Next, the 50 best scoring de novo ligands of each
receptor were re-docked into their original binding site and to
the corresponding binding site in their homologous proteins,
and we determined the fraction of ligands that have an
approximately similar molecular weight to the original ligand
(min. 85%), and bind in the homologous binding sites similarly
as in the original site (min 85% of grid score). The comparison
of de novo ligands in the different quaternary structures
indicates that in homomers, and particularly MBS homomers,
the fraction of ligands that bind similarly in homologs and in the
original binding site is much higher than in monomers,
particularly above 300 Da (Figure 3C, Figure S1B; ∗∗, p ≪
0.005; tests of proportions). The difference is primarily caused
by the higher similarity of binding sites and not by the
qualitatively different performance of de novo DOCK in
proteins with different binding sites (although it may somewhat
contribute to the pattern in SBS homomers) because the
fraction of strongly binding ligands (grid score of de novo ligand
is min 85% of the original ligand) is comparable in all quaternary
structure types (Figure S2). Surprisingly, SBS homomers
perform somewhat better than MBS homomers or monomers
(Figure S2), although the difference is less than 20% for most
molecular weight bins.
Next we examined whether there are consistent qualitative

differences between antibiotics and de novo ligands for the three
different quaternary structure types. We used a chemical
variational autoencoder (VAE), a recently developed method
based on deep learning,34 to estimate the synthetic accessi-
bility35 (SAS), quantitative estimate of druglikeness36 (QED),
and octanol−water partition coefficient (log P) values for
antibiotics and each de novo ligand using their SMILES (Figure
3D−F). The solubility in organic solvents (log P values) of de
novo ligands gradually increase with molecular weight and, for
ligands with molecular weight above 300 Da, can substantially
exceed the values observed in antibiotics, which are generally
below 3 (Figure 3D). The quantitative estimate of druglikeness
(QED, higher is better) is a more modern estimate of
druglikeness than Lipinski’s rule of five and is a combination
of eight different molecular descriptors.36 Antibiotics and de
novo ligands show a qualitatively similar, nonlinear pattern, with
the most druglike compounds having molecular weight of 200−
400 Da (Figure 3E). However, even the compounds with
molecular weight above 400 Da have reasonably good (>0.5)

QED estimates, and since antibiotics and natural compounds are
known to not follow the same trend in druglikeness as synthetic
drugs,33 the druglikeness of de novo ligands should be generally
seen as satisfactory. The largest difference between antibiotics
and de novo ligands is in their synthetic accessibility (SAS, lower
is better), which estimates the ease of synthesis of chemical
compounds (Figure 3F). Antibiotics show a clearly increasing
trend with molecular weight, with SAS being below 3 for small
compounds (easy synthesis) and gradually increasing to ∼6
(more difficult synthesis) above 300 Da. In contrast, de novo
ligands show almost no change with molecular weight, with high
variability in every weight class (Figure 3F).Moreover, their SAS
below 300 Da is much higher than of real antibiotics. This is in
agreement with previous reports that the synthetic accessibility
of de novo designed ligands can be low. However, it should be
noted that most natural products also fall in the range of SAS =
3−6, and thus the values we observe are not prohibitively high.
Finally, using the VAE, we tested whether there are consistent

differences in the chemical composition of de novo ligands of
MBS homomers, SBS homomers, and monomers. The VAE is
fundamentally a pair of neural networks that “encode” (convert
to) and “decode” (convert back) discrete chemical compounds
into a continuous, high dimensional space called “latent space”,
where they are represented as a numerical vector. The vector
representation offers several powerful operations on chemical
compounds, like generating entirely novel molecules, interpolat-
ing between molecules, or optimizing existing molecules34 (see
also further analyses below). Additionally, since the latent space
is structured, where similar compounds are located close to each
other, it can also be used to visualize whether there are any
structural clusters in the de novo ligands. We transformed each
de novo ligand into a vector in the latent space using the encoder
module of the VAE. The latent space has 196 dimensions, and to
reduce its dimensionality, we used Barnes−Hut t-SNE37 for
clustering. This transforms the position of chemical compounds
in a high dimensional space into 2D, which is suitable for
visualization. The 2D maps of de novo ligands show that
monomers and MBS homomers have different distributions in
the chemical space, and SBS homomers show an intermediate
pattern (Figure S3). However, much of the variation is simply
due to differences in size (see Figure 3), and aside from these
coarse grained differences, no distinct, quaternary structure
specific clusters could be identified: in the areas of the plot where
all quaternary structure types are present, their distribution is
homogeneous (e.g., red circle, Figure S3).

The Best Ranking de Novo Ligands Show Similar
Binding Patterns as the Original Ligands of the
Receptors. Next we tested whether the de novo ligands show
similar patterns in binding the homologous binding sites as the
original ligands of the receptors (Figure 2). We found that this is
the case for the best ranking ligands, although the pattern is less
pronounced than for the original ligands (Figure 4) most likely
due to the higher flexibility of de novo ligands. For the 10 best
scoring de novo ligands of every receptor, the normalized grid
scores are significantly different in all three possible comparisons
(p ≪ 0.001 for all three comparisons, Dunn’s test, [Kruskal−
Wallis rank sums test], Figure 4A). The frequency of clashes
(Figure 4B) is significantly higher in monomers than in MBS
and SBS homomers (p < 0.001 in both cases, tests of
proportions), but there is no difference between MBS and
SBS homomers (p = 0.369, test of proportions). The grid scores
of de novo ligands show a similar linear scaling with their size, in
their original and homologous binding sites, with somewhat
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weaker binding in homologs (Figure 4C−E). For the lower
ranking ligands, we found that the difference between ligands of
MBS and SBS homomers is not consistent; however, de novo
ligands of monomers have consistently worse (higher) scores in
the binding sites of homologs than MBS or SBS homomers (not
shown).
Characteristics of de Novo Ligands That Can Target

