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  Abstract

Word count: 310

 

Recent advances in functional magnetic resonance imaging (fMRI) have facilitated the pathophysiology model of obsessive-compulsive
disorder (OCD) that encompass a specific network of cortico-striato-thalamo-cortical regions. However, the alterations of localized
connectivity in OCD remains to be fully characterized. In the current study, we aimed to apply both univariate analysis and
multivariate pattern analysis (MVPA) approach to evaluate the abnormalities of localized connectivity in a relatively large sample
of medication-free patients with OCD. A total of 88 OCD patients and 88 healthy control subjects (HCS) underwent resting-state fMRI
scans in a 3.0 T scanner. Firstly, we adopted a voxel-wise approach known as Regional Homogeneity (ReHo) analysis, which
measures the localized connectivity to characterize regional brain dysfunction. Subsequently, we utilized MVPA technique known as
support vector machine (SVM) to examine whether ReHo could be further used to distinguish OCD patients from HCS at the
individual level. Relative to HCS, OCD patients showed lower ReHo in bilateral cerebellum and higher ReHo in bilateral superior
frontal gyri (SFG), right inferior parietal gyrus and precuneus (P < 0.05, family wise error correction). ReHo value in the left SFG
positively correlated with Yale-Brown Obsessive Compulsive Scale total score (r = 0.241, P = 0.024) and obsessive subscale (r =
0.224, P = 0.036). The SVM classification regarding ReHo yielded an accuracy of 78.98% (sensitivity = 78.41%, specificity = 79.55%)
with P < 0.001 after permutation testing. The most discriminative regions contributing to the SVM classification were mainly
located in frontal, temporal, parietal regions as well as cerebellum while the right orbital frontal cortex was identified with the
highest discriminative power. Our findings not only suggested the activation disequilibrium between the prefrontal cortex and the
cerebellum appeared to be associated with the pathophysiology of OCD but also indicated the translational role of the localized
connectivity as a potential discriminative pattern to detect OCD at the individual level.
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Abstract 

Recent developments in psychoradiological researches have highlighted the disrupted 

organization of large-scale functional brain networks in obsessive-compulsive 

disorder (OCD). However, whether abnormal activation of localized brain areas 

would affect network dysfunction remains to be fully characterized. We applied both 

univariate analysis and multivariate pattern analysis (MVPA) approach to investigate 

the abnormalities of regional homogeneity (ReHo), an index to measure the localized 

connectivity, in 88 medication-free patients with OCD and 88 healthy control subjects 

(HCS). Resting-state fMRI data of all the participants was acquired in a 3.0 T scanner. 

Firstly, we adopted a traditional univariate analysis to explore ReHo alterations 

between patient group and control group. Subsequently, we utilized support vector 

machine (SVM) to examine whether ReHo could be further used to differentiate 

patients with OCD from HCS at the individual level. Relative to HCS, OCD patients 

showed lower ReHo in bilateral cerebellum and higher ReHo in bilateral superior 

frontal gyri (SFG), right inferior parietal gyrus and precuneus (P < 0.05, family wise 

error correction). ReHo value in the left SFG positively correlated with Yale-Brown 

Obsessive Compulsive Scale total score (r = 0.241, P = 0.024) and obsessive subscale 

(r = 0.224, P = 0.036). The SVM classification regarding ReHo yielded an accuracy of 

78.98% (sensitivity = 78.41%, specificity = 79.55%) with P < 0.001 after permutation 

testing. The most discriminative regions contributing to the SVM classification were 

mainly located in frontal, temporal, parietal regions as well as cerebellum while the 

right orbital frontal cortex was identified with the highest discriminative power. Our 
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findings not only suggested the localized activation disequilibrium between the 

prefrontal cortex and the cerebellum appeared to be associated with the 

pathophysiology of OCD but also indicated the translational role of the localized 

connectivity as a potential discriminative pattern to detect OCD at the individual 

level. 
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1. Introduction 

Obsessive-compulsive disorder (OCD) is among the most debilitating mental 

illnesses that influences nearly 2.3% of the general population. (Abramowitz et al., 

2009). In spite of the high morbidity as well as high levels of social burden (Ruscio et 

al., 2010), the pathological mechanisms of OCD still remain elusive. The 

investigation of the neurobiological substrates of OCD is a fundamental point to shed 

light upon the underlying mechanisms, which may be of great value in gaining 

insights about improving the specificity of diagnosis and efficacy of treatment for 

OCD. 

