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Abstract: The coupled nonlinear Schrödinger equation (CNLSE) is a wave envelope evolution1

equation applicable to two crossing, narrow-banded wave systems. Modulational instability, a2

feature of the nonlinear Schrödinger wave equation, is characterized (to first order) by an exponential3

growth of sideband components and the formation of distinct wave pulses, often containing extreme4

waves. Linear stability analysis of the CNLSE shows the effect of crossing angle, θ, on MI, and5

reveals instabilities between 0◦ < θ < 35◦, 46◦ < θ < 143◦, and 145◦ < θ < 180◦. Herein, the6

modulational stability of crossing wavetrains seeded with symmetrical sidebands is determined7

experimentally from tests in a circular wave basin. Experiments were carried out at 12 crossing8

angles between 0◦ < θ < 88◦, and strong unidirectional sideband growth was observed. This growth9

reduced significantly at angles beyond θ ≈ 20◦, reaching complete stability at θ = 30− 40◦. We find10

satisfactory agreement between numerical predictions (using a time-marching CNLSE solver) and11

experimental measurements for all crossing angles.12

Keywords: Surface waves, crossing seas, modulational/Benjamin-Feir instability, coupled nonlinear13

Schrödinger equation (CNLSE), experiments.14

1. Introduction15

Crossing-seas, in which waves travel in multiple directions, have been identified as an important16

challenge to offshore operations and linked to an increased probability of extreme waves [1,2]. In17

addition to specific environmental forcing such as wind or (sudden) changes in bathymetry, two18

important mechanism play a role in the formation of so-called rogue waves in the ocean, namely19

random dispersive focusing enhanced by weak bound-wave nonlinearity and modulational instability20

[3–6]. Herein, we contribute to the understanding of extreme waves in crossing seas by reporting on21

an experimental study of modulational instability in waves crossing at angles between 0◦ < θ < 88◦.22

For long-crested or unidirectional seas, it is well established that weakly nonlinear regular23

wavetrains in sufficiently deep water rapidly evolve into pulses of wave groups through modulational24

instability (MI) [7,8]. Extreme waves can form within such groups, making MI a topic of considerable25

interest in the context of rogue wave events. The nonlinear Schrödinger equation (NLSE) provides26

the simplest mathematical framework for studying MI, and permits unstable solutions including27

breathers and plane Stokes waves [9,10]. Breather waves are characterized by a sudden increase28

in amplitude of initially regular waves to either three or five times their initial value [11,12], and29

provide close approximations to rogue waves in long-crested seas. However, experimentally, breather30

waves are particularly sensitive to initial conditions, which must be specified precisely for the waves31

to attain maximum amplitude [13]. In the case of the Peregrine breather, an extreme wave occurs32

only once during the evolution process. Conversely, the unstable regular Stokes wave seeded with33

sideband components to the carrier has periodic modulations that grow, facilitating straightforward34
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measurement of wavetrain stability, such as in the seminal paper by Lake et al. [14]. In this idealized35

problem, energy is returned from the sidebands to the carrier wave at later times, leading to periodic36

modulation and demodulation on very long time scales known as Fermi–Pasta–Ulam recurrence37

[15–17].38

Although extensively studied both theoretically and experimentally in one dimension, the39

applicability of 1D NLSE to the open ocean is limited by the equation’s unidirectionality. In the40

open ocean, waves may be created from multiple sources, interact, and cross at an angle. As derived by41

Onorato et al. [18] from the 2D+1 Zakharov equation [19], the coupled nonlinear Schrödinger equation42

(CNLSE) is a system of nonlinear wave equations describing the interaction of two narrow-banded43

weakly nonlinear wave systems propagating at an angle (see also [20]). The CNLSE enables both44

