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Abstract  

Isotope labels are frequently used tools to track metabolites through complex biochemical 

pathways and to discern the mechanisms of enzyme-catalysed reactions. Isotopically-labelled L-

serine is often used to monitor the activity of the first enzyme in sphingolipid biosynthesis, serine 

palmitoyltransferase (SPT) as well as labelling downstream cellular metabolites. Intrigued by the 

effect that isotope labels may be having on SPT catalysis, we characterised the impact of different 

L-serine isotopologues on the catalytic activity of recombinant SPT isozymes from humans and 

the bacterium Sphingomonas paucimobilis. Our data show that S. paucimobilis SPT activity 

displays a clear isotope effect with [2,3,3-D] L-serine, whereas the human SPT isoform does not. 
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This suggests that whilst both human and S. paucimobilis SPT catalyse the same chemical 

reaction, there may well be underlying subtle differences in their catalytic mechanisms. Our 

results suggest that it is that the activating small subunits of human SPT that play a key role in 

these mechanistic variations. This study also highlight that it is important to consider the type 

and location of isotope labels on a substrate when they are to be used in in vitro and in vivo studies. 

 

Sphingolipids (SLs) are a family of L-serine derived molecules that have been shown to play a range 

of functional roles in various species (1, 2). Their importance is reflected in the expanding list of 

diseases that are now linked with SLs and their metabolites (3). Serine palmitoyltransferase (SPT) is a 

pyridoxal 5’-phosphate (PLP) dependent enzyme which catalyses the first step in sphingolipid (SL) 

biosynthesis, the Claisen-like condensation of L-serine with palmitoyl-CoA to form 3-

ketodihydrosphingosine (3-KDS) (Fig. 1A) (4). Although SPT is conserved across all SL-producing 

organisms studied to date there are structural differences between SPTs from different taxa. In bacteria 

such as Sphingomonas paucimobilis SPT is a soluble homodimer, whose structure was determined in 

2007, revealing a three domain architecture (5). Whilst all three domains are required for dimerisation 

of the enzyme, the central domain is required for catalysis and the active site is formed at the dimer 

interface (5, 6). In contrast to bacterial isoforms, the SPT homologs from higher eukaryotes are 

heterodimers of two core subunits, LCB1 and LCB2, also referred to as SPT1 and SPT2. The LCB1 

and LCB2 proteins share significant sequence homology suggesting shared ancestry but display key 

differences in the residues proposed to be involved in PLP binding and enzyme catalysis (7-11). 

Moreover, the eukaryotic SPTs are integral membrane proteins that reside in the endoplasmic reticulum 

(ER) membrane. In humans additional complexity is added by the presence of two isoforms of LCB2, 

as well as of two isoforms of a third, small subunit of SPT (ssSPTa and ssSPTb), whose functionally-

equivalent small protein in Saccharomyces cerevisiae is Tsc3p (12, 13). These ssSPTs have a single 

spanning transmembrane domain and have been shown to increase the in vitro activity of the SPT 

complex by up to ~100-fold (13, 14). To compound this, in eukaryotes, SPT forms a complex with 

regulatory partners known as the orosomucoid-like protein (ORMs) which are negative regulators of 
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SPT activity (15, 16). In yeast this complex is called “SPOTS”, consisting of Lcb1, Lcb2, Tsc3p, Orm1, 

Orm2 and Sac1 (15). The molecular mechanisms by which this complex controls SPT activity are 

unclear, but phosphorylation of Orm1 and Orm2 by a kinase cascade is in part responsible for the 

regulation of SPT (15, 16). In humans, the equivalent ORMDL proteins lack the phosphorylation sites 

found in the yeast ORMs, and so it is unknown how these proteins regulate the activity of SPT (17, 18). 

A recent study has suggested that the ORMs and ORMDLs respond directly to ceramide concentrations 

to control SPT enzymatic turnover, but the mechanistic details have yet to be revealed (19). Mutations 

of both human SPT are also linked with a rare genetic disease hereditary sensory neuropathy type 1 

(HSAN1, reviewed in (20)). These mutations result in a gain of function and increased promiscuity with 

respect to the amino acid specificity of the enzyme; mutant SPTs generate so-called “deoxy 

sphingolipids” from glycine and L-alanine (21). Despite their acknowledged link to HSAN1, the exact 

mechanism of how these atypical SLs exert their damage on neurons remains unclear. Also, there is 

growing evidence that ORMDLs are linked to various disease pathologies but their exact roles are under 

current investigation (22).  

SPT belongs to the α-oxoamine synthase (AOS) family of PLP-dependent enzymes whose enzymology 

has been extensively studied, and a mechanism has been proposed for SPT (Fig. 1A) (5, 23-27). 

Catalysis begins with displacement of the active site lysine from the PLP-bound internal aldimine (also 

known as the holo-) form of the enzyme by the L-serine substrate to generate the SPT PLP:L-serine 

external aldimine complex. Binding of palmitoyl-CoA is thought to induce a conformational change 

which allows an active site base to abstract the α-proton of L-serine, forming a substrate quinonoid. 

