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Abstract:   1 

Background:  Neurotrauma patients face major neurological sequelae. The failure in the 2 

preclinical-to-clinical translation of candidate therapies could be due to poor evaluation of 3 

rodent behaviours after neurotrauma.  4 

New Method: A home cage automated system was used to study the long term behaviour 5 

of individual rats with traumatic brain injury (TBI), spinal cord injury (SCI) and non-CNS 6 

injured controls, whilst group-housed in their home cages. Naïve rats were used as 7 

baseline controls. Automated locomotor activity and body temperature recordings were 8 

carried out 24 h /day for 3 days/week during 12 weeks post-injury. Behavioural patterns, 9 

including aggression, rearing, grooming, feeding and drinking were analysed from 10 

automated video recordings during week 1, 6 and 12. 11 

Results: SCI animals showed a lower locomotor activity compared to TBI or control 12 

animals during light and dark phases. TBI animals showed a higher aggression during 13 

the dark phase in the first week post-injury compared to SCI or control animals. Individual 14 

grooming and rearing were reduced in SCI animals compared to TBI and control animals 15 

in the first week post-injury during the dark phase. No differences in drinking or feeding 16 

were detected between groups. Locomotor activity did not differ between naïve male and 17 

female rats, but body temperature differ between light and dark phases for both.   18 

Standard methods: Injury severity was compared to standard SCI and TBI behaviour 19 

scores (BBB and mNSS, respectively) and histological analysis. 20 
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Conclusions: This study demonstrates the practical benefits of using a non-intrusive 21 

automated home cage recording system to observe long term individual behaviour of 22 

group-housed SCI and TBI rats.  23 

 24 

Introduction 25 

Traumatic injuries are the single greatest cause of lost human potential worldwide, and 26 

traumatic brain injury (TBI) and spinal cord injury (SCI) are associated with death or 27 

lifelong disability (1). Furthermore, their incidence is increasing, due to the global aging 28 

of the population.  29 

TBI (2) and SCI (3) involve two distinct phases of injury – the primary injury caused 30 

immediately by the mechanical insult, and the secondary injury, evolving over time 31 

through a cascade of vascular, cellular and biochemical events (4). Despite advances in 32 

pre-hospital trauma management, there are no effective treatments to reverse the primary 33 

CNS damage and most therapeutic developments focus on modulating the progressive 34 

secondary injury, to support regeneration of the injured CNS.  35 

Despite a large number of preclinical studies, generally with apparent robust validity, 36 

treatments have shown very limited impact in the clinic. Yet, research on CNS injury must 37 

advance and in vivo modelling still remains an instrumental tool for mechanistic studies 38 

on injury pathophysiology (5).  39 

Assessment of functional impairment remains critical for CNS modelling in which motor 40 

and/or sensory recovery tests are often used. The BBB locomotor scale is a standard 41 

kinematic measure used to assess hindlimb motor recovery following thoracic SCI in rats 42 
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(6). Other tests such as the grip strength test, which measures muscle strength (7), or the 43 

Hargreaves hot plate or von Frey filaments tests, can also be used in SCI models to 44 

assess thermal hyperalgesia and mechanical allodynia, respectively (7, 8). The modified 45 

neurological severity score (mNSS) is commonly used in rodent models of TBI to evaluate 46 

motor, sensory, proprioceptive and reflex behaviours (9, 10).  47 

However, these behavioural tests are biased towards assessing task driven and not 48 

spontaneous behaviour, which may poorly reflect translatable outcomes with therapeutic 49 

impact (11). Most studies implement test batteries which have many confounders, such 50 

as test time and order, environment enrichment and acclimatization time (12). 51 

Furthermore, most behavioural tests involve momentarily removing the animal from its 52 

home-cage and social group and exposure to a new and unfamiliar environment (13, 14) 53 

which is then confounded further but the impact of different handlers and handling 54 

expertise. Also, many of these tests only allow for a “snap-shot” assessment of daily 55 

behaviour, missing infrequent disease phenotypes that happen outside a window of 56 

observation (e.g. seizures at night) (15). Moreover, rodents are crepuscular (16, 17), so 57 

solely assessing them during the working day of a research scientist will very likely mask 58 

the full extent of relevant neurobehavioural changes. Thus, classical assessment of 59 

rodent behaviour needs to be complemented with other unforced and non-stimulated 60 

automated assessment approaches in the home cage over long time intervals. This is 61 

particularly relevant to investigate the impact of injury on cognitive and social functions 62 

and the potential therapeutic benefits in neurotrauma models.  63 

Body temperature, which is infrequently studied can be a valuable indicator of 64 

homeostasis during surgery and post-operative care, could directly impact recovery from 65 
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CNS injury. Furthermore, a large variability in body temperature, due to the inflammatory, 66 

cardiovascular and/or shock response, could impact drug testing outcomes (18). 67 

Therefore, regular monitoring across the light and dark phases is critical in studies 68 

involving neurotrauma models.  69 

Recently, one technology available to researchers is the home cage analysis (HCA), 70 

which facilitates the assessment of caged animals in their undisturbed ‘home’ 71 

environment. HCA systems utilise a variety of technological modalities, including video 72 

technology, infrared (IR) sensors and telemetry (17). Most systems rely on one-or-two of 73 

these approaches, and have been successfully used to characterise individual 74 

behavioural profiles in rodent models of Huntington’s disease and prion diseases (17),  75 

and also some studies have been reported in single housed neurotrauma mouse models( 76 