Over the past decade, advanced MRI techniques have dramatically facilitated the 

comprehension of the neural correlates in OCD (Nakao et al., 2014). Previous review 

of voxel-based morphometry studies reported gray matter alterations of both 

―affective‖ and ―executive‖ circuits in OCD patients (Piras et al, 2015). Meta-analysis 

of diffusion MRI literature consistently showed microstructural alterations of the 

fronto-basal pathways and intra-hemispheric bundles in OCD (Piras et al, 2013). 

Meanwhile, aberrant structural connectivity of left superior longitudinal fasciculus 

and the body of corpus callosum has been identified in patients with OCD, which was 

associated with executive control function (Spalletta et al, 2013). For functional MRI 

researches in OCD, patients show abnormal activation in several brain regions, which 

are essential for some domains of neuropsychological function such as decision 

making (ventromedial orbitofrontal cortex (OFC)) (Norman et al., 2018), error 

monitoring (amygdala, presupplementary motor area (preSMA) and subgenual 
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anterior cingulate cortex) (Grutzmann et al., 2016), response inhibition (inferior 

parietal gyrus (IPG), inferior frontal gyrus and preSMA) (de Wit et al., 2012), 

reward-based learning (hippocampus, putamen and amygdala) (Marsh et al., 2015), 

fear conditioning (caudate and hippocampus) and extinction recall (cerebellum, 

posterior cingulate cortex, and putamen) (Milad et al., 2013), cognitive flexibility 

(caudate and ventrolateral prefrontal cortex (PFC)) as well as goal-directed planning 

(putamen and dorsolateral PFC) (Vaghi et al., 2017). Results obtained from these 

functional neuroimaging researches appear to be highly inconsistent, which might be 

attributed to clinical heterogeneity (e.g. symptom severity, onset age, illness duration, 

medication exposure and comorbidity profiles) of OCD participants. More 

importantly, findings from task-based neuroimaging studies varied remarkably as 

different paradigms or analytic methods were adopted. 

Resting-state functional magnetic resonance imaging (RS-fMRI) is a popular 

psychoradiological approach to assess the brain function at rest without performing a 

task (Lui et al., 2016). Two derived RS-fMRI parameters including the amplitude 

low-frequency fluctuation (ALFF) and functional connectivity (FC) are widely 

adopted to explore the cerebral dysfunction in mental disorders. ALFF reflects the 

intensity of spontaneous neural activity while the FC reflects the level of integration 

of local activity across brain regions (Biswal et al., 1995; Gusnard and Raichle, 2001). 

Besides applying these two methods to explore the regional and network-level neural 

function of the brain, we can alternatively characterize the local synchronization of 

spontaneous blood oxygen level dependent (BOLD) signal fluctuation among 
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neighboring voxels within a given cluster, using an index named as regional 

homogeneity (ReHo) (Zang et al., 2004). Given the hypothesis that similar temporal 

patterns are shared by spatially neighboring voxels, the Kendall‘s coefficient of 

concordance (KCC) between the time series of a single voxel and those of its 

neighbors was calculated in the ReHo analysis using a voxel-wise manner. 

Considering the computational basis of this parameter, ReHo could be best described 

as a index of ‗localized connectivity‘, which gives the researchers a chance to 

discover the disruptions of localized activation in disease states without a priori 

constraints and makes it possible to investigate the previously unconsidered regional 

alterations (Iwabuchi et al., 2015).  

Previous RS-fMRI studies using conventional mass-univariate analytical 

techniques for investigating the alterations of ReHo in OCD have suggested that there 

may be anomalies of localized connectivity in cortico-striato-limbic regions (Chen et 

al., 2016; Niu et al., 2017; Ping et al., 2013; Yang et al., 2010; Yang et al., 2015). One 

important limitation of these studies is the small sample sizes, which reduce 

sensitivity and presumably result in the lack of reliability of findings. Additionally, all 

these published mass-univariate researches investigating ReHo alterations between 

OCD participants and healthy control subjects (HCS) aim to test whether there are 

any effects in one or more brain regions, rather than to test whether the effects are 

large enough to have the translational importance for clinical utility. 