Electron rebound from the PLP-bound quinonoid results in C-C bond formation with liberation of free 

coenzyme A (CoASH). Decarboxylation of the PLP:-keto acid follows, and the product quinonoid is 

reprotonated by an active site acid. Displacement by the active site lysine releases the product 3-KDS 

from the PLP:product external aldimine and returns the SPT to the PLP-bound, holo-form. 

Isotope labels are frequently used in metabolic and natural product biosynthesis studies where they can 

be used to track the incorporation of small molecule precursors into complex metabolites in a cellular 

environment (28-31). The inherent differences in zero point energies between different isotopes can be 
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used to elucidate the mechanistic details of enzyme catalysed reactions. This is due to the fact that these 

energy differences result in increased bond strength which can be observed as an effect on the rate of 

an enzyme catalysed reaction – a kinetic isotope effect (KIE). As such, this effect has been used to great 

effect in mechanistic studies (32-35).  

Given the increase in the use of isotopically labelled L-serine in SL analysis, especially the use of the 

[2,3,3-D] L-serine isotopologue (compound (3) in Fig. 1B), we wanted to investigate what effect, if 

any, these labels have on the SPT catalysed reaction. We were concerned that without an understanding 

the underlying biochemistry, a misplaced isotope label could lead to unintended consequences for two 

reasons – 1) incorrect rate measurements and 2) using a mass label that is lost in the reaction. For 

metabolic tracking, it is advantageous to have as big a mass difference as possible in the products of 

interest to allow one to clearly differentiate those derived from the labelled-substrate. However, these 

labels are of no value if they are lost during the enzyme-catalysed steps of a pathway. Herein we report 

the use of a series of isotopically labelled L-serine substrates and their effects on the kinetics of the SPT 

catalysed reaction. Our data show that with soluble, homodimeric S. paucimobilis SPT, the presence of 

a deuterium label on the α-carbon results in a significant KIE, implicating abstraction of this proton as 

being a rate determining step. In contrast, surprisingly, in the multi-subunit, membrane-bound human 

homolog of the enzyme, no KIE is observed for the same substrate. Our results are in agreement with a 

recent report by Hannun and colleagues on the yeast SPT complex (34) and suggest that there are subtle 

mechanistic differences between the cytoplasmic and membrane-bound forms of the enzymes that are 

dependent on the activating small subunit. 

 

MATERIALS AND METHODS 

Source of L-serine Isotopologues 

The structures and labels of the L-serine substrates used are shown in Fig. 1B. Non-isotopically labelled 

L-serine (1) was purchased from Sigma (Cat #S4500). [3,3-D] L-serine (2) (Cat #DLM-161), [2,3,3-D] 

L-serine (3) (Cat #DLM-582) and [1,2,3,-13C, 2-15N] L-serine (5) (Cat #CNLM-474) were purchased 
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from Cambridge Isotope Laboratories. [2-13C] L-serine (4) (Cat #9370) was purchased from Icon 

Isotopes. 

 

Expression and Purification of Sphingomonas paucimobilis SPT (SpSPT) 

The N-terminal His6-tagged SpSPT was expressed in E. coli and purified from a pET-28a expression 

plasmid essentially as previously described (36). Briefly, a single colony was picked into 200 mL of 

LB media and grown overnight at 37° C with 35 µg mL-1 kanamycin. The overnight culture was diluted 

back to OD600 = 0.05. Cells were grown to OD600 = 0.6 at 37° C with 35 µg mL-1 kanamycin. At OD600 

= 0.6, cells were induced with 0.1 mM IPTG and incubated at 30° C for a further 5 hours before 

harvesting at 4122 x g. Cells were washed in PBS buffer before resuspension in 1:1 (w/v) wash buffer 

(50 mM HEPES, pH 7.8, 150 mM NaCl, 10 mM imidazole, 25 µM PLP). Cells were lysed by sonication 

(10 minutes, 30 seconds on, 30 seconds off, 10 microns) and cell free extract was prepared by 

centrifugation (24 446 x g, 30 minutes). The cell free extract was then applied to a 1 mL His-Trap 

column (GE Life Sciences) and washed with wash buffer until the base line was flat. SpSPT was then 

eluted by an imidazole gradient (10 mM – 300 mM) over one hour. Fractions containing protein were 

pooled and concentrated in a 30 kDa spin filter to a final volume of 1 mL. Concentrated protein was 

finally purified by gel filtration chromatography (Superdex S200 column, GE Life Sciences), eluting 

with 50 mM HEPES pH 7.8, 150 mM NaCl, 25 µM PLP. Fractions containing protein were pooled and 

concentrated in a 30 kDa spin filter, before storage at -80° C. Protein concentrations were determined 

by the method of Bradford, 1976 (37). 