Several Proteins.Next, we examined whether de novo ligands
that are likely to bind several proteins have common structural
characteristics. We performed the analysis in two steps. First,
since de novo DOCK uses a fixed fragment library to build the
ligands, we performed a fragment enrichment analysis of the de
novo ligands that have structurally similar ligands in multiple
receptors. Second, we optimized/evolved these ligands using the
VAE to test whether structural motifs that were absent in the
fragment library of de novo DOCK emerge during the
optimization.
From the de novo ligands (using the best 50 in each receptor),

we selected ligands predicted to target several proteins with the
following procedure. (1) First we converted each de novo ligand
into its vector representation in the latent space of the VAE and
calculated all possible (256 million) distances between the
22 650 de novo ligands in the latent space, using their vector
representation (see Figure 5A). (2) Next we selected the pairs of

de novo ligands where their distance in the latent space is less
than 13, and both de novo ligands have lower (better) grid score
than the original ligand of the binding site. The distance in the
latent space correlates with the structural similarity of
compounds; however, it also depends on the size of the ligand:
in the case of ligands of 300−400 Da, the distance 13 roughly
corresponds to Tanimoto similarity 0.7 (Figure 5B,C), while for
larger ligands, larger distances have to be used for the same
structural similarity (see Figure S4). We chose the distance
cutoff 13, because the druglikeness of de novo ligands in our data
set is highest below 400 Da; see Figure 3E. (3) From the ligand
pairs, we selected the ligands that have a low (<13) scoring pair
in at least two more bacterial species than the query ligand. (4)
We discarded ligands with properties that are substantially
different from real antibiotics: molecular weight of <300 Da,
log P > 3, and where SAS > (molecular weight/100) + 1. These
steps reduced the total pool of ligands to only 56 (1 duplicate
ligand), which are expected to be druglike, have structurally
similar ligands in the receptors of minimum three different
species, and are likely to be easy to synthesize (see Supplmentary
Data for the list of ligands and their structures).
The statistical variability of such a small set of ligands is

expected to be much larger than for the whole data set of 22 650
molecules. Therefore, to estimate the uncertainty associated

Figure 4. The best scoring de novo ligands show qualitatively similar, although weaker trends than the original ligands of the receptors. (A) Difference
between the normalized grid score of the 10 best ligands of each receptor. All three possible comparisons are significant (p < 0.0001 Kruskal−Wallis
rank sum tests). (B) The frequency of clashes is significantly higher inmonomers than in homomers (p < 0.001 for bothMBS and SBS homomers, tests
of proportions), but there is no difference between MBS and SBS homomers homomers (p = 0.43). (C−E) Relationships between ligand size and
estimated binding energy (grid score) of the best scoring ligand of each receptor in the original ligand binding site and the binding sites of homologs.
Similar to the original ligands of the receptor, the relationship between size and grid score is linear, and the difference between the original binding sites
and the binding sites of homologs is smallest in MBS homomers and largest in monomers.

Journal of Medicinal Chemistry Perspective

DOI: 10.1021/acs.jmedchem.9b00220
J. Med. Chem. XXXX, XXX, XXX−XXX

F

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00220/suppl_file/jm9b00220_si_003.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00220/suppl_file/jm9b00220_si_002.zip
http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00220/suppl_file/jm9b00220_si_002.zip
http://dx.doi.org/10.1021/acs.jmedchem.9b00220


with our analysis, we repeated the entire de novo design process
and generated a second, fully independent set of de novo ligands
using the samemethods. In this second set, de novo ligands were
built in 452 binding sites (see Table S3). This resulted in an
additional, independent set (set 2) of 73 putatively antibiotic-
like ligands (with three duplicate ligands; see Supplementary
Data).
Several of the selected de novo ligands are reminiscent of

compounds and drugs with known antimicrobial activity,
particularly of quinolones, quinazolinones, oxadiazoles, and
morpholine antifungals (Figure 6A; Figure S5A; note the top left
compound of Figure 6A, which resembles a hybrid between a
quinolone and an oxazolidinone antibiotic, and the bottom left
compound, which is similar to morpholine antifungal).
Quinazolinones and oxadiazoles represent two new groups of
antibacterials that were shown to be effective against methicillin
and vancomycin resistant Staphylococcus aureus.38−44 From the
380 fragments of the fragment library, 11 (set 1) and 12 (set 2)
are significantly enriched in the compounds (p < 0.05, tests of
proportions), and there are overlaps between the two sets of
fragments (Figure 6B−D; Figure S5B−D). The most common
fragment is the carboxyl group (side chain 23), and in both sets
halogen-containing fragments are enriched. Additionally, in set 1
the oxadiazole linker (lnk.36), and the 4-morpholinyl side chain
(sid.68) that is the core pharmacophore of several ergosterol
synthesis inhibiting antifungals (amorolfine, fenpropimorph,
tridemorph),45−47 is enriched, while in set 2, a quinolone-like

linker (quinazolinone, lnk.308, Figure S5C) is enriched.
However, although being significant in only one of the sets,
quinolone-like (quinazolinone) and morpholine groups are
common in both sets (see Supplementary Data; note that only
quinazolinone and not quinolone fragments was present in the
fragment library).
Next we tested whether the selected ligands originate from

binding sites of proteins with similar functions to the proteins
that are targeted by the antibiotics they are similar to.
Quinolones target the DNA binding gyrase and topoisomerase
IV,48 quinazolinones and oxadiazoles target penicillin binding
protein 2a,38,39,44 and morpholine antifungals inhibit ergosterol
synthesis.46 The de novo ligands of the two sets originate from
the binding sites of 23 and 25 proteins (set 1 and set 2,
respectively, see Table S4 and S5). Neither their quaternary
structure (Figure 7A, Figure S6A) nor their gene ontology (GO)
terms show significant enrichment compared to the full set of
proteins we used. The frequency of cellular component GO
terms indicates that they are present in several different cellular
components, including the cytoplasm, cell wall, or periplasmic
space (Figure 7B, Figure S6B). The frequency of molecular
function GO terms show that most of them have enzymatic
functions that are not related to the functions of quinolone,
quinazolinone, oxadiazole, or morpholine antimicrobials,
although many of them utilize NADP cofactors and ATP in
catalysis (Figure 7C,D; Figure S6C, Tables S4 and S5).While we
excluded cofactor-binding sites from our analysis, the binding