Recently, the researchers have developed a growing interest in applying 

multivariate pattern analysis (MVPA) to develop brain signatures for clinical 
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diagnoses in relevant mental disorders (Woo et al., 2017). Relative to traditional 

univariate analysis, the MVPA bears two strengths. First, MVPA takes the 

inter-correlation between voxels into consideration and thus might be more sensitive 

in detecting subtle and spatially distributed alterations. Second, MVPA allows 

statistical inferences at single subject level and thus could be used to make diagnostic 

decisions of individual patients (Vieira et al., 2017). Meanwhile, MVPA methods have 

been successfully used to differentiate OCD participants from control subjects based 

on diffusion MRI (Li et al., 2014), structural MRI (Hu et al., 2016) as well as 

task-based fMRI (Weygandt et al., 2012). However, no MVPA studies have 

investigated the utility of ReHo maps for distinguishing OCD subjects from HCS. 

Therefore, we aimed to apply both univariate analysis and support vector 

machine (SVM) method to evaluate the alterations of ReHo in a relatively large 

sample of medication-free patients with OCD. The SVM discrimination algorithm is a 

widely used MVPA approach. In the SVM analysis, the data points are firstly 

projected into the high-dimensional space and subsequently classified based on the 

principle of maximizing the margin between categories (Orru et al., 2012). The SVM 

classification process is constituted of two procedures: training and testing. In the 

training stage, a decision boundary is identified by the SVM classifier to separate the 

examples into the input space according to their class labels (i.e. OCD versus HCS). 

In the testing phase, as soon as the optimized hyperplane is established from the 

training dataset, it can be utilized to make predictions for the class label of a new 

testing example to determine its generalizability (Noble, 2006). We hypothesized that 
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the SVM analysis of the ReHo maps (1) would potentially be able to discriminate 

individual patients with OCD from healthy controls and (2) provided information on 

neurobiological changes that will potentially help to elucidate the mechanisms which 

cause OCD.  
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2. Materials and Methods 

2.1. Participants 

All the subjects were right-handed individuals with the age between 18 and 60 

years. Patients with OCD got enrolled from the West China Hospital of Sichuan 

University. The Diagnosis of OCD was determined by three experienced clinical 

psychiatrists (Y.C.Y., B.L. and W.J.T. with 32, 18, and 11 years of experience in 

clinical psychiatry, respectively) by using the Structured Clinical Interview for 

DSM-IV (Patient Edition) to exclude anxiety disorder, Tourette syndrome, major 

depressive disorder, schizophrenia, bipolar disorder or any other axis I psychiatric 

comorbid disorders. The symptom severity of OCD was rated according to the 

Yale-Brown Obsessive Compulsive Scale (Y-BOCS). The anxiety symptom severity 

was assessed by 14-item Hamilton Anxiety Scale (HAMA). The depressive symptom 

severity was evaluated based on the 17-item Hamilton Depression Scale (HAMD). All 

the patients with OCD experienced a washout period of 4 weeks from any treatment 

before the image data acquisition. Healthy controls were recruited by a poster and 

were screened using the SCID (non-patient edition) in order to ensure the absence of 

neurological and mental diseases. All the HCS reported that their first-degree relatives 

did not have history of mental illness or neurological diseases. The exclusion criteria 

applied to both OCD patients and HCS were listed as follows: (1) the existence of 

neurological diseases or other mental disorders; (2) any history of cardiovascular 

diseases, metabolic disorders or major physical illness; (3) alcohol or drug 

dependence and (4) pregnancy. The above assessments were evaluated by two 
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experienced psychiatrists. Written informed agreement was obtained from each 

participant before the research procedure was initiated. The Ethics Committee of West 

China Hospital approved the present study. 

2.2. RS-fMRI Data Acquisition 

All participants got the MRI scanning using a 3.0 T GE Signa EXCITE scanner 

with an 8 channel phase array head coil. The RS-fMRI sensitized to alterations in 

BOLD signal levels of the whole brain were obtained via a echo-planar imaging (EPI) 

sequence. The parameters of scanning were listed as follows: TR = 2000 msec, echo 

time = 30 msec, flip angle = 90°, slice thickness = 5 mm with no slice gap, field of 

view (FOV) = 240 × 240 mm
2
, 30 axial slices, 200 time points in each run. In the 

MRI examination, participants were informed to be relaxed and keep their eyes closed 

without falling asleep. Foam padding was used to reduce head motion while earplugs 

were used for reducing the scanner noise. 