 

Expression and Purification of Single Chain Human SPT (scSPT) 

The construction and expression of an active single chain human SPT (scSPT) has been described 

previously (14, 17, 38) and a full report on its biochemical and structural characterisation is to follow 

(Somashekarappa et al., in preparation). This construct contains the three human SPT subunits (LCB2, 

ssSPTa and LCB1) linked together in a head-to-tail fashion into a single chain protein that can be 
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expressed in yeast, as well as CHO-LyB and HEK293 mammalian cells. Most recently this construct 

has also been used in HeLa cells to study SPT regulation (19). The plasmid encoding single chain SPT 

was used to transform the S. cerevisiae Δlcb1 strain. A single yeast colony was then used to inoculate 

200 mL of YPD media which was grown overnight at 26° C. The overnight culture was diluted back to 

OD600 = 0.05 and 0.5 mM CuSO4 was added. Cells were grown overnight at 26° C before harvesting at 

5000 x g. Harvested cells were washed with PBS before resuspension in buffer (50 mM tris, pH 8.0, 

0.25 M sorbitol, 0.3 M NaCl, 2 mM EDTA, 2 mM EGTA, 1 mM phenylmethylsulfonyl fluoride 

(PMSF), 0.5 mM benzamidine, 25 µM PLP). Cells were lysed by bead-beating (0.5 mm diameter 

zirconia beads) and cellular debris was removed by centrifugation at 5000 x g. The supernatant was 

then collected and membranes were harvested by ultracentrifugation at 164 244 x g for one hour. 

Harvested membranes were washed in membrane buffer (50 mM HEPES pH 8, 150 mM NaCl, 10% 

glycerol, 1 mM PMSF, 25 µM PLP) before re-harvesting by ultracentrifugation at 164 244 x g for one 

hour. Membranes were solubilised in 1% n-dodecyl β-D-maltoside (DDM, Generon) for one hour 

before unsolubilised material was removed by ultracentrifugation at 164 244 x g for one hour. 

Solubilised protein was added to 1 mL of equilibrated nickel resin (GE Life Sciences) and incubated 

for one hour at 4° C. Resin was washed with 10 column volumes (CV) wash buffer (50 mM HEPES 

pH 8, 150 mM NaCl, 30 mM imidazole, 10% glycerol, 1 mM PMSF, 25 µM PLP) before elution into 

5 CV elution buffer (0.024% DDM, 50 mM HEPES pH 8, 150 mM NaCl, 300 mM imidazole, 10% 

glycerol, 1 mM PMSF, 25 µM PLP). The eluted protein was concentrated and stored at -80° C until 

required. 

 

Kinetic Analysis of Purified Bacterial SpSPT and Human scSPT 

All assays were conducted in a total volume of 100 µL and were performed using a BioTek Synergy 

HT plate reader. Assays contained L-serine (100 µM-40 mM), palmitoyl-CoA (250 µM), 5,5'-dithiobis-

(2-nitrobenzoic acid), (DTNB, ε412=14,150, 400 µM), SpSPT or scSPT (SpSPT: 400 nM. scSPT: 5 µM), 

assay buffer (50 mM HEPES, pH 7.8, 100 mM NaCl, (0.05% DDM for scSPT) to 100 µL). 
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Measurements were taken at 412 nm over the course of one hour. Statistical analysis was performed by 

unpaired t-test using the GraphPad online calculator (39). 

 

Long Chain Base (LCB) Formation by Human SPTs in Yeast Microsomes 

Microsomal Membrane Preparation: For these experiments we used two forms of the human SPT 

complex expressed in yeast microsomes. One was the fused gene construct scSPT described in Section 

2.3 without purification. The other used human SPT from yeast microsomes where the human LCB1, 

LCB2 and ssSPT genes were independently co-expressed as described previously (13). Cells were 

harvested at exponential phase, pelleted at 5000 x g, washed with water, re-pelleted and then washed 

with TEGM buffer (50 mM Tris, pH 7.5, 1 mM EGTA, 1 mM β-mercaptoethanol (BME), 1 mM PMSF, 

1 μg mL-1 Leupeptin, 1 μg mL-1 Pepstatin A, 1 μg mL-1 Aprotinin) buffer. The cell pellets were 

resuspended in TEGM buffer at 1 mL / 50 OD600 nm cells and glass beads (0.5 mm diameter) were 

added to ~1/4 inch from the meniscus. The cells were disrupted by vortexing 4 x 1 min with 1 min on 

ice in between, transferred to a new tube with extensive washing of the beads and pelleted at 8000 x g 

for 10 min. The supernatant was transferred to new tubes and spun at 100 000 x g for 30 min. The 

resulting pellet was resuspended by a Dounce homogenizer in at least 10x volume and repelleted at 100 

000 x g. The final membrane pellet was resuspended in TEGM buffer containing 33% glycerol and 

stored at -80° C. Total protein concentration of the microsomal membranes was determined by Bio-Rad 

dye reagent using IgG as a standard. 

 

Microsomal SPT Assay 

The reaction was started by adding 400 μg of microsomal membrane to a reaction cocktail (final volume 

200 μL) containing 50 mM HEPES, pH 8.1, 50 μM PLP, 10 mM L-serine (1) or deuterated serine stable 

isotope (2 or 3, Fig. 1B), and 100 μM pentadecanoyl coenzyme-A (Avanti Polar Lipids). After a 10 min 

reaction at 37° C, 100 μL 2 N NH4OH and 100 μL 1 M NaBH4 were added and the reaction kept at 37° 

C for an additional 10 min. Long chain bases (LCBs) were extracted by the addition of 2.0 mL 
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CHCl3:methanol (1:2) containing 250 nM C17-sphingosine as an internal standard, followed by the 

addition of 1 mL CHCl3 and 2 mL of 0.5 M NH4OH, vortexing and centrifuging briefly. The upper 

aqueous layer was aspirated off and the lower layer was washed with 2 mL of 60 mM KCl and 

centrifuged. The washing was carried out twice and 1.3 mL of the sample was dried and subjected to 

derivatization for HPLC analysis. 