MI and crossing effects to be explored simultaneously. By invoking the assumptions of symmetrical45

propagation about the x-axis at angle ±θ and shared group velocity along the x-axis, the CNLSE46

simplifies and readily lends itself to linear stability analysis. The results define both low angle and47

high angle instability regions separated at θ = 35.26◦ and θ = 144.74◦ (see also [21]). Discussions48

concerning linear stability of CNLSE and the effect of the changing values of CNLSE coefficients with49

crossing angle have highlighted increased amplification factors but decreased growth rates of breather50

and soliton solutions in crossing seas for angles approaching 35.26◦ [22,23]. When we refer to crossing51

angle in this paper, we will refer to the angle θ, when two waves cross at ±θ (so that the angle of52

bisection is 2θ).53

Laboratory experiments by Toffoli et al. [24] have measured the long-term statistical behaviour54

of weakly nonlinear crossing waves up to crossing angles of 20◦ (see fig. 1b for these experimental55

angles). Numerical solutions using a higher-order spectral method were used to confirm these findings56

and additionally, to study crossing angles up to 90◦ and found increases in kurtosis for crossing angles57

in the range 20◦ < θ < 30◦ [25]. Additionally, the effect of oblique sideband perturbations (of up to58

37◦) to plane waves propagating over finite depth have also been investigated experimentally and59

sideband growth was reported [24]. The existence of short crested crossing breather waves (slanted60

breather solutions to the 2D+1 NLSE) has also been confirmed experimentally [26].61

In addition to possible MI, changes to the second-order bound waves occur when waves cross.62

The wave-averaged free surface, represented spectrally by second-order difference waves, is the local63

mean surface elevation formed by temporal averaging over the rapidly varying waves that make up64

the slowly varying group. Whereas a set-down of the wave-averaged free surface is expected in the65

absence of crossing, packets are accompanied by a set-up for sufficiently large crossing angles. This66

can be theoretically predicted [27–30] based on second-order interaction kernels [31–34]. A set-up67

has been observed in field data [35–37] and recently in detailed laboratory experiments [38]. For the68

Draupner wave, recorded in the North Sea on the 1st of January 1995 [39], the observation of set-up can69

be seen as evidence for crossing [35,40,41]. In fact, linear dispersive focusing enhanced by bound-wave70

nonlinearity but without MI may be sufficient to explain observations such as the Draupner wave71

[42,43].72

Recently, a number of additional numerical studies have examined extreme waves and MI in73

crossing seas. Støle-Hentschel et al. [44] have shown, using numerical simulations and laboratory74

experiments, that a small amount of energy travelling in exactly the opposing direction can significantly75

reduce the kurtosis of the surface elevation. Gramstad et al. [45], using random simulations of the76

Zakharov equation, have found an increase in the kurtosis at crossing angles close to 50◦, but even77

higher values for very small crossing angles, where the spectrum is unimodal, and minimum kurtosis78

at crossing angles close to 90◦.79

In this paper, we report on regular wave experiments with seeded sidebands for two crossing80

wavetrains in a circular wave basin. These experiments are the crossing-wave counterpart of the81

classical experiments by Lake et al. [14] and cover both stable and unstable regions of the (K, θ) space,82

through the range 0◦ < θ < 88◦, where K is the perturbation wavenumber. We measure the growth of83

sidebands and compare this to results from linear stability analysis of the CNLSE, as well as numerical84
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solutions of this equation.85

This paper is laid out as follows. First, §2 reviews the theoretical background, followed by an86

exposition of our experimental methodology in §3. Experimental results are presented and compared87

to solutions of the CNLSE in §4. Finally, conclusions are drawn in §5.88

2. Theoretical background89

2.1. Coupled nonlinear Schrödinger equation (CNLSE)90

The coupled nonlinear Schrödinger equation (CNLSE), derived by [18] from the 2D+1 Zakharov
equation [19], is a narrow-banded wave equation describing the evolution of coupled, complex wave
envelopes A and B. Both wave envelopes propagate on an associated carrier wave whose properties
define the CNLSE coefficients and thus (along with the initial conditions) the envelope evolution.
Scaled for water waves, and under the assumption of identical but symmetrical carrier waves (about
the x-axis) with distinct amplitude envelopes, the CNLSE is given, in a Cartesian coordinate system
(x, y, t), by [18],