2.3. Image Preprocessing 

The image preprocessing procedures including slice timing, head-motion 

correction and normalization (voxel size 3 × 3 × 3 mm
3
) to Montreal Neurological 

Institute (MNI) space were performed using the DPABI software (Yan et al., 2016). 

For the purposes of removing head motion artifacts, we applied the Friston 

24-parameter model in the current study as a regressor, which has been shown to be 

advantageous to the 6-parameter model (Yan et al., 2013). All the image data used in 

the present study met the criteria of spatial movement in any direction <1.5 mm or 1.5 

degree and the mean framewise displacement (FD) value < 0.2. Signal from the 
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cerebrospinal fluid, white matter and global mean signal intensity were used as 

covariates for decreasing the effects of non-neuronal BOLD fluctuations. Afterwards, 

we removed the linear trend of the fMRI images, and band-pass filtering 

(0.01–0.08Hz) was performed in order to reduce the effect of physiological noise with 

high frequency as well as the extreme low-frequency drift. After that, we adopted the 

REST software (Song et al., 2011) for the calculation of the ReHo maps. 

2.4. ReHo Calculation 

ReHo map of each subject was created by the calculation of KCC regarding the 

time series between a single voxel with adjacent 26 voxels of its neighbors in a 

voxel-wise manner (Zang et al., 2004). Subsequently, the REST software used a 

whole-brain mask to eliminate the non-brain tissues for the aims of standardization, 

Afterwards, individual ReHo maps were divided using the average global KCC and 

this procedure was achieved in the whole-brain mask. Finally, a Gaussian kernel with 

full width at half maximum of 8-mm was adopted to spatial smoothing for all the 

individual standardized ReHo maps. 

2.5. Univariate Analysis 

we performed an univariate analysis for exploring alterations of localized 

connectivity by comparing ReHo maps between patients with OCD and HCS using 

the two-sample t-test in SPM8. Meanwhile, we conducted subgroup analysis in 

medication-naive OCD patients compared with matched HCS to test the reliability of 

the main effects. The voxel level statistical threshold was set at P < 0.001 with a 

minimum cluster extent of 100 voxels without correction. Meanwhile, The statistical 

In review



13 
 

threshold of cluster level was set at P < 0.05 with family-wise error (FWE) correction. 

Regions with significant ReHo alterations between groups were extracted as 

region-of-interest for Pearson correlation analyses with clinical variables including 

illness duration, HAMA scores, HAMD scores and symptom severity evaluated by 

Y-BOCS and subscale scores in the SPSS software (SPSS 16.0; Chicago, III). 

2.6. MVPA approach  

The SVM classifier was adopted to evaluate the classification accuracy of local 

connectivity in distinguishing individuals with OCD from HCS and this step was 

conducted by the PROBID package running in the Matlab. The SVM approaches have 

been described in detail elsewhere (Hu et al., 2016; Li et al., 2014) and are briefly 

summarized here. Individual RS-fMRI images were regarded as points situated in a 

high dimensional interspace defined by the ReHo maps in the preprocessed images. 

The SVM classifier identified a linear decision boundary to separate individual brain 

maps in a high dimensional space based on the category label. The optimized 

hyperplane was computed on the basis of the whole multivariate pattern of ReHo map 

across each RS-fMRI scans. For the purposes of lowering the risk of data overfitting 

and allowing direct extraction of the weight vector, the linear kernel SVM was 

applied. Additionally, we utilized a leave-one-out cross-validation (LOOCV) strategy 

to evaluate the performance of the SVM classifier. This LOOCV approach excluded a 

independent individual from each group and used the rest of the participants to train 

the SVM classifier. Then, the excluded subject pair was applied to test the 

differentiating ability of SVM to reliably discriminate between two sorts. We used a 
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nonparametric test to determine the statistical significance of the general accuracy of 

discrimination, Specifically, the nonparametric test repeated the classification step 

1,000 times using permutation test of the labels in the training group and computed 

the specificity and sensitivity in respect to the true labels. Ultimately, the PROBID 

software generated the discriminative maps to display the relative contributions of 

each voxel to the SVM classification decision. We overlaid the voxels with top 30% 

of the maximum weighted value onto the brain template with high resolution  

(Mourao-Miranda et al., 2005). 