 

Analysis of Long Chain Bases from Microsomal SPT Assays 

The long chain base (LCB) extract was redissolved in 80 μL of methanol: 190 mM triethylamine (20:3) 

and 20 μL AccQ-Fluor Reagent (Waters). After incubation at room temperature for at least 60 minutes, 

10 μL 1.0 M KOH (methanol) was added. 80 μL of the sample (corresponding to 0.24 mg protein) was 

injected on a Genesis C18 4 μM HPLC column (Jones Chromatography) and resolved on an Agilent 

1100 series HPLC equipped with a fluorescence detector. The LCBs were resolved using an isocratic 

mobile phase of acetonitrile:methanol:H2O:acetic acid:triethylamine (48:32:16.5:3.0:0.7) at 1.5 mL 

min-1 and detected by the AccQ fluorescence (excitation: 244 nm/emission: 398 nm). 

 

Mass Spectrometry Analysis of 3-KDS Products 

An aliquot (50 µL) from each kinetic assay end point reaction (see section 2.3) was desalted on C18 

resin and eluted in 100% acetonitrile. Samples were dried and resuspended in 50% acetonitrile/0.1% 

formic acid before direct infusion electrospray ionisation mass spectrometry analysis using a TriVersa 

NanoMate (Advion) coupled to a 12T FTICR (Bruker). Twenty 4-megaword transients were averaged 

over 200-500 m/z providing a KDS resolution of at least 300,000. Data were analysed using Bruker 

Compass DataAnalysis 4.4 for detection of compounds and their accurate monoisotopic masses. The 

theoretical isotope envelope was predicted using empirical formula and the Bruker IsotopePattern tool. 

Raw data was exported using Bruker CompassXport for re-plotting in Origin. 
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RESULTS 

Kinetic Analysis of Bacterial and Human SPTs 

We began by comparing the kinetics of the purified bacterial (SpSPT) and human (scSPT) forms of 

SPT using “light” L-serine (1) and the commercially available, isotopically-labelled “heavy” L-serine 

derivatives (2-5) (Fig. 1B). We have carried out comprehensive structural, biochemical and mechanistic 

studies of Sphingomonas SPT (SpSPT) (5, 36) since it was first isolated from bacterial cells (26). The 

catalytic activity of this recombinant, homodimeric, soluble SpSPT is relatively easy to monitor using 

a convenient, continuous spectrophotometric assay with the DTNB reagent reacting with released 

CoASH (6). Importantly, we also confirmed the production of the KDS product using high resolution 

mass spectrometry to track the incorporation or loss of isotopic labels derived from the various L-serine 

substrates (see supplemental Fig. S1). 

For the SpSPT we have kinetic data using the “light, unlabelled” L-serine (1) from previous studies and 

the data generated here is in good agreement (L-Ser KM = 1.56 ±0.10 mM, specific activity = 386.3 

±39.7 nmol min-1 mg-1, Fig. 2A, Fig. 2B, Table 1). Carrying out the same analysis with D-, 13C- and 

15N-labelled L-serine substrates allowed us to determine the impact of the isotopic labels in the substrate 

on the catalytic activity of the enzyme. As expected, [3,3-D] L-serine (2) behaved essentially the same 

as the light L-serine version with a KM = 2.72 ±0.29 mM and specific activity 396.7 ±13.1 nmol min-1 

mg-1 (p=0.6888, Fig. 2A, Fig. 2B, Table 1). Similarly, [2-13C] L-serine (4) also gave equivalent values 

(KM = 3.64 ±0.61 mM, specific activity = 410.6 ±25.5 nmol min-1 mg-1, p=0.4228, Fig. 2A, Fig. 2B, 

Table 1). The “heaviest” L-serine ([1,2,3-13C, 2-15N] (5)), with all three carbons and the amine nitrogen 

isotopically labelled, also gave comparable data to the lightest version (KM = 1.79 ±0.20 mM, specific 

activity = 440.5 ±17.9 nmol min-1 mg-1, p=0.0974, Fig. 2A, Fig. 2B, Table 1). In contrast, [2,3,3-D] L-

serine (3) with deuterium labels at C2 and C3, showed a substantial decrease in rate and the highest KM 

of all substrates tested (KM = 4.09 ±0.32 mM and specific activity = 176.9 ±13.0 nmol min-1 mg-1, 

p=0.0093 Fig. 2A, Fig. 2B, Table 1).  
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We also measured the accurate masses of the KDS products derived from each L-serine substrate (Table 

2, supplemental Fig. S1). Unlabelled L-serine gives KDS with m/z = 300.2905 which is in very good 

agreement with the empirical formula for the [M+H]+ ion (C18H37NO2, expected m/z [M+H]+ = 