Figure 5.Outline of the structural comparisons using the VAE vector representation. (A) De novo ligands were converted to vector, which represents
the parameters of a statistical distribution and defines the location of the compound in the latent space. The Euclidean distance between the vectors was
used to measure the structural similarity between all ∼256 million possible pairs of compounds. (B) The frequency of pairs with distance below 13 is
negatively correlated with their molecular weight. (C) Formolecules above 300Da the distance cutoff 13 results in an approximate Tanimoto similarity
of 0.7 (most of them are in the range of 300−400 Da).
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sites of substrates and cofactors frequently form a continuum,
and the structural constraints imposed by nucleic acid
containing cofactors or ATP could contribute to the similarity
of several de novo ligands to quinolones.
Optimization and Evolution of de Novo Ligands Using

AI. The main limitation of using fragment libraries by de novo

design tools is that the extent of chemical space that can be
explored by the de novo ligands is limited by the fragment
library. To overcome this, we further optimized the selected sets
of de novo ligands (56 and 73 compounds) using the VAE
(Figure 8A). We applied the following, so-called “hill climbing”
protocol for ligand optimization. (1) First we docked the

Figure 6. Properties of the selected de novo ligands in set 1. (A) Examples of interesting de novo ligands. See Supplementary Data for the full list.
Several of them are reminiscent of quinolones, quinazolinones, oxadiazoles, and morpholine antifungals. Oxazolidinone, quinazolinone, oxadiazole,
and morholine groups are highlighted with red, and the DOCK anchor fragments are highlighted with blue. A particularly interesting case (top left)
contains a quinazolinone linker and an oxazolidinone side chain (oxazolidinones are among the newest antibiotics, e.g., linezolid, tedizolid,9 used to
treat vancomycin resistant Gram-positive bacteria). The compound at the top center is reminiscent of an oxadiazole antibiotic, while the bottom left
compound resembles morpholine antifungals. (B)Word cloud of the significantly enriched fragments (p < 0.05, tests of proportions; sid. = side chain, a
fragment with only one connection; lnk. = linker, a fragment with two connections; scf. = scaffold, a fragment with three connections). The size of the
symbols corresponds to the abundance of the fragments. (C) Enrichment of the fragments. Enrichment was calculated as frequency in set 1/frequency
in all de novo ligands with similar size and properties to set 1. (D) 2D structures of the significantly enriched fragments. Several fragments with halogen
groups (Cl/Br) are present among them and also a morpholine side chain (sid.68).
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selected ligands to all the receptors where a de novo ligand with
distance in the latent space less than 13 was found and selected
the three receptors, each from a different species, where the grid
score is the lowest. (2) Next we encoded the ligand and sampled
its neighborhood in the latent space for structurally related
molecules (see Figure 8A and Figure S7). We used several
different Z-distance cutoffs (see ref 34 and Methods), from 0.5
to 50, which correspond to increasingly larger added noise levels
to the encoded molecule. (3) The neighbors were converted to
3D structures and were docked to the three previously selected
receptors. If at least two neighbors had lower (better) grid scores
than the encoded molecule, the best performing neighbor was
selected, and the cycle was repeated until no improvement was
detected (Figure 8A). This process generally resulted in lower
grid scores (see Figure S8 for an example), and it also takes into
account the similarity of properties like log P, QED, or SAS

during the optimization of the ligand. (4) In the final step, using
the ligands of the entire optimization process (including the
neighbors that were not selected for further optimization), we
selected the ligand with the best average grid score that also
satisfied the same criteria as the original de novo ligand: log P <
3, SAS < (molecular weight/100) + 1, and molecular weight of
>300.
The majority of unoptimized de novo ligands could bind all

three receptors without clashes (78% and 75%, in set 1 and set 2,
respectively), and 98 and 95% of them could bind at least two.
Nevertheless, the optimization resulted in a clear improvement
of grid scores in both sets of molecules (Figure 8B, Figure
S10A). While the final optimized molecules frequently differed,
there was little difference in the magnitude of the grid score
improvement when different noise levels (Z-distances) were
used. This is due to several processes: first the characteristics of

Figure 7. Gene ontology analysis of the receptors of selected ligands. (A) The quaternary structure composition is not significantly different from the
total set of proteins (p = 0.42), although the frequency of MBS homomers is lower, as a result of the requirement to have similar structures in at least
three species. (B) Graph of cellular component terms associated with the proteins. Note that the color-coding of terms (intensity of red) corresponds
to the frequency of terms and not statistical significance. The proteins are present in most cellular components, including cell wall, periplasmic space,
plasma membrane, and cytoplasm. (C, D) Graphs of molecular function terms associated with the proteins. The two highest-level terms are binding
(C) and catalytic activity (D), with nucleoside/nucleotide binding and oxidoreductase activity being the most common terms.
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the VAE sampling play a role, as the structural diversity of the
sampled SMILES changes little with the magnitude of the
selected noise (Z-distance) level (Figure S9). With larger noise
levels, the probability of a obtaining a valid SMILES string
decreases, and in consequence most decoded ligands still
originate from the neighborhood of the input even when the

added noise (Z-distance) is large. (Note that the VAE is
inherently stochastic, and decoding the same vector several
times, without any added noise, results in variability in the
returned SMILES.) Second, the ligands can probably be
improved only to a limited degree, and the different runs
reached different (and comparable) local optima. Similarly, the