In review



15 
 

3. Results 

A total of 88 participants with OCD and 88 gender and age matched control 

subjects were employed in the current study. Among them, 54 OCD patients and 54 

control subjects were included in a previous analysis (Bu et al., 2013). Table 1 

displayed the clinical characteristics and demographic information of all the subjects. 

No significant differences were identified with respect to gender (P = 1.000) and age 

(P=0.381) between OCD patients and HCS. The mean (standard deviation) scores of 

Y-BOCS, HAMD, and HAMA were 21.47 (±5.38), 8.74 (±4.92), and 8.78 (±4.46), 

separately. The illness duration of OCD patient group was 7.32±5.58 years.  

Relative to HCS, OCD patients showed lower ReHo in bilateral cerebellum and 

higher ReHo in bilateral superior frontal gyri (SFG), right IPG and precuneus. (P < 

0.05, with FWE correction at the cluster level) (Table 2, Figure 1 & Figure 2). The 

results regarding subgroup analysis of medication-naive OCD patients remained 

reproducible with the main effect (Figure S1). ReHo value in the left SFG positively 

correlated with Y-BOCS total score (r = 0.241, P = 0.024) and obsessive subscale (r = 

0.224, P = 0.036) (Figure 3). No significant correlations were identified between 

altered ReHo and any other clinical characteristics in OCD patients. 

The plotting for SVM classification using ReHo maps are presented in the Figure 

4 (left). The receiver operating characteristic (ROC) curve assessing the performance 

of SVM classifier based on ReHo maps are displayed in Figure 4 (right).  

Based on the SVM classification approach, the diagnostic accuracy of ReHo 

maps for the contrast between OCD and HCS was 78.98% (sensitivity = 78.41% and 
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specificity = 79.55%, P<0.001). The most discriminative regions contributing to the 

SVM classification regarding ReHo were mainly located in frontal, temporal, parietal 

regions as well as cerebellum while the right OFC was identified with the highest 

discriminative power. The details concerning the brain areas that contributed to 

distinguishing OCD participants from controls are displayed in Table 3 and Figure 5.
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4. Discussion 

The current study applied both univariate analysis and MVPA approach to 

explore the alterations of ReHo in a relatively large cohort of medication-free patients 

with OCD. Our study revealed that OCD patients showed lower ReHo in bilateral 

cerebellum and higher ReHo in the frontoparietal regions compared with HCS. ReHo 

value in the left SFG positively correlated with symptom severity. Additionally, OCD 

patients could be differentiated from HCS using SVM based on ReHo maps with high 

classification accuracy (78.98%, P<0.001). Brain regions including the frontolimbic 

circuit, the temporo-parietal areas and the cerebellum were identified to have high 

differentiating power. Meanwhile, both univariate analysis and MVPA approach 

detected abnormalities of frontoparietal regions and cerebellum in OCD based on 

ReHo maps. 

The PFC has been long recognized to be a paramount part in the mediation of 

clinical manifestations including executive disturbance, low behavioral flexibility and 

inability for decision making that are commonly observed in OCD patients 

(Chamberlain et al., 2008; Menzies et al., 2008; Samara et al., 2017). Furthermore, 

Ahmari et al. used optogenetics to prove that repeated stimulation of the OFC in mice 

would lead to persistent OCD-like behaviours (Ahmari et al., 2013). In agreement 

with findings from previous ReHo studies of OCD (Chen et al., 2016; Ping et al., 

2013; Yang et al., 2015), the current study revealed higher ReHo in bilateral SFG in 

OCD patients compared with HCS. Meanwhile, the right OFC was identified as the 

brain region that provided the greatest potential to discriminate OCD from HCS based 
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on the MVPA approach. Thus, an abnormal hyperactivation in PFC might be related 

to the pathophysiological process of OCD. Additionally, the increased ReHo value in 

the left SFG was positively correlated with the Y-BOCS and obsession subscale 

scores. This finding indicated that ReHo might be an optimal measure for capturing 

the disease severity. 