300.2897). The heaviest L-serine substrate, with four isotope labels ([1,2,3-13C, 2-15N] L-serine, (5)), 

gives a KDS m/z = 303.2953 (13C2C16H37
15NO2, expected m/z [M+H]+ = 303.2935) which has a nominal 

Δmass = +3 compared to the lightest substrate and is consistent with the loss CO2 as is expected during 

the SPT-catalysed reaction (Fig. 1A). [3,3-D] L-serine (2) gives a KDS product with m/z = 302.3043 

(expected m/z [M+H]+ for C18H35D2NO2 = 302.3023) that confirms retention of both labels. Similarly, 

the singularly labelled [2-13C] L-serine (4) gave a KDS with m/z = 301.2944 (expected m/z [M+H]+ for 

13C1C17H37NO2 = 301.2931), again consistent with retention of the label. Importantly, the [2,3,3-D] L-

serine (3) derived KDS product gave a m/z = 302.3042 (expected m/z [M+H]+ for C18H35D2NO2 = 

302.3023), which clearly indicates the loss of a deuterium during the SPT-catalysed reaction (Fig. 1A). 

Unlike the bacterial SPT, it is technically difficult to isolate the multi-subunit, ER-membrane bound 

human SPT complex (15). However, we have been able to purify milligram quantities of recombinant 

“fused” human single chain SPT (formed by linking the subunits LCB2-ssSPTa-LCB1) from a yeast 

expression system (Somashekarappa et al., in preparation) (14, 17, 38, 40). This purified scSPT is 

catalytically active and able to support growth of yeast cells where endogenous SPT activity has been 

knocked out (38). We used the same L-serine substrate panel (1-5) to measure the rate of the SPT-

catalysed reaction for each substrate but unfortunately, it was not possible to measure the KM for scSPT 

using the convenient DTNB assay because of the difficulty in detecting activity at low L-serine 

concentrations – purified scSPT is ~33 fold less active than its purified bacterial SpSPT counterpart 

(Fig. 2B and 2C, Table 1). However, the rate for each L-serine substrate (1-5) could be determined by 

having the amino acid substrate at a final concentration of 10 mM in the reaction. The rate with the 

“light” L-serine substrate (1) was 1161.7 ±125.2 pmol min-1 mg-1 (Fig. 2C, Table 1). Using a 3H L-

serine radiolabelled assay we previously reported the activity of scSPT in yeast microsomes (~250 pmol 

min-1 mg-1) and CHO-LyB cells (~1500 pmol min-1 mg-1) (14) as well as HEK293 microsomal 

preparations (~1500 pmol min-1 mg-1) (17). This shows the purified scSPT is highly active upon removal 
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from the microsomal environment. Then, when we measured the rates (12.2 ±0.8, 10.4 ±2.2, 11.3 ±0.8 

and 12.9 ±1.9 nmol min-1 mg-1) using each of the “heavy” L-serine substrates (2-5) respectively, we 

observed no significant differences (p = 0.5524, 0.4621, 0.7185 and 0.3863 respectively) when 

compared to L-serine (1). The MS analysis of the scSPT KDS products (Suppl. Fig. 1) verified that the 

human enzyme gave the same incorporation patterns as that observed for the bacterial SPT, including 

the loss of a deuterium with the [2,3,3-D] L-serine substrate (3) (Table 2). 

To confirm that the observed kinetic data for the single chain SPT were not a result of the enzyme being 

removed from its membrane-bound environment or due to the constraints imposed by the fusion 

strategy, we also carried out long chain base (LCB) analysis of yeast microsomes containing the 

overexpressed three-subunit, single chain scSPT form and the human SPT complex produced by 

independent coexpression of the three subunits LCB1, LCB2 and ssSPTa. This analysis was carried out 

over a ten minute period and measured the levels of C17 LCB production using a C15-CoA substrate 

and L-serine isotopologues 1, 2 and 3 (L-serine, [3,3-D] L-serine and [2,3,3-D] L-serine respectively). 

The use of this C15 substrate ensures that the LCB production is derived from a de novo, SPT-catalysed 

in vitro reaction. The LCBs were detected using fluorescent LC-derivatisation (Fig. 3) (38). Over this 

time course we found that the levels of C17 LCBs produced in microsomal preparations from the scSPT 

(2031.6 ±76.1, 1825.9 ±125.0 and 1943.5 ±104.0 pmol mg-1) or the coexpressed subunits (1538.1 ±34.9, 

1468.3 ±58.9 and 1381.2 ±14.2 pmol mg-1) with L-serine (1), [3,3-D] L-serine (2) and [2,3,3-D] L-

serine (3) respectively were closely matched. The coexpressed SPT complex displayed ~71-80% 

activity when compared with the fusion scSPT, but importantly, the rates were not different when 

comparing each of L-serine (1), [3,3-D] L-serine (2) and [2,3,3-D] L-serine (3) (Fig. 3). These data 

confirm that neither the fusing together of the three SPT subunits, nor the extraction from the 

microsomal membrane environment, is detrimental to the activity of SPT complex. 