∂A
∂t

+ Cx
∂A
∂x

+ Cy
∂A
∂y
− iα

∂2 A
∂x2 − iβ

∂2 A
∂y2 + iγ

∂2 A
∂x∂y

+ i(ξ|A|2 + 2ζ|B|2)A = 0, (1)

∂B
∂t

+ Cx
∂B
∂x
− Cy

∂B
∂y
− iα

∂2B
∂x2 − iβ

∂2B
∂y2 − γ

∂2B
∂x∂y

+ i(ξ|B|2 + 2ζ|A|2)B = 0, (2)

where carrier properties, frequency ω0; x-axis wavenumber k; y-axis wavenumber l; and absolute
wavenumber k0 =

√
k2 + l2, define the group velocities Cx and Cy along their respective axes,

Cx =
ω0

2k2
0

k and Cy =
ω0

2k2
0

l, (3a,b)

the linear coefficients α, β, and γ are given by,

α =
ω0

8k4
0
(2l2 − k2), β =

ω0

8k4
0
(2k2 − l2), and γ = −3ω0

4k4
0

lk, (4a,b,c)

and the nonlinear coefficients ξ and ζ by.

ξ =
ω0

2k0

k5 − k3l2 − 3kl4 − 2k4k0 + 2k2l2k0 + 2l4k0

(k− 2k0)k0
and ζ =

2ξ

ω0k2
0

. (5a,b)

The carrier frequency ω0 and absolute wavenumber k0 are related through the deep water dispersion
relation, ω0 =

√
k0g, with g denoting the gravitational constant.

In the special case of envelopes propagating along the x-axis, a Galilean transformation into the
group reference frame reduces the CNLSE to [18],

∂A
∂t
− iα

∂2 A
∂X2 + i(ξ|A|2 + 2ζ|B|2)A =0, (6)

∂B
∂t
− iα

∂2B
∂X2 + i(ξ|B|2 + 2ζ|A|2)B =0, (7)

where X = x − Cxt. From the wave packet amplitudes, the (linear) free surface elevation is
reconstructed by reintroducing the carrier waves through,

η = Re
[

Aei(kx+ly−ω0t) + Bei(kx−ly−ω0t)
]

. (8)
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2.2. Linear stability analysis91

Linear stability analysis of the CNLSE reveals many properties of the equation and, using a
seeded carrier solution, allows prediction of the initial sideband growth rate. Identical plane waves
are admitted as solutions to (6-7) and we therefore add perturbations of infinitesimal amplitude and
phase to obtain (see also [18]),

A = a0(1 + δa)e−i(ω0t+δφa) and B = b0(1 + δb)e−i(ω0t+δφb), (9a,b)

where a0 and b0 are carrier amplitudes, and δa, δb, δφa, and δφb are small perturbations in amplitude
and phase. In this linear stability analysis, the assumed form of the sideband solutions aδ and bδ is,

aδ = aδ,0ei(Ωt±Kx) and bδ = bδ,0ei(Ωt±Kx), (10a,b)

where aδ,0 and bδ,0 are the initial sideband amplitudes, K is the perturbation wavenumber, and Ω is the
perturbation frequency. The relationship between K and Ω is found through linear stability analysis as
[18],

Ω = ±
√

αK2[(ξ(a2
0 + b2

0 + αK2)±
√

ξ2(a2
0 − b2

0)
2 + 16ζ2a2

0b2
0], (11)

where it is apparent that Ω may take either real or imaginary values. Following substitution of this92

relationship into (10), either oscillatory (when Ω ∈ Re) or exponential (when Ω ∈ Im) behaviour can93

be expected.94

Figure 1 presents the instability regions bounded by Kc(θ) in (K, θ)-space, where three regions95

of instability exist: at low angle, 0◦ < θ < 35◦; medium angle, 46◦ < θ < 143◦; and high angle,96