Neither univariate analysis nor MVPA revealed ReHo alterations of the striatum 

in OCD patients, which is inconsistent with evidence from Meta- and Mega-analyses 

of structural and functional neuroimaging studies (Boedhoe et al., 2017; Menzies et 

al., 2008; Radua and Mataix-Cols, 2009; Rotge et al., 2010). The striatum has long 

been regarded as a key hub for symptom mediation in OCD (Pauls et al., 2014) and 

recent evidence has suggested the striatum as a promising site for deep brain 

stimulation treatment of OCD (Pinhal et al., 2018). Two previous studies identified 

that OCD patients showed decreased ReHo in the caudate nucleus (Ping et al., 2013; 

Yang et al., 2015), which seemed to be inconsistent with the present finding. Several 

reasons might account for the discrepancies. Firstly, there were more OCD 

participants enrolled in the present study than in the previous ReHo studies (Ping et 

al., 2013; Yang et al., 2015). The large sample size of the current study increased the 

power to detect potential localized functional disruptions in OCD and minimized the 

risk of false positive findings. Secondly, clinical cohorts in previous ReHo studies 

included OCD patients who were being treated using serotonin reuptake inhibitors 

while all the subjects with OCD of our research were medication-free. This is 

especially relevant, given the report by Beucke et al. that antidepressant medication 
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may reduce network-level neural function of cortico-striato-thalamo-cortical (CSTC) 

circuits in OCD (Beucke et al., 2013). Thirdly, two recent multicentre studies of 780 

brain scans reported no structural alterations of striatum in OCD patients (de Wit et al., 

2014; Fouche et al., 2017). Therefore, striatum may not directly relate to the 

pathophysiology of OCD, but be secondary to current medication use. Further 

longitudinal studies would be needed to clarify this hypothesis. 

Both univariate analysis and MVPA demonstrated cerebellar dysfunction of 

OCD patients compared with healthy controls. The cerebellum has been identified to 

integrate the information flow of prefrontal-basal ganglia pathway as it is functionally 

and anatomically connected to the CSTC network (Middleton and Strick, 2000). 

Furthermore, an increasing number of evidence has reported that, besides the 

traditional role of motor control, the primate cerebellum is involved in the cognitive 

control and emotional regulation (Ramnani, 2006). For example, the cerebellar 

hypoactivation in OCD patients was observed when fear conditioning tasks were 

performed (Milad et al., 2013), which was consistent with our current finding. 

Interestingly, a recent multicenter VBM mega-analysis reported smaller volumes of 

PFC and greater cerebellar gray matter volume bilaterally (de Wit et al., 2014) but our 

study found higher ReHo in bilateral SFG and lower ReHo in bilateral cerebellum. 

The opposite findings might suggest a functional compensatory response to regional 

anatomical alterations in OCD. Given all the OCD participants were treatment-free in 

the current study, we proposed the activation disequilibrium between the PFC and the 

cerebellum might directly be associated with the psychopathology of OCD.   
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 In addition to the significant cerebellar dysfunction, it is of special interest to 

find the involvement of parietal (including IPG and precuneus) and temporal regions 

with disrupted localized connectivity in patients with OCD compared to healthy 

volunteers, which is consistent with the reports of the engagement of the extended 

OCD anatomical model (Gursel et al., 2018). Previous systematic review of structural 

neuroimaging studies had emphasized that the neural mechanism of OCD might 

involve a more widespread regions such as parietal and temporal cortices, which may 

help explain the heterogeneity in clinical manifestations of OCD (Piras et al, 2013). 

By integrating evidence from functional neuroimaging and neuropsychological tests, 

Menzies et al. suggested the parietal cortex as a fundamental area outside the classical 

orbitofronto-striatal circuit in the psychopathology of OCD (Menzies et al., 2008). 

Moreover, altered anatomical connectivity between lateral frontal and parietal regions 

are consistently indentified in the meta-analysis of diffusion tensor imaging studies 

(Piras et al, 2015). The parietal activation may be related to emotion processing 

(Margulies et al., 2009) and decision making (Huk et al., 2017), which are also 

reported to be impaired in OCD patients. Meanwhile, de Vries et al. suggested that the 

compensatory activity of frontoparietal network (FPN) during working memory might 

constitute a neurocognitive endophenotype for OCD (de Vries et al., 2014). The 

precuneus and temporal cortices are major components of the default mode network 

(DMN) (Raichle, 2015). A recent task-based fMRI meta-analysis has demonstrated 

that OCD symptom severity was related to increased activation in the precuneus 

(Thorsen et al., 2018). Evidence from cognitive studies has demonstrated that 
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temporal regions are involved in impairment of inhibitory control (Penades et al., 

2007) and executive planning (van den Heuvel et al., 2005) in OCD. Research using 

graph theory analysis revealed decreased local efficiency and reduced 

intra-connectivity of DMN in OCD patients relative to HCS (Peng et al., 2014). Since 

the IPG is reported as an important node in both the FPN and the DMN (Boedhoe et 

al., 2018) while our present study identified higher ReHo in the IPG, we speculated 

that the parietal hyperactivation might contribute to the underlying mechanism of 

OCD. 