 

Kinetic Isotope Effect (KIE) of Isotopically Labelled L-Serine on Human and Bacterial Serine 

Palmitoyltransferase 
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From the primary rate data for both enzymes, we extracted KH/KIsotope values with each of the four 

isotope-labelled substrates according to Cleland (32, 33). These KIE values are summarised in Table 3. 

Interestingly, with human scSPT we did not observe any significant KIE with KH/KD values ranging 

from 0.95 ±0.12 for ([3,3-D] L-serine, 2), 1.11 ±0.23 ([2,3,3-D] L-serine, 3), 1.03 ±0.14 ([2-13C] L-

serine, 4) and 0.90 ±0.18 ([1,2,3-13C, 2-15N] L-serine, 5) when compared to L-serine (1). In contrast, 

the bacterial SpSPT displayed different kinetics to the human enzyme. Although no significant effect 

on the reaction rate was observed for labelled L-serine substrates [3,3-D] L-serine (2), [2-13C] L-serine 

(4) and [1,2,3-13C, 2-15N] L-serine (5) with values of 0.97 ±0.11, 0.94 ±0.12 and 0.87 ±0.11 respectively, 

we did observe a KH/KIsotope isotope value of 2.19 ±0.13 for the [2,3,3-D] L-serine substrate (3) which 

has a deuterium label at C2 (Table 3).  

 

 

DISCUSSION 

Isotopically-labelled amino acids have proved useful in studies of SL biosynthesis in various species 

and cell lines (34, 41-44). However, it is important to recognise that the type and position of the label 

can significantly influence the underlying kinetics of the pathway being investigated. We used five 

different isotopically labelled versions of unlabelled “light” L-serine (1) and a range of “heavy” L-

serine substrates with deuterium, 13C and 15N labels in specific positions ([3,3-D] L-serine, [2,3,3-D] L-

serine, [2-13C] L-serine and [1,2,3-13C, 2-15N] L-serine, 2-5, Fig. 1B), in order to observe what effect, if 

any, the type and position of these labels have on the kinetics of the enzyme-catalysed reaction. We 

used purified bacterial SpSPT whose mechanism, kinetics and x-ray structure have been well 

characterised (5, 6, 23, 24) and compared this cytoplasmic, homodimer with the more complex 

membrane bound SPT from humans. For this we fused the subunits of human SPT together to form 

recombinant scSPT, allowing us to control the stoichiometry of the LCB1:ssSPTa:LCB2a subunits as 

1:1:1, although the exact natural ratio of the subunits within any eukaryotic SPT complex is still not 

known. 
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With SpSPT we observed no noticeable effect on the rate with labelled L-serine substrates [3,3-D] L-

serine, [2-13C] L-serine and [1,2,3-13C, 2-15N] L-serine (2, 4 and 5), which was expected since none of 

the isotopes were in a position where they would influence catalysis based on the proposed SPT 

mechanism (Fig. 1A). However, in the presence of [2,3,3-D] L-serine (3), the rate of the reaction was 

decreased by ~50%. We derived a KIE (KH/KD) of 2.18 ±0.13 for this reaction using this substrate. 

When compared to the reaction in the presence of [3,3-D] L-serine (2), for which we derived no 

discernible KIE, it can clearly be seen that the presence of a deuteron at the C-α position (C2) of the 

amino acid affects the rate of the reaction. This demonstrates that this deprotonation step is partially 

rate determining in the SpSPT-catalysed reaction. In contrast to the bacterial homologue, the rates of 

the human scSPT-catalysed reaction were unaffected regardless of the type or position of the isotope in 

the L-serine substrate.  

We confirmed that the absence of a KIE with human scSPT was not an artefact of our fusion strategy 

nor was it due to having removed the enzyme from its native membrane environment. We did this by 

measuring in vitro SPT activity in microsomes prepared from yeast lacking endogenous SPT and 

expressing either the scSPT or the three independent subunits (LCB1, LCB2a and ssSPTa) of human 

SPT. Using C15 acyl-CoA as substrate, de novo SPT activity was measured by quantitating the C17 

LCBs since yeast does not produce C15-CoA and C17 LCBs. Our data show no difference in the levels 

of C17 LCBs regardless of whether L-serine (1), [3,3-D] L-serine (2) or [2,3,3-D] L-serine (3) was used 

with either of the microsomal SPTs, validating the results obtained with purified human scSPT. 

Examination of the proposed SPT reaction mechanism and comparison with those put forward for the 

other AOS family members provides a rationale for the observed KIEs (Fig. 1A). Formation of the 

substrate quinonoid requires deprotonation by an active site base at C2, a process which is initiated by 

binding of the second substrate, palmitoyl-CoA (25). As such, it is not surprising that replacement of 

the α-proton with a deuterium (with [2,3,3-D] L-serine 3) would alter the rate of the reaction. In SpSPT, 

from the KIE data, it is clear that this deprotonation is at least a partially, if not completely, rate-

determining step. However, it is surprising that this is not the case in human SPT. As well as being 

membrane-bound, the other major difference between the SPTs from prokaryotes and eukaryotes is the 
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influence of a set of ssSPT isoforms (ssSPTa/b in mammals and Tsc3p in yeast). These small subunits 

have been shown to not only increase the rate of the mammalian SPT-catalysed reaction by ~100 fold 

but also control the acyl-CoA substrate specificity of the enzyme with the ssSPTa subunit conferring 

C16-CoA specificity and ssSPTb conferring both C16 and C18 acyl-CoA chain selectivity (13, 14, 45). 