145◦ < θ < 180◦, where θ is related to the carrier wavenumbers through θ = arctan(l/k). Figure 1a97

also shows where in (K, θ) space the experiments reported on herein lie, with fig. 1b showing the98

location of the experiments previously reported by Toffoli et al. [25]. These experiments are restricted99

to angles 0◦ < θ < 20◦ and are carried out with a continuous spectrum instead of discrete sidebands,100

as illustrated by the horizontal lines in fig. 1b, with 85% of their energy bounded by the y-axis and the101

black crosses.102

For unidirectional waves, MI behaves as described by the standard NLSE but with increased103

instability due to the presence of two carrier waves, with a consequent doubling of steepness. As104

the crossing angle is progressively increased, the region of instability extends further along the105

wavenumber axis, whereas the magnitude of the instability decreases gradually. At θ ≈ 35.26◦ (exactly,106

θ = arctan(1/
√

2)), the low angle instability region ends, having encompassed all wavenumbers. At107

approximately 46◦, the medium-angle instability region begins to take shape, starting close to zero108

wavenumber and expanding along the wavenumber axis until the crossing angle reaches approximately109

143◦. Finally, the high-angle region commences as a sharp boundary at approximately 145◦ and ends110

as a mirrored version of the low-angle region (with both waves travelling at 180◦ from the x-axis).111

2.3. Characteristics of modulational instability: complex vs. simple evolution112

Figure 2 presents the spectral and temporal evolution of two modulated wavetrains with different113

perturbation wavenumbers propagating from the initial conditions (9) with θ = 20◦ and aδ,0 = 0.1a0,114

obtained using a numerical solver of the CNLSEs (see appendix A). The effect of MI is instantly115

recognizable from the increase in amplitude of the sidebands closest to the carrier wave (primary116

sidebands). As the primary sideband amplitudes increase, the carrier amplitude begins to decrease.117

Further in the evolution process, secondary sidebands appear at integer multiples of the primary118

sideband wavenumber. The effect of this initial stage of instability is seen in the packet amplitude119

in fig. 2b as a rapid increase in the group amplitude. Following the exponential sideband amplitude120

growth, Fermi–Pasta–Ulam (FPU) recurrence is observed. During FPU recurrence, energy is exchanged121

periodically between modes, and the system returns to its original state [15–17]. We note that FPU122
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Figure 1. Surfaces showing the growth rate obtained from linear stability analysis of the coupled
nonlinear Schrödinger equation (from (11)). The parameters for experiments 2a-h are indicated by dots
(results presented in main text) and experiments 2i-l by open circles (results presented in appendix B).
The crossing angles of experiments performed by Toffoli et al. [25] are shown as solid lines in panel
b with the crosses and y-axis marking the boundary containing 85% of the spectral energy (note that
the crossing angle β in Toffoli et al. [25] is equivalent to 2θ). The dashed lines indicate boundaries of
stability regions, while the dot-dashed lines show the boundary between complex (0 < K ≤ Kc/2) and
simple (Kc/2 < K < Kc) evolution.

recurrence is a long-term behaviour, and strong MI is required to observe it in the space available in123

most experimental facilities.124

Figure 2a and b show the wavetrain propagating with complex recurrence, whereas Figure 2c125

and d show simple recurrence. Complex recurrence is expected when K lies less than (or at) half way126

through the instability region (K ≤ Kc/2), and primary sidebands themselves act as unstable carriers,127

continually spawning new sidebands. When K lies more than half way to the stability boundary128

(Kc/2 < K < Kc) new sidebands will lie in the stable region, and simple recurrence is observed.129

3. Experimental methodology130

3.1. Facility131

The aim of our experiments was to measure sideband growth at extreme crossing angles up to132

90◦. In order to achieve this, all experiments were performed in the FloWave Ocean Energy Research133