Figure 8. Optimization and evolution of ligands with AI. (A) Outline of the method. First, the selected de novo ligands were encoded with the VAE,
and the latent space was sampled in their vicinity to search for related structures. Next the, samples were “decoded” into chemical structures and were
docked into three different receptors, and the best performing (lowest scoring) molecule was used to repeat the cycle until there was no more
improvement in the estimated binding energies (grid score). See also Figure S8. (B) The optimization resulted in a comparable improvement in
binding energies (grid score), irrespective of the Z distance cutoff used. (C) The median Tanimoto similarity of optimized ligands and de novo ligands
is 0.7. (D, E) The frequency of four- and three-membered rings in the optimized ligands is significantly higher than in the original de novo ligands and
the random expectation (∗, p < 0.05; ∗∗, p < 0.005, randomization tests). Distance 0 indicates the original de novo ligands, red horizontal bars indicate
the observed frequency of four- or three-membered rings, while black horizontal bars indicate their expected frequency. Violin plots show the
frequency distribution of 10 000 random replicates. Outliers above 20% were not plotted for clarity. Note that in the case of four-member rings, the
expected frequency is higher than their frequency among the de novo ligands (Z = 0) because they are more common in the VAE samples. (F) Example
of the emergence of a β-lactam-like ring in a de novo ligand.
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Tanimoto similarity score of the final optimized molecules with
the original de novo ligand depends little on the Z-distance used
and is approximately ∼0.75 for all Z cutoffs (Figure 8C, Figure
S10B).
The optimized ligands show structural differences compared

to the original de novo ligands. Quinolone-like and aromatic
rings were generally not modified substantially by the
optimization, while morpholine groups (and nonaromatic
rings) were more variable and were frequently modified or
substituted (see Supplementary Data Sets). Currently it is
unclear to what degree these differences are caused by the
nonhomogeneous nature or other characteristics of the latent
space, as chemical generative methods are still under rapid
development49,50 (see also Segler et al.51 for a different,
recurrent neural network based approach). We tested the
optimized (and de novo) ligands for toxicity and the presence of
pan-assay interference compounds (PAINS)52,53 with FAF-
Drugs454 and the rd_filters tool, using the Glaxo filter.55 We
found that none of the de novo ligands and only a small fraction
of optimized ligands (∼2%; 4 in set 1 and 7 in set 2, using all Z-
distances) contain PAINS fragments. The fraction of putatively
toxic (“rejected”) compounds is, 6% and 9%, while the fraction
of compounds with low-risk structural alerts is 50−60% both in
de novo and in optimized ligands in the two sets using FAF-
Drugs4 (note that low-risk structural alerts are frequent in
existing drugs). The Glaxo filters flag ∼16% of the de novo and
∼20−21% of the optimized compounds as problematic in both
sets (see Table S6 and Supplementary Data). However, most

likely both tools underestimate the frequency of toxic or
unstable fragments.
Generally the optimized ligands are characterized by a

significantly higher frequency of three- and four-membered
rings than the original de novo ligands (red bars, Figure 8D,E,
Figure S10C,D). This pattern can be the result of two separate
processes. First, in the molecules returned by the VAE sampling,
the frequency of small rings can be higher than in the original de
novo ligands due to the characteristics of the training set of the
VAE. Second, such fragments can be enriched due to the
structural constraints imposed by binding in several receptors.
We separated these two processes by Monte Carlo simulations.
We determined the presence of three- and four- membered rings
in the molecules returned by the VAE sampling for each de novo
ligand with RDKit. Next, we resampled the returned molecules
10 000 times to determine the random expectation for the
frequency of three- and four-membered rings in the optimized
ligands. The results show that the frequency of three- and four-
membered rings in the final, optimized ligands is significantly
higher (randomization test, see Methods) than the random
expectation for most Z-distances, despite the fact that in the case
of four-membered rings the expected frequency is considerably
higher than their frequency in de novo ligands (Figure 8D,E,
Figure S10C,D). This indicates that the necessity to bind
multiple receptors selects for small rings, and their enrichment is
not a simple byproduct of the sampling characteristics of the
VAE.

Figure 9. Fragments of the optimized ligands, which are present in at least two compounds in any of the VAE batches (excluding fragments that are
likely to be toxic). Several halogenated compounds and four-membered rings are present among them. Since the four-membered rings frequently
contain reactive double bonds, in practice their saturated versions should be used.
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Neither the fragment library of DOCK nor the compounds of
the VAE were specifically tailored for antibiotic design. The
fragment library of DOCK was extracted from 13 million ZINC
compounds by selecting the most common ones,30 while the
VAE was built from 250K randomly selected ZINCmolecules.34

Using the optimized compounds to update the de novo
fragment library and repeating the entire de novo design and
VAE optimization process several times may be useful in
evolving fragment libraries tailored for specific tasks from a
generic one (both for computational or experimental screen-
ing56). Using DOCK, we extracted the fragments from the
optimized ligands and filtered out those already present in the
input de novo ligands with Open Babel and also those lacking a
carbon atom. This resulted in a very high diversity of fragments:
altogether we identified 352 new fragments in the two sets
(Figure S11), which do, however, contain several fragments that
are toxic, reactive, or unstable, like epoxide, aziridine, or
cyclobutadiene-like rings (and others). Note that different
fragments can contain the same substructure if the number and
location of their attachment points (−Xx) are different.
However, the majority of them are present in only in a single
structure, and selecting the ones that are present in at least two
structures in the same VAE batches (and excluding putatively
toxic ones) results in a much smaller set of 28 fragments (Figure

9), of which four contain halogens and seven contain four-
membered rings, that are almost completely absent in the
fragment library of DOCK. Several of them contain reactive
double bonds; thus in practice their saturated versions should be
used. The effect of such (e.g., azetidine-like) four-membered
rings on toxicity is less clear; azetidine-based inhibitors of
herpesvirus proteases are known and being developed,57 and
azetidines have been suggested for use as peptidomimetics in
medicinal chemistry.58 However, exactly due to its incorporation
into proteins (as a substitute of proline), azetidine-2-carboxylic
acid is known to be toxic.

Trade-Off between Preventing Resistance and Accu-
mulation in Gram-Negative Bacteria. One of the key
difficulties in developing broad spectrum antibiotics that are
active against both Gram-positive and Gram-negative bacteria is
due to the outer membrane and efficient efflux pumps in the
latter, which prevent the accumulation of antibiotics. In general,
accumulating compounds are expected to be small (<600 Da),
but currently there are no established rules that would enable the
design of compounds with a high likelihood off accumulation in
Gram-negative bacteria. Recently it has been suggested that a
few key parameters, like the number of rotatable bonds, the
globularity of the molecule, and the presence of ionizable
nitrogen (particularly primary amines) might be important for