We speculate whether the presence of the ssSPTa subunit in our fusion SPT construct is responsible for 

changing the rate limiting step of the reaction. However, an atomic level structure is needed to confirm 

that this is the case. With regards to substrates [3,3-D] L-serine (2), [2-13C] L-serine (3) and [1,2,3-13C, 

2-15N] L-serine (5), none of these compounds have deuterium labels in bond making or breaking 

positions so no KIE would be expected. The effect, if any, of the 15N and 13C labels is either low or not 

observed, since KIEs for 15N and 13C are not as pronounced, due to the smaller change in mass between 

14N-15N and 12C-13C (44, 45). While it might be argued that the fusion SPT construct does not behave 

like native SPT, several lines of evidence indicate that it does. For example, changing a single amino 

acid in the ssSPTa within the scSPT shifts the acyl-CoA substrate preference analogously to what is 

observed for the heterotrimeric SPT (14). Similarly, introducing the HSAN1 SPTLC1 C133W mutation 

into the scSPT confers promiscuity for the amino acid substrate (38). Finally, the fusion SPT is regulated 

by the ORMDLs similarly to the heterotrimeric SPT (17, 19). 

Isotopically-labelled substrates have been used to investigate the mechanism of other AOS family 

members, such as E. coli KBL, in which R/S [2-3H, 2-14C] labelled glycine and acetyl-CoA were used 

to show that the enzyme selectively removes the pro-R proton at C-α (46). Ferreira and colleagues have 

used deuterated glycine (at C-α) to investigate the Rhodococcus capsulata ALAS-catalysed reaction of 

glycine with succinyl-CoA (47, 48). In these reactions, a KIE of 1.2 (KH/KD) was determined, indicating 

that in ALAS abstraction of the C-α proton is not rate limiting. Similarly with the AONS from Bacillus 

subtilis, Ploux and Marquet used deuterium-labelled C-α L-alanine to calculate a KIE (KH/KD) of 1.3 

for the AONS-catalysed reaction of L-alanine with pimeloyl-CoA (49). Both the KIEs for AONS and 

ALAS are noticeably lower than for SPT, indicating that the SPT mechanism is subtly different when 

compared to other members of the AOS family. 



15 
 

In a recent complementary study of the yeast SPT Hannun and colleagues used tandem mass 

spectrometry to observe SPT-catalysed KDS formation and reduction to dihydrosphingosine (DHS, 

presumably by the endogenous KDS-reductase) in yeast microsomes in which the SPT subunits (LCB1, 

LCB2, and small subunit, Tsc3p) were not overexpressed but present at endogenous levels (34). 

Interestingly, they did not observe an effect on the rate of the S. cerevisiae SPT-catalysed reaction for 

either [3,3-D] L-serine (2) or [2,3,3-D] L-serine (3), in agreement with the data we obtained for human 

scSPT. Since these assays were conducted in a native microsomal environment, we assume that Tsc3p, 

the yeast small subunit, would have been present. Taken together this suggests that the respective small 

subunits, Tsc3p in yeast SPT and ssSPTa/b in human SPT, could well be responsible for the difference 

in kinetics we observe between the bacterial and eukaryotic SPTs. Another intriguing aspect of the SPT 

complex is the impact of HSAN1 disease-causing mutations in SPTLC1 and SPTLC2 that increase the 

basal activity of the SPTLC1/SPTLC2 heterodimer (14, 50, 51). Based on these observations, we have 

argued that the penalty for mutationally increasing SPT activity of the heterodimer is loss of amino acid 

substrate specificity and that a major role of the ssSPTs is to increase enzymatic activity without 

compromising amino acid selectivity. This is consistent with the possibility that deprotonation is rate-

limiting for the heterodimer and that the HSAN1 mutations lead to a change in the rate-limiting step 

enhanced deprotonation of L-serine as well as of alanine and glycine. Indeed, we have reported that the 

SPTLC1 C133W HSAN1 mutation does not affect the binding affinity of L-alanine, but rather the rate 

of condensation of L-alanine with palmitoyl-CoA (38). 

In conclusion the use of labelled serine derivatives is a powerful tool for studying SL biosynthesis in 

various organisms (31, 41, 42, 52). Our studies with the human enzyme (and by others with the yeast 

isoform (34)) validate [2,3,3-D] L-serine (3) as a useful tool. However, using purified bacterial SPT we 

have observed that there is a kinetic penalty for the use of a deuterium at Cα. In addition, since the label 

is lost regardless of the SPT isoform, we conclude that there is no practical use in SPT assays for a L-

serine substrate with a deuterium label on C2. Although bacterial SpSPT and human scSPT catalyse the 

formation of the same KDS product, there are clearly different kinetics at play and these appear to be 

dependent on the presence of the small-subunit. This also demonstrates that without first investigating 
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the effects of a label on the reaction, one could possibly pay a heavy kinetic price as was observed with 