Facility, located at the University of Edinburgh, which is capable of omnidirectional wave creation and134

absorption. The basin (depicted in fig. 3a and b) has a diameter of 25 m, a working depth of 2 m, and135

is encircled by 168 actively absorbing force-feedback wavemakers. A Cartesian coordinate system was136

defined with its origin at the centre of the basin. The primary direction of propagation of the waves137

was in the positive x direction. In crossing wave experiments, the carrier waves travelled at an angle θ138

from the x-axis, as defined in fig. 3a. Wave generation in the facility was controlled using software139

based on linear wave theory. Ten resistance type wave gauges at a spacing of 1.5 m were mounted140

on a gantry spanning the basin x-axis (see fig. 3b for coordinates). Wave gauges were calibrated each141
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Figure 2. Spectral and temporal evolution obtained from the time-marching of the CNLSE for two
unstable modulated wavetrains crossing at θ = 20◦. Panels a and b show complex (0 < K ≤ Kc/2)
evolution, whilst panels c and d display simple (Kc/2 < K < Kc) evolution.

day before tests commenced. A 20 minute settling period was imposed between each test, allowing142

residual basin motion to settle to an acceptable level.143

3.2. Matrix of experiments144

The experimental campaign was split into two parts. Part I aimed to quantify the effect of finite145

length crests in the facility even in the absence of seeded sidebands, which is a manifestation of the146

inability of a finite number of wavemakers encircling a finite-size round basin to perfectly create147

long-cresed waves. Part II aimed to measure the growth of frequency sidebands about carrier waves148

travelling at crossing angles ±θ. Crossing carrier and sideband waves only interact fully in regions149

of total crest overlap, and so the extent that these regions cover the chosen wave gauge locations is150

defined by the carrier crest length and angle. Experiments 1a-d (part I) were therefore designed to151

determine the effective sideband evolution region in the basin at each angle. In these experiments, a152

single unseeded carrier wave was propagated at the angles given in table 1 (part I).153

For part I, the amplitude profiles of experiments 1a-d are presented in fig. 3c and allow estimation154

of the carrier crest length in the FloWave facility. Experiment 1d (θ = 90◦) shows that, for high155

angle experiments, a reasonable region in which to expect full sideband-carrier interactions occupies156

approximately 10 wavelengths centred about the basin origin. However, the effective length is extended157

significantly to more than 20 wavelengths for crossing angles up to 30◦, the region of greatest interest158

in part II. As expected, for waves in the x-direction (θ = 0◦), the region covers all wave gauge locations.159

The results from the part I tests were interpolated in order to estimate the finite-crest effect at all160

crossing angles.161

All experiments in part II were performed with constant values of carrier frequency, carrier162

frequency f0 = 1.5 Hz, carrier amplitudes a0 = b0 = 0.018 m, and initial sideband amplitude163

aδ = 0.003 m, giving a depth parameter k0d = 18, and steepness k0a0 = 0.16. Figure 1a shows the164

expected growth rates, crossing angles, and sideband wavenumbers for the part II tests. A simple165

system of four plane waves, consisting of two carrier waves propagating at ±θ to the x-axis, and two166
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Part I Part II
Expt. 1a 1b 1c 1d 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l
θ (◦) 0 30 60 90 0 5 10 20 25 32 41 47 60 68 83 88

Table 1. Experiment labels and their corresponding crossing angles for both part I (single, unseeded
regular wave) and part II (seeded waves). All experiments used carrier parameters of f0 = 1.5 Hz,
k0a0 = 0.16, and k0d = 18. Experiments 2a-l used sideband parameters of K = 3.02 m−1, and
aδ = 0.003 m.
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Figure 3. a: FloWave Ocean Energy Research Facility at The University of Edinburgh, showing wave
gauge locations relative to the centre of the basin (0, 0) (units in m) and direction of wave system
components (figure adapted from [46]). b: Sectional view of the FloWave basin with key dimensions.
c: Amplitude profiles of unseeded carrier waves ( f0 = 1.5 Hz) travelling at an angle θ and measured
along the basin x-axis (part I).