Figure 10. Ligands optimized for binding multiple receptors have more rotatable bonds than the original de novo ligands. (A) Number of rotatable
bonds in de novo and VAE optimized ligands of set 1. Dark red represents the original de novo (Z = 0) or final optimized ligands, and blue indicates the
expected number of rotatable bonds in the compounds returned by the VAE, without selection for multitarget binding. This was calculated as the
averages of all ligands returned by the VAE when the de novo ligands were used as the input. In all VAE batches the number of rotatable bonds is
significantly higher than in the expectation or de novo ligands (∗∗, p < 0.005,Wilcoxon tests on the differences from de novo ligands). (B) Relationship
between the change in rotatable bonds and grid score in set 1, using the pooled data of all VAE batches. The correlation is not significant due to a few
outliers with rotatable bond change of −2; excluding them results in significant correlation (p = 7.88 × 10−4). (C) Number of rotatable bonds in de
novo and VAE optimized ligands of set 2. The color coding is the same as on panel A. Similar to set 1, in all VAE batches the number of rotatable bonds
is significantly higher than in the expectation or de novo ligands (∗∗, p < 0.005, Wilcoxon tests on the differences from de novo ligands). (D) In set 2,
the correlation between the change in rotatable bonds and grid score is highly significant (p = 7.57 × 10−10), indicating that the more flexible is the
molecule, the better it can bind multiple receptors.
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accumulation and passing through the porins of the outer
membrane.59−61 It is unclear how general these rules are, as they
were derived from a relatively small set of accumulating
molecules; broad-spectrum β-lactam antibiotics (but also
polymyxins, macrolides) typically have many more rotatable
bonds than recommended, and neither fluoroquinolones nor
broad-spectrum β-lactams are particularly enriched in ionizable
primary amines (in fact, frequently lack them). However, some
compounds active only against Gram-positive bacteria could be
successfully converted to broad-spectrum antibiotics using these
rules,59 and recent measurements of accumulation in Gram-
negative bacteria62 also provide some support for them, which
indicates that they are nevertheless a step in the right direction.
To test whether optimization to bind multiple receptors

might influence the properties necessary for accumulation in
Gram-negative bacteria, we examined whether it influences the
number of rotatable bonds and globularity of the designed
compounds (rotatable bonds were calculated ignoring hydro-
gens; thus methyl or amino groups were not assigned as
rotatable; see Methods). We separated the possible biases of the
VAE from the effect of optimization by calculating the number
of rotatable bonds (and globularity) in all the compounds
returned by the VAE when de novo ligands were used as the
input (expectation) and compared it with the number of
rotatable bonds (and globularity) in the final optimized ligands.
We find that in both sets 1 and 2, optimization resulted in a
highly significant increase in the number of rotatable bonds in all
VAE optimized batches (Figure 10) and that there is a weak but
significant correlation between the change in rotatable bonds
and improvement in grid score (note that in the case of set 1 it is
significant [p = 7.88 × 10−4] only after removing the outliers
with a rotatable bond change of −2). The globularity of
compounds (measured with the plane of best fit [PBF]
algorithm;63 see Methods) does not show a similar consistent
change (Figure S12), although in some VAE batches of set 2, we
do observe a slightly increased globularity compared to de novo
ligands, mostly due to biases of the VAE (Figure S12C). The
frequency of compounds with primary amines is relatively high
in the de novo ligands (23% and 13% in set 1 and set 2,
respectively), and somewhat lower in the optimized ligands (not
shown). However, this is most likely due to the low frequency of
primary amines in the compounds used to train the VAE (2.7%)
rather than the result of binding multiple targets.
Taken together these results indicate that binding multiple

receptors selects for flexible compounds with more rotatable
bonds. Thus, preventing the evolution of resistance by
multitargeting is likely to have the side effect that compounds
capable of binding several receptors efficiently are at the same
time less likely to accumulate in Gram-negative bacteria. Since
high flexibility is the result of the necessity to adapt to binding
sites with somewhat different topologies, one possible way to
overcome this trade-off is to target binding sites with high
structural similarity; thus MBS homomers may be preferable
targets over other SBS homomers or monomers also for this
reason.

■ DISCUSSION
Drug discovery is an extremely lengthy and costly process: on
average, developing a new drug takes ∼14 years and costs an
estimated 1−2 billion USD,64 more than the cost of sending a
spacecraft to an asteroid.65 One of the earliest, and most critical
steps in the drug discovery process is the identification of a
druggable target protein, for which a ligand that modifies its

function and has a therapeutic effect can be designed. Selecting
the right drug target is critical, as poor target protein selection is
one of the main causes of the low (∼10%) success rate of drug
candidates entering the clinical phase.64 Our results indicate that
considering the quaternary structure of proteins can help in the
selection of drug targets where the goal is targeting several
different pathogen species. Ligands and de novo ligands of
homomers, particularly MBS homomers, are much more likely
to bind the binding sites of their equally diverged homologs than
monomers (Figures 2, 3, 4). Since high conservation is always
the consequence of strong constraints on function, the higher
structural conservation of multichain binding sites in homo-
mers21 also indicates that such sites are less likely to accumulate
mutations than the binding sites of SBS homomers or
monomers. Finally, their more conserved binding sites reduce
the need for flexibility and might improve the chances of
accumulation in Gram-negative bacteria.
Successful antiretroviral drugs offer insights into this

hypothesis, as the very high evolutionary rates of drug targets
is a particularly severe problem in the treatment of retroviral
infections like HIV. Interestingly, several antiretroviral drugs
bind residues from more than one protein chain in their targets.
HIV protease is an MBS homomer, and drugs targeting it bind
both chains of its binding site.66 Besides binding the active site,
some HIV protease inhibitors (darunavir and tipranavir) also
inhibit the dimerization of the protease, which has been
suggested as a factor in the slow evolution resistance for these
compounds.66 Most HIV reverse transcriptase (RT) inhibitors
are nucleoside analogs, although some of the non-nucleoside
analog inhibitors like rilpivirine and etravirine bind residues
from both chains of the RT heterodimer.67,68 Drugs targeting
HIV integrase typically bind the catalytic site, which interacts
with DNA; however compounds not targeting the catalytic site
bind allosteric pockets with residues from multiple chains.69

Interestingly, one HIV integrase inhibitor, elvitegravir, is also
characterized by a fluoroquinolone-like structure.70