SpSPT (45). Where a label is required, we recommend that substrates containing either 13C or 15N labels 

be explored, since if these atoms are involved in rate determining steps, the kinetic penalty is less. 
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  SpSPT scSPT 

  K
M
 

(mM) 

Rate  

(nmol min
-1

 mg
-1

) 

Rate 

(nmol min
-1

 mg
-1

) 

1 L-Serine 1.56 ±0.10 386.3 ±39.7 11.6 ±1.3 

2 [3,3-D] L-Serine 2.72 ±0.29 396.7 ±13.1 12.2 ±0.8 

3 [2,3,3-D] L-Serine 4.09 ±0.32 176.9 ±13.0 10.4 ±2.2 

4 [2-
13

C] L-Serine 3.64 ±0.61 410.6 ±25.5 11.3 ±0.8 

5 [1,2,3-
13

C, 2-
15

N] L-Serine 1.79 ±0.20 440.5 ±17.9 12.9 ±1.9 

 

Table 1. Kinetic parameters (KM and rate for SpSPT, rate for ScSPT) verses different serine 

isotopologues 
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Substrate 

Expected mass of 

3-KDS product 

[M+H]
+ 

Observed mass of 3-KDS 

product [M+H]
+ 

Molecular formula 

of product 
SpSPT scSPT 

1 L-Serine 300.2897 300.2905 300.2928 C
18

H
37

NO
2
 

2 [3,3-D] L-Serine 302.3023 302.3044 302.3045 C
18

H
35

D
2
NO

2
 

3 [2,3,3-D] L-Serine 302.3023 302.3042 302.3048 C
18

H
34

D
3
NO

2
 

4 [2-
13

C] L-Serine* 301.2931 301.2944 301.2955 13
C

1
C

17
H

37
NO

2
 

5 [1,2,3-
13

C, 2-
15

N] L-Serine
# 303.2935 303.2932 303.2955 13

C
2
C

16
H

37

15
N

1
O

2
 

* Mass of KDS product derived from [2-13C] L-serine (4) accounts for loss of alpha-carbon deuterium 

# Mass of KDS product derived from [1,2,3-13C, 2-15N] L-serine (5) accounts for loss of 13C isotope as 

a result of decarboxylation during KDS formation 

 

Table 2. Expected (assuming retention of all isotope labels) and observed masses of 3-KDS products. 
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 Substrate 
K

H
/K

Isotope
 

SpSPT scSPT 

2 [3,3-D] L-Serine 0.97 ±0.11 0.95 ±0.12 

3 [2,3,3-D] L-Serine 2.18 ±0.13 1.11 ±0.23 

4 [2-
13

C] L-Serine 0.94 ±0.12 1.03 ±0.14 

5 [1,2,3-
13

C, 2-
15

N] L-Serine 0.88 ±0.11 0.90 ±0.18 

 

Table 3. KIE values (KH/KIsotope) determined for the reactions of purified SpSPT and ScSPT against 

isotopically labelled L-serine. 
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Fig. 1. A. The proposed mechanism of serine palmitoyltransferase (SPT). Briefly, L-serine binds to the 

PLP-bound, internal aldimine, displacing the active site lysine to form the SPT PLP:L-serine external 

aldimine complex. Binding of palmitoyl-CoA induces a conformational change which causes removal 

of the α-proton from L-serine to form the PLP:L-serine quinonoid. The quinonoid attacks the palmitoyl-
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CoA thioester and leads to C-C bond formation which, after electron rebound, results in CoAS release 

and formation of the β-keto acid intermediate. Decarboxylation leads to the PLP-bound product 

quinonoid, which is reprotonated by an active site acid. The active site lysine then displaces the 3-KDS 

product and reforms the internal aldimine with PLP bound. B. Isotope labelling patterns of L-serine 

substrates used in this study. Each isotopologue is labelled with appropriate heavy atom (deuterium D), 

13C or 15N denoted by an asterisk. L-serine (1) and (5) are referred to as “light” and “heavy” respectively. 
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Fig. 2. Rates of SpSPT and scSPT catalysed reactions in the presence of L-serine isotopologues (1-5). 

A. Initial rate of SpSPT catalysed reaction of L-serine isotopologues at varying concentrations with 250 

µM palmitoyl-CoA. (1) L-serine, (2) [3,3-D] L-serine, (3) [2,3,3-D] L-serine, (4) [2-13C] L-serine, (5) 

[1,2,3-13C, 2-15N] L-serine. B. Rate of purified SpSPT and C rate of purified scSPT. Both B and C were 

carried out with 10 mM L-serine substrates (1–5) and 250 µM palmitoyl-CoA.
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Fig. 3. Quantification of C17-LCBs produced by yeast membranes. The membranes were prepared from 

cells expressing scSPT (black boxes) or co-expressing Lcb1 + Lcb2 + ssSPTa (grey boxes). Yeast 

membranes were incubated with L-serine isotopologues 1, 2 and 3 along with 100 μM pentadecanoyl 

coenzyme-A (C15-CoA) to generate the C17-LCBs. The products were derivatized with AccQ-Fluor 

reagent and analysed by HPLC and fluorescent detection. 

 