The current research had some limitations. Firstly, although the our results were 

encouraging, multicenter research is still needed for testing the generalizability of the 

current findings. Secondly, we recruited drug-free OCD patients who had went 

through 4-week medication washout period before the MRI data acquisition. 

Therefore, we could not rule out the longer-term effects of treatment on the localized 

functional disruptions. Thirdly, we only compared patients with OCD and HCS in the 

current investigation, Thus, it remained unknown whether the SVM classification of 

ReHo maps would distinguish OCD subjects from participants with different 

psychiatric disorders. Future investigations could address this issue by evaluating the 

discrimination accuracy of SVM classifier in differentiating OCD from other anxiety 

disorder (i.e. Tourette syndrome). Fourthly, we did not recruit pediatric OCD patients 

in this study. Recent studies have identified distinct cortical and subcortical alterations 

in pediatric and adult OCD (Boedhoe et al., 2017; Boedhoe et al., 2018; Hu et al., 

2017). Future studies should involve pediatric OCD patients in order to provide an 
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insight into the neurodevelopmental alterations in this disorder. Fifthly, we did not 

evaluate the possible effect of comorbid apathy in the current study. Previous evidence 

indicated that apathy could modulate the microstructure of bundles related to OCD 

(Spalletta et al, 2013). Future investigations should adopt Apathy Rating Scale to 

assess the apathetic conditions in OCD patients. Finally, we failed to perform separate 

analyses for childhood onset OCD and adulthood onset OCD since there were much 

fewer childhood onset OCD patients (N = 18) than adulthood onset OCD patients (N 

= 70). A recent world-wide mega analysis reinforced the effects of onset age in the 

neural mechanism of OCD (Boedhoe et al., 2017). Thus, illustrating the differences of 

ReHo alterations between childhood onset OCD patients and adulthood onset OCD 

patients is still warranted.  

In summary, our univariate analysis provided evidence that localized activation 

disequilibrium between the PFC and the cerebellum appeared to be associated with 

the pathophysiology of OCD. Additionally, positive correlations between ReHo in left 

SFG and symptom severity were identified, which suggested that ReHo might be a 

paramount measure for studying the underlying cause of OCD. Furthermore, the SVM 

analysis of ReHo achieved modest accuracy (79.0%, p<0.001) in classifying OCD 

patients and HCS at the individual level, which indicated the translational role of the 

localized connectivity as a potential psychoradiological biomarker for OCD diagnosis.  
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Figure Legends:  

 

Figure 1. The distributions of ReHo eigenvalue in six brain areas with altered ReHo 

in OCD patients relative to HCS. 

Abbreviations: HCS, healthy control subjects; IPG, inferior parietal gyrus; OCD, 

obsessive-compulsive disorder; ReHo, regional homogeneity; SFG, superior frontal 

gyrus.  

 

Figure 2. Altered ReHo in OCD patients compared with HCS. ReHo increases are 

indicated in warm colors while ReHo reductions are indicated in cool colors. 

Abbreviations: HCS, healthy control subjects; OCD, obsessive-compulsive disorder; 

ReHo, regional homogeneity. 

 

Figure 3. Pearson correlation exhibiting positive association between ReHo in the left 

SFG and YBOCS as well as obsessive subscale scores in the OCD group. 

Abbreviations: OCD, obsessive-compulsive disorder; ReHo, regional homogeneity; 

SFG, superior frontal gyrus; YBOCS, Yale-Brown Obsessive Compulsive Scale. 

 

Figure 4. Classification plot (left) and receiver operating characteristic (ROC) curve 

(right) for differentiating patients with OCD from HCS based on ReHo maps, yielding 

an accuracy of 78.98% (sensitivity = 78.41%, specificity = 79.55%, P < 0.001). 

Abbreviations: HCS, healthy control subjects; OCD, obsessive-compulsive disorder; 

ReHo, regional homogeneity. 