Taken together, our results indicate that the high binding site
similarity of MBS homomers makes them promising targets for
broad spectrum antibacterial agents. Moreover, their slow
structural change during evolution21 suggests that targeting
MBS homomers might also slow down the evolution of
resistance, due to the high functional constraints on such sites.
Targeting multichain binding sites might also result in the
inhibition of protein complex formation itself, which is likely to
have a significant effect on the evolution of resistance. Finally,
our recent results show that allostery is much more frequent
amongMBS complexes than among SBS complexes, particularly
in the case of homomers.71 This indicates that MBS homomers
also offer more targetable pockets than SBS homomers for drug
development, andmore diversemechanisms can be exploited for
developing novel inhibitors. Although our work focused
primarily on homomers, we also note that a “trivial” way of
achieving multitargeting is to target multichain binding sites of
heteromeric protein complexes that are formed by multiple
distinct polypeptide subunits. In humans, such sites are
characterized by the highest frequency of pathogenic mutations
in all quaternary structure types, indicating strong purifying
selection.21 However, MBS heteromers are generally not
characterized by more conserved binding sites21 or much higher
frequency of allostery than monomers.71

The analysis of the structural properties of de novo ligands
with similar de novo structures in several receptors indicates that
such ligands do have common structural characteristics (Figure
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6, Figure S5): they are enriched in halogen-containing,
quinolone-like (quinazolinone), oxadiazole, and morpholine-
like groups. Such fragments are characteristic in current broad-
spectrum fluoroquinolone antibiotics (also the HIV integrase
inhibitor elvitegravir), quinazolinone and oxadiazole antibacte-
rials, and morpholine antifungals, suggesting that morpholine-
based inhibitors could also be developed for bacteria. Addition-
ally, the high frequency of quinazolinone fragments in our data
sets suggests that quinazolinones are promising compounds for
further development.
Halogens, particularly fluorine, are routinely used in

medicinal chemistry for optimization and to improve ligand−
target interactions.72,73 However, the fact that halogen groups
primarily interact with the carbonyl oxygens of the protein
backbone and not with the side chains72−74 makes them
particularly suitable for use in “resistance-resistant” drugs,75 as
point mutations affect primarily the side chains of amino acids
and change the protein backbone much less. Ligand−backbone
interactions are already used in HIV reverse trascriptase
inhibitors75 and the protease inhibitor darunavir66 to slow
down the emergence of resistance (although in the latter it is not
a halogen that interacts with the backbone). Additionally, our
results suggest that the high overall frequency of halogens in
drugs (∼40% 72) might be partly the result of interacting with
several targets, even in the case of drugs that were originally
designed to target only a single protein.
Most of the selected de novo compounds could bind several

receptors without modifications, and they could be further
improved by optimization with the VAE (Figure 8, Figure S10).
In the majority of the cases the optimization resulted in
compounds that are not dramatically different from the original
de novo ligands, with Tanimoto similarity of ∼0.7−0.75.
However, in a fraction of the cases, it resulted in substantially
different compounds (see Supplementary Data Sets). A
characteristic structural difference in the optimized ligands is
the appearance of small, three- and four-membered (sometimes
β-lactam-like; see Figure 8F) rings, of which the latter are
effectively absent in the original de novo ligands.
While the selected compounds contain many novel top-

ologies, most of the interesting enriched fragments (quinolones/
quinazolinones, oxadiazoles, morpholines, four-member rings
[β-lactams/monobactams], organohalogens) are already used in
the core pharmacophores of existing antimicrobials. This
indicates that our approach has the potential to identify
fragments relevant for antibiotic design but also that the
chemical space of broad-spectrum antibiotics is not unlimited
and, unfortunately, that the perception of the industry that many
of the “low hanging fruit” antibiotic classes might have already
been discovered3,4 is not unfounded. From the strategies that
help to preserve our current antibiotics, combination therapy is
likely to be a successful strategy17 as it effectively implements
multitargeting, while recent work suggests that antibiotic cycling
and mixing may not be very effective in practice.76,77 We did not
customize the fragment library used by de novo DOCK toward
antibiotics, and also the VAEwas based on a random selection of
compounds34 without any specific tailoring for antibiotic design.
Thus, the emergence of compounds enriched in antibiotic-like
fragments is not the result of such biases and indicates that the
combination of fragment library based tools like DOCK, and
deep-learning based tools like the VAE, that can explore the
chemical space in ways fragment library based tools cannot is a
powerful combination and can also be used to customize
fragment libraries for a specific task. Its main current limitation is

that some of the resulting compounds can be toxic, difficult to
synthesize, or unstable (see Table S6 and Supplementary Data),
and that occasionally the combination of certain fragments can
result in compounds with protonation states that are not
relevant at physiologically relevant pH.
Another limitation of our analysis is that the protein targets

that resulted in the ligand sets used for the enrichment analysis
and evolution using AI represent a relatively small set of
molecular functions (Figure 7, Figure S6, Tables S4 and S5).
Currently only a small fraction of the essential proteins of
clinically relevant bacteria have a 3D structure deposited in the
PDB, and even the available structures frequently cover only
fragments or individual domains of them. Thus, our analysis was
by necessity limited by the available structures, and a large,
possibly global effort to determine the structures of the
“essentialome” in the clinically most problematic microbes
(e.g., ESKAPE) could have a major impact on designing new
antibiotics with fundamentally novel structures.

■ METHODS
Selection of Bacterial Proteins. We selected the bacterial

proteins for the analysis as follows. First, using the OGEE,78 CEG,79

and DEG80 essential gene databases, we identified the known essential
prokaryotic genes in the PDB. Next, using BLASTwith an e-value cutoff
of 10−3, we removed those proteins from the data set that have a
homolog in the human genome, the ones that form heteromeric protein
complexes, and ones that have no structure with a small molecule ligand
in the BioLiP database.25 Finally, using BLAST with an e-value of 10−5

cutoff, we identified pairs of homologous bacterial proteins in the PDB
where (1) the sequence similarity is below 40%, (2) at least one
member of the pair is essential, (3) none of them have a homolog in the
human proteome (e-value of 10−3), (4) their structures overlap in the
alignment, thus their structures also contain homologous regions, (5)
they have similar quaternary structure, and (6) the type of ligand
binding (MBS or SBS) is similar. The list of protein pairs and the PDB
codes used in the analysis is available in Supporting Information Table
S1.