sidebands propagating along the x-axis was used as input to the wave generation software. To increase167

the effective evolution distance and the magnitude of the instability, a relatively high carrier frequency168

of f0 = 1.5 Hz was chosen and the carrier amplitude then calculated to give a moderate steepness of169

k0a0 = 0.16, required for prominent instability but to avoid breaking. Each experiment was repeated 3170

times.171

3.3. Data processing172

The calibrated wave gauge outputs (free surface time histories) from each experiment were173

band-pass filtered to eliminate higher-order and low-frequency bound waves. Reflected waves were174

omitted from the free surface time histories by multiplying the incident wave signal during the175

wavemaker start-up period by a Tukey window. This produced a quasi steady-state at each gauge (see176

fig. 4). The amplitude spectrum was determined at each location (see fig. 5), and the evolution of the177

primary sidebands (frequency components located closest to the carrier wave) used to identify MI.178

The true frequency of these components was determined at the first gauge location. These component179

amplitudes were then tracked across all the remaining wave gauges. Sideband and carrier amplitudes180

at the first wave gauge location were used as initial conditions for a CNLSE solver (using the Fourier,181

split-step method, see appendix A) and as inputs to the prediction by the linear stability analysis (11).182

The experimental evolution of the sidebands is compared to these experimental solutions, as well as183

the linear stability analysis (11) below.184
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Figure 4. Measured free surface elevation time series for experiments 2a-h (part II) shifted by the linear

group velocity cg =
√

C2
x + C2

y , with the positive vertical axis also representing increasing distance
along the basin.

4. Results185

Figure 6 presents the evolution of the primary sideband amplitudes of experiments 2a-l along186

with numerical results from the CNLSE time-marching scheme and the linear stability analysis. For187

brevity, only experiments 2a-h are presented (see appendix B for experiments 2j-l, which show stability,188

as predicted). Each experimental repeat was solved across the spatial domain using the CNLSE189

solver. The results of the solver were then averaged and the standard deviation across repeats was190

calculated. Error bars for experimental measurements and dashed lines for the numerical scheme are191

used to indicate one standard deviation from the mean across repeats. The carrier amplitude evolution192

is denoted by dark grey lines and the interpolated measurements from part I are denoted by light193

grey lines, indicating the region over which an unseeded carier wave can be considered of constant194

amplitude.195

196

4.1. Unidirectional waves: θ = 0◦197

The unidirectional experiment 2a, presented in fig. 6a, shows the most significant growth in198

sideband amplitude, with the lower sideband increasing by more than a factor of three. An increase in199

amplitude can also be observed in the upper sideband. The beginnings of FPU recurrence appear. The200

numerical solution in fig. 6a also shows significant growth and follows the average of the upper and201

lower sideband amplitudes well, displaying many of the same characteristics (such as FPU recurrence).202

However, the lower sideband grows much more quickly than the upper sideband, which is subject to203

initial growth followed by considerable attenuation, a feature not predicted by the NLSE but predicted204

in the modified NLSE [47] and commonly observed in unidirectional experiments [48].205

The effect of sideband growth and MI on free surface elevation is shown by the formation of206

pulses in fig. 4. Extreme waves occur in these pulses when carrier crests come in phase with the group207

centre, as demonstrated in fig. 4a at x/λ0 ≈ 3, where a cluster of three waves has more than doubled208
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Figure 5. Amplitude spectra for experiments 2a-h (part II) obtained using the measured free surface
time series along the primary wave propagation direction (see fig. 3a for gauge locations) for different
crossing angles θ. Dashed lines follow the amplitudes of the carrier (light blue), lower sideband (red),
and upper sideband (dark blue).

in amplitude within 13λ0. Figure 5a presents the amplitude spectra for experiment 2a. Substantial209

growth in secondary sidebands is evident. These secondary sideband frequency components, located210

at multiples of the perturbation frequency, contribute to the growth of wave group amplitudes and211

further enhance the strong decline of the carrier amplitude.212

4.2. Crossing waves: 0◦ < θ < 47◦213

Figure 6b-d show that the growth observed in the unidirectional case continues but slows as the214

crossing angle is increased to 20◦. In these experiments, the maximum amplification factor of the215

upper sideband generally reduces compared to the unidirectional case, whereas the upper sideband216

appears relatively unaffected, with no strong growth in either case. The pulse formations seen in217