 

Figure 5. The discrimination maps for ReHo. These areas were identified by setting 

the threshold to the top 30% of weight vector scores. Warm colors indicated higher 

discriminated values for OCD subjects than HCS. Cool colors indicates lower 

discriminated values for OCD participants than HCS. 

Abbreviations: HCS, healthy control subjects; OCD, obsessive-compulsive disorder; 

ReHo, regional homogeneity. 
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Table 1.  

 

Clinical characteristics and demographic information for patients with OCD and HCS. 

 

Characteristic 
OCD (n = 88)   HCS (n = 88)   Significance 

Mean SD  Mean SD  t/χ
2
 P  

Gender (male : female) 56:32 —  56:32 —  0.000  1.000  

Age (yrs) 29.16 8.71  27.88 10.58  0.879 0.381 

Duration of illness (yrs) 7.32 5.58  — —  — — 

Age of onset 21.84 7.09  — —  — — 

Y-BOCS total 21.47 5.38  — —  — — 

  Obsessions 13.15 5.07   — —  — — 

  Compulsions 8.32 5.35  — —  — — 

HAMD 17 8.74 4.92  — —  — — 

HAMA 14 8.78 4.46  — —  — — 

Current treatment status N %       

  Drug-free (> 4 wks) 88 100  — —  — — 

  Medication-naive 74 88.09  — —  — — 

Previous treatment history N %       

  Clomipramine 4 4.55  — —  — — 

  Paroxetine 3 3.41  — —  — — 

  Fluoxetine 3 3.41  — —  — — 

  Sertraline 3 3.41  — —  — — 

  Quetiapine 1 1.14  — —  — — 

 

Abbreviations: HAMA, Hamilton Anxiety Rating Scale; HAMD, Hamilton 

Depression Rating Scale; HCS, healthy control subjects; OCD, obsessive-compulsive 

disorder; SD, standard deviation; Y-BOCS, Yale-Brown Obsessive Compulsive Scale. 
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Table 2.  

 

Significant differences of regional ReHo alterations in OCD patients compared with 

HCS. 

 

Region Side Voxel size 
MNI coordinate 

T P* 
x y z 

OCD patients > HCS               

Superior frontal gyrus R 274 15 15 66 6.35  0.001 

   
15 27 60 5.55  

 

   
9 9 69 5.37  

 
Inferior parietal gyrus R 407 57 -60 39 6.25  <0.001 

   
63 -54 33 5.46  

 

   
63 -54 24 5.39  

 
Precuneus L/R 139 9 -69 57 5.13  0.018 

   
-9 -78 48 3.33  

 

   
-6 -78 39 3.20  

 
Superior frontal gyrus L 591 -12 0 72 5.10  <0.001 

   
-42 6 54 5.07  

 

   
-48 36 12 5.06  

 
OCD patients < HCS     

 
        

Cerebellum R 357 15 -51 -27 -5.20  <0.001 

   
6 -27 -15 -3.86  

 
Cerebellum L 117 -18 -48 -27 -4.55  0.031 

      -9 -60 -21 -4.04    

 

*
P < 0.05 set at cluster level with whole-brain family wise error correction. 

 

Abbreviations: HCS, healthy control subjects; MNI, Montreal Neurological Institute; 

OCD, obsessive-compulsive disorder; ReHo, regional homogeneity
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Table 3.  

 

Brain areas that differentiated OCD patients from HCS based on ReHo maps. These 

areas were identified by setting the threshold to the top 30% of the weight vector 

scores. 

 

Abbreviations: HCS, healthy control subjects; MNI, Montreal Neurological Institute; 

OCD, obsessive-compulsive disorder; ReHo, regional homogeneity; SVM, support 

vector machine; wi, weight of each cluster centroid i. 

 

 

 

Brain areas (SVM) 
Coordinates (MNI) 

wi 
x y z 

OCD patients > HCS         

R orbit frontal 5 53 -19 17.18 

OCD patients < HCS         

R cerebellum 50 -67 -46 -12.88 

vermis 5 -73 -37 -11.39 

R inferior temporal 38 2 -40 -11.01 

R middle temporal 23 2 -40 -10.88 

R middle temporal 71 -34 -4 -12.69 

R transverse temporal 62 -13 8 -12.28 

L middle temporal -45 -64 23 -13.26 

dorsal anterior cingulate 1 -13 38 -11.42 

R inferior parietal 50 -46 54 -10.57 In review
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