Docking, Preparation of Receptors and Ligands, and de
Novo Design of Ligands. We used DOCK 6.828 and its utility tools
for binding site and ligand preparation, and docking. The first biological
assembly was used for all PDB entries. Since some DOCK utility tools
are unable to process large proteins and complexes, before docking we
identified the residues of the receptor within 10 Å of the ligand with
ProBiS, discarded all other residues of the structure, and built the grids
using this substructure of the receptor. This did not have any
measurable effect on the performance or accuracy of DOCK (the grids
were built within 5 Å of the ligand) and enabled us to process large
complexes. Receptor proteins and ligands were prepared with a
standard procedure: in the receptor, incomplete side chains were
completed, hydrogens were added, residues with low occupancy were
removed, and Amber charges were added with the dock-prep tool of
Chimera.81 Ligands were converted to mol2 format, and hydrogens and
Amber charges were added with Chimera. In a small number of cases
where Chimera was unable to process the ligand, we added hydrogens
and (Gasteiger) charges with OpenBabel.82 To estimate the pose
reproduction success rates, we first minimized the ligand through rigid
docking, next docked it to its receptor with the FLX (flexible)
algorithm.28,83 The parameters were similar as in ref 83, the main
parameters being max_orients = 1000, pruning_max_orients = 1000,
pruning_clustering_cutoff = 100 (see http://ringo.ams.sunysb.edu/
downloads/SB2010/FLX.in for the original parameters). We used only
those receptors in further analyses where at least one of the first 10
clusterheads had RMSD < 2 Å with the original position of the ligand.
We used this relaxed strategy because in the case of large ligands with
several rotatable bonds, it is common that the core of the ligand is in the
correct position, but certain side chains are not, pushing their RMSD
above 2 Å. Furthermore, ligands in the PDB are not necessarily in a
location that is the energetically most favorable, and in such cases a
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”successful” pose reproduction is actually an error. Further docking was
performed with the FLX protocol, both for the original binding site of
the ligand and for the homologous binding site.
De novo ligands were built with the de novo algorithm of DOCK (a

prerelease version of 6.9),30 and we used the fragment library
distributed with it, which was built using 13 million compounds of
the ZINC database.32 Only those binding sites were used where pose
reproduction was successful, and binding sites of cofactors or metals
were not used. We followed the following procedure for ligand
generation: (1) First, we identified the number of rotatable bonds of the
original ligand of the receptor with DOCK. (2) Next, we decomposed
the original ligand of the receptor to fragments and identified the largest
one. (3) From the fragment library we randomly selected a fragment
with ±1 heavy atoms as the largest fragment of the original ligand for
anchor. (For ligands where the largest fragment had 9 or more heavy
atoms, fragments with 9−12 heavy atoms were used). (4) Next, the
number of rotatable bonds of the ligand of the original binding site was
determined with DOCK, and we set the number of growth layers as the
number of rotatable bonds/2. Only binding sites of ligands with two or
more rotatable bonds were processed. We used the graph sampling
method, and the maximum allowed molecular weight of the de novo
ligands was set to 550. (5) We ran 30 independent replicates for each
receptor (i.e., we used 30 different anchors), and from the output of the
30 independent runs we selected a total of 50 de novo ligands with the
best grid score. Overall this procedure resulted in de novo ligands of
comparable size and complexity as the original ligand.
Ligand Characterization. The characteristics of the 50 best de

novo ligands of each receptor were calculated with the chemical
variational autoencoder (VAE) developed by the Aspuru-Guzik lab,34

using the autoencoder distributed with the tool itself (“zinc_proper-
ties”). We used the VAE to calculate log P, synthetic accessibility score
(SAS),35 and quantitative druglikeness (QED)36 for each de novo
ligand, and also a vector corresponding to their representation in the
latent space (with 196 dimensions). Molecular weight was calculated
with the obprop tool of the Open Babel suite. Clustering of the latent
space representation of de novo ligands (for visualization) was
performed with Barnes−Hut t-SNE,37 with two dimensions and
perplexity 50.
Optimization and Evolution of de Novo Ligands with

Docking and AI. The selected de novo ligands were further optimized
and evolved with a strategy that used DOCK 6.8 and the VAE (Figure
8). First, from the list of binding sites that had a de novo ligand with a
distance less than 13, we selected the binding site from the three
different species where the selected de novo ligand could be docked
with the best grid score. Next, each selected de novo ligand was
converted to a SMILES string with RDKit, and we used the VAE to
sample the latent space for structurally related chemicals, using Z
cutoffs of 0.5, 1, 3.125, 6.25, 12.5, 25 and 50, taking 30 000 samples.
This usually returned 10−100 unique chemical structures. If the
number of returned chemicals was higher than 50, we randomly
selected 50 of them. The structures returned by the VAE were docked
to the three receptors, and the one with the best average score (if its
score was an improvement in at least two of the receptors) was chosen
and used in the next round of sampling/docking. This cycle was
repeated as long as there was an improvement in the grid score of the
new ligands.
Monte Carlo Simulations (Randomization Test). We per-

formed Monte Carlo simulations to test whether small rings are
enriched in the optimizedmolecules due to the constraints of binding in
multiple receptors. First, in the SMILES returned in the first step of the
optimization (see Figure S8 and FigureS8_FullResult.txt for an
example) we determined for every atom whether it is part of a three-
membered and four-membered ring using RDKit, and the number of
such rings. Next we took 10 000 samples using all de novo ligands by
selecting one SMILES randomly from the returned molecules of every
de novo ligand and calculated the frequency of three- and four-
membered ring in every random sample. Finally, we estimated whether
the observed frequency of three- and four-membered rings is
significantly higher than the expectation using the formula p = (n +
1)/(N + 1), where N is the total number of samples (10 000) and n is

the number of samples with equal or higher frequency of small rings
than their observed frequency. The expected frequency of small rings
was determined as the median of random samples.