experiment 2a persist in fig. 4b-d and fig. 5b-d, though with reduced magnitude. The unseeded carrier218
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Figure 6. Comparison of the evolution of sideband amplitude along the centreline of the basin for
experiments 2a-h (part II) from measurements, numerical solutions (crosses) of the CNLSE (thin blue
and red lines) and linear stability analysis (thin black lines). Lower and upper sidebands are indicated
in red and blue, respectively. Error bars and dashed lines represent one standard deviation from the
mean across repeats for the measured data and the CNLSE solution, respectively. Thick lines represent
the mean seeded (dark grey) and unseeded (light grey) carrier waves across repeats.

wave amplitude profiles of fig. 6b-d remain largely unchanged along the length of the basin, indicating219

that the effective length, over which crests reach their full amplitudes, is sufficiently long. Between220

θ = 25◦ and θ = 41◦ (fig. 6e-g), the transition to stability takes places. Experiments at angles of 41◦221

and higher (fig. 6g-h, and appendix B for the measurements from experiments 2i-l) are stable.222

5. Conclusion223

We have experimentally investigated the effects of crossing angle on the modulational instability224

of two crossing nonlinear surface gravity wavetrains seeded with sideband perturbations and225

compared this to predictions by the the coupled nonlinear Schrödinger equation (CNLSE). The results226

demonstrate that sideband growth, as predicted by linear stability analysis of the CNLSE, can be227

reproduced in physical experiments undertaken in a circular wave basin. Strong modulation occurred228

in the unidirectional case, where the beginnings of recurrence were observed. The growth rate reduced229

as the crossing angle was increased; negligible growth was measured at and beyond a crossing angle of230

approximately 30◦. Due to the reduced growth rate and the finite length of the basin, we have not been231

able to observe the increased amplification factors associated with angles approaching 35.26◦ [22,23].232

An unseeded, regular wave was used to estimate the finite-crest effect (an experimental limitation for a233

finte-size round basin), which started to become significant at 42◦, well beyond the theoretical stability234

boundary of 35.26◦. Taking into account the reduction in evolution length imposed by the finite-crest235

effect, no growth in sidebands was found to occur at these high angles. Future work should seek to236

extend experimental measurements into the second (high- angle) unstable region. To complete this237

successfully, the finite-crest effect must be considered allowing sidebands enough interaction evolution238

distance to grow. We envisage this will be challenging in the FloWave basin.239
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Appendix A. Split-step time marching technique245

The split-step method (also known as the Fourier method) takes advantage of the fact that the246

linear and nonlinear components can be separated and then solved exactly [49]. The linear component247

is solved in Fourier space, whereas the nonlinear is solved in the time or space domain. In the split-step248

method, the linear and nonlinear components of the CNLSEs are treated independently and the249

predictions combined immediately after each time step as the full solution advances forward. A known250

error of O(ε3) is associated with the independence assumption. The split-step method is second-order251

accurate in ∆t and to all orders in ∆x, it is unconditionally stable [50].252

First, the CNLSE is rearranged and split into its linear and nonlinear components (here only (6) is
considered for brevity),

L :
∂A
∂t

= iα
∂2 A
∂x2 , N :

∂A
∂t

= −i(ξ|A|2 + 2ζ|B|2)A. (A1)

The nonlinear component is integrated forwards in the time domain as follows,

Ai+1 = Aie−∆xi(ξ|Ai |2+2ζ|Bi |2), (A2)

whereas the linear component is Fourier-transformed,

∂Â
∂t

= iÂα(iω)2, (A3)

= −iαÂω2, (A4)

and then integrated in time to give,
Âi+1 = Âie−∆xiαω2

. (A5)

Combining the linear and nonlinear components, at each time step we have the explicit expression,

Ai+1 = F−1
(

Âie−∆xiαω2
+F

(
Aie−∆xi(ξ|Ai |2+2ζ|Bi |2)

))
. (A6)

Appendix B. Experiment 2j-l: 60◦ < θ < 88◦253
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