Globularity and Rotatable Bond Estimation. Globularity was
measured with the plane of best fit (PBF) method.63 SMILES of de
novo and VAE ligands were first converted to 3D structures with Open
Babel using the --gen3d flag, which uses the MMFF94 force field. PBF
scores were calculated on hydrogen-free structures,63 with the pbf
function of RDKit. A fraction of compounds (∼3% in the optimized
ligands, 5−10% in the raw ligands returned by the VAE) were excluded,
due to the inability of RDKit to process their 3D structure. The number
of rotatable bonds in each ligand was calculated with the obprop tool of
the Open Babel suite, ignoring hydrogens; thus methyl or amino groups
are not counted as rotatable bonds.

Visualization and Statistics. All statistical tests were performed
with in-house Perl scripts and R and were corrected for multiple testing
with the Benjamini−Hochberg method.84 Protein structures were
visualized with Chimera (version 1.11.2), chemical structures with
Open Babel 2.3.1.
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of protein complexes and to investigate the implications of this for
understanding human disease.
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(27) Konc, J.; Janezǐc,̌ D. ProBiS Tools (algorithm, Database, and
Web Servers) for Predicting and Modeling of Biologically Interesting
Proteins. Prog. Biophys. Mol. Biol. 2017, 128, 24−32.
(28) Allen, W. J.; Balius, T. E.; Mukherjee, S.; Brozell, S. R.;
Moustakas, D. T.; Lang, P. T.; Case, D. A.; Kuntz, I. D.; Rizzo, R. C.
DOCK 6: Impact of New Features and Current Docking Performance.
J. Comput. Chem. 2015, 36 (15), 1132−1156.
(29) Brozell, S. R.;Mukherjee, S.; Balius, T. E.; Roe, D. R.; Case, D. A.;
Rizzo, R. C. Evaluation of DOCK 6 as a Pose Generation and Database
Enrichment Tool. J. Comput.-Aided Mol. Des. 2012, 26 (6), 749−773.
(30) Allen, W. J.; Fochtman, B. C.; Balius, T. E.; Rizzo, R. C.
Customizable de Novo Design Strategies for DOCK: Application to
HIVgp41 and Other Therapeutic Targets. J. Comput. Chem. 2017, 38
(30), 2641−2663.
(31) Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.;
Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.;
Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.;
Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A
Major Update to the DrugBank Database for 2018. Nucleic Acids Res.
2018, 46 (D1), D1074−D1082.
(32) Sterling, T.; Irwin, J. J. ZINC 15 - LigandDiscovery for Everyone.
J. Chem. Inf. Model. 2015, 55 (11), 2324−2337.
(33) O’Shea, R.; Moser, H. E. Physicochemical Properties of
Antibacterial Compounds: Implications for Drug Discovery. J. Med.
Chem. 2008, 51 (10), 2871−2878.
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(62) Acosta-Gutieŕrez, S.; Ferrara, L.; Pathania, M.; Masi, M.; Wang,
J.; Bodrenko, I.; Zahn, M.; Winterhalter, M.; Stavenger, R. A.; Pages̀, J.-
M.; Naismith, J. H.; van den Berg, B.; Page, M. G. P.; Ceccarelli, M.
Getting Drugs into Gram-Negative Bacteria: Rational Rules for
Permeation through General Porins. ACS Infect. Dis. 2018, 4 (10),
1487−1498.
(63) Firth, N. C.; Brown, N.; Blagg, J. Plane of Best Fit: A Novel
Method to Characterize the Three-Dimensionality of Molecules. J.
Chem. Inf. Model. 2012, 52 (10), 2516−2525.
(64)Nicolaou, K. C. Advancing the DrugDiscovery andDevelopment
Process. Angew. Chem., Int. Ed. 2014, 53 (35), 9128−9140.
(65) OSIRIS-REx. Wikipedia, 2018.
(66) Ghosh, A. K.; Osswald, H. L.; Prato, G. Recent Progress in the
Development of HIV-1 Protease Inhibitors for the Treatment of HIV/
AIDS. J. Med. Chem. 2016, 59 (11), 5172−5208.
(67) Das, K.; Bauman, J. D.; Clark, A. D.; Frenkel, Y. V.; Lewi, P. J.;
Shatkin, A. J.; Hughes, S. H.; Arnold, E. High-Resolution Structures of
HIV-1 Reverse transcriptase/TMC278Complexes: Strategic Flexibility
Explains Potency against Resistance Mutations. Proc. Natl. Acad. Sci. U.
S. A. 2008, 105 (5), 1466−1471.
(68) Lansdon, E. B.; Brendza, K.M.; Hung,M.;Wang, R.;Mukund, S.;
Jin, D.; Birkus, G.; Kutty, N.; Liu, X. Crystal Structures of HIV-1
Reverse Transcriptase with Etravirine (TMC125) and Rilpivirine
(TMC278): Implications for Drug Design. J. Med. Chem. 2010, 53
(10), 4295−4299.
(69) Fader, L. D.;Malenfant, E.; Parisien,M.; Carson, R.; Bilodeau, F.;
Landry, S.; Pesant, M.; Brochu, C.; Morin, S.; Chabot, C.; Halmos, T.;
Bousquet, Y.; Bailey, M. D.; Kawai, S. H.; Coulombe, R.; LaPlante, S.;
Jakalian, A.; Bhardwaj, P. K.; Wernic, D.; Schroeder, P.; Amad, M.;
Edwards, P.; Garneau, M.; Duan, J.; Cordingley, M.; Bethell, R.; Mason,
S.W.; Bös,M.; Bonneau, P.; Poupart, M.-A.; Faucher, A.-M.; Simoneau,
B.; Fenwick, C.; Yoakim, C.; Tsantrizos, Y. Discovery of BI 224436, a
Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Med.
Chem. Lett. 2014, 5 (4), 422−427.
(70) Hare, S.; Gupta, S. S.; Valkov, E.; Engelman, A.; Cherepanov, P.
Retroviral Intasome Assembly and Inhibition of DNA Strand Transfer.
Nature 2010, 464 (7286), 232−236.

Journal of Medicinal Chemistry Perspective

DOI: 10.1021/acs.jmedchem.9b00220
J. Med. Chem. XXXX, XXX, XXX−XXX

Q

https://github.com/PatWalters/rd_filters
http://dx.doi.org/10.1021/acs.jmedchem.9b00220
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