REF-Ping). Few systems support long-term monitoring and data analysis on grouped 77 

housed animals.  78 

Recently, an automated home cage recording system was developed by Actual Analytics 79 

Limited in collaboration with the National Centre for the 3Rs (NC3Rs), which was capable 80 

of capturing individual temperature and behavioural data of rodents group-housed in 81 

normal home cages over long periods of time (12, 19). 82 

To investigate the utility of this automated home cage recording system in traumatic CNS 83 

injury, we used this recording system to monitor changes in the behavioural phenotype 84 

of group-housed rat models of TBI and SCI, during sub-acute and chronic post-injury 85 

phases. Automated body temperature and basic behavioural monitoring was completed 86 

using non-invasive, automated telemetry and digital data collection throughout both light 87 

and dark phases for up to 12 weeks post-injury. Subsequent manual review of 88 

Commented [JL1]: PINg will you be ok to add the references: 
 
https://www.ncbi.nlm.nih.gov/pubmed/30176241 
Vu et al (2018) Transient disruption of mouse home cage activities 
and assessment of orexin immunoreactivity following concussive- or 
blast-induced brain injury 
This study uses the Any-Maze cage (AMc) housing and activity 
monitoring, which is for a single mouse 
 
https://www.ncbi.nlm.nih.gov/pubmed/27073377 
* Qu (2016) Automated monitoring of early neurobehavioral 
changes in mice following traumatic brain injury  
SmartCage system is a non-invasive home cage rodent behaviour 
monitoring system, which is for a single mouse 
 
 
 

https://www.ncbi.nlm.nih.gov/pubmed/30176241
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corresponding IR video data was completed to derive more complex neurobehavioural 89 

insights.  90 

 91 

Methods 92 

Ethical statement 93 

All animal procedures were carried out under two Project Licences (PPL 70/8712 and 94 

PPL 70/7436) approved by the Animal Welfare and Ethical Review Body at Queen Mary 95 

University of London and the UK Home Office, in accordance with the EU Directive 96 

2010/63/EU. All animal facilities and suppliers have been approved by the UK Home 97 

Office Licensing Authority and meet all current regulations and standards for the UK. A 98 

total of 24 rats were used for the work described in the study, 18 of which underwent 99 

surgical recovery procedures. For this exploratory study we used n=-6 animals per group, 100 

based on our previous efficacy studies using these neurotrauma models (20, 21) to 101 

provide a valuable discriminatory power of 80% with a significant level α = 0.05 to detect 102 

approx. 20% relative differences in behaviour and histological assessments as primary 103 

outcomes for our neurotrauma studies. Experimental planning for data randomization and 104 

blinding data acquisition and analysis was carried out following the ARRIVE guidelines 105 

(22). 106 

Animal housing and husbandry 107 

A total of 24 adult Sprague-Dawley rats (weight range 200 - 300 g; 9 - 10 weeks old at 108 

the start of the study) were obtained from Charles River Laboratories, Margate, UK. 109 

Health screens provided by the official vendor indicated that rats were free of known 110 



7 
 

pathogens in accordance with FELASA Recommendations for health monitoring of rodent 111 

colonies (23). Animals were housed in groups of 3 per Individually Ventilated Cage (IVC; 112 

Allentown Europe, UK), in a 12 h light dark cycle (06:30 - 18:30 light; 18:30 - 06:30 dark), 113 

with controlled room temperature (21 ± 1 °C) and relative humidity (40-60 %). The cages 114 

contained 1-1.5 cm layer of animal bedding (Lignocel®, Rettenmaier UK Ltd). Rats had 115 

access to food (Labdiet® EURodent 14% Diet 5LF2, LabDiet, Brentwood, Missouri, U.S.) 116 

and water ad libitum. Rats were allocated to cages on arrival and remained in the same 117 

social group throughout the study, including a 7 day acclimatization phase to the 118 

laboratory. 119 

SCI and TBI surgical procedures and in vivo experimental design 120 

Surgery was carried out in accordance with protocols reported previously (21, 24). All 121 

animals were anaesthetised intraperitoneally with ketamine (Ketaset®) (50mg/kg) and 122 

medetomidine (Domitor™) (0.2mg/kg), followed by subcutaneous administration of 123 

buprenorphine (Buprenex®) (0.1mg/kg) for prophylactic analgesia. For TBI surgery, the 124 

rat head was clipped, surgically scrubbed and subsequently secured to a stereotactic 125 

frame using mouth, nose and ear bars, before a sagittal incision was made through the 126 

scalp to expose the cranium. Utilising the PCI3000 Precision Cortical Impactor™ 127 

(Hatteras Instruments, Cary, NC), a “closed” TBI was induced by directly delivering a blunt 128 

impact using a 5 mm diameter impactor tip to the right parietal bone, with the central 129 

coordinates set at -3.5 mm from bregma and -3.5 mm from the midline. The impaction 130 

was carried out using a 3.0 m/s velocity, a 3.0 mm impact depth, a 100 ms dwell time, at 131 

a 20° angle to the bone. Following impact to the skull, the scalp was sutured, and animals 132 

were placed in a warm incubator (27–28 °C) to recover. Reversal of anaesthesia involved 133 
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subcutaneous administration of atipamezole (Antisedan®) (0.1mg/kg). For SCI surgery, 134 

the anaesthetised rats underwent a midline incision through thoracolumbar fascia on a 135 

clipped and surgically scrubbed skin area, and the underlying muscles were pulled away 136 

from the T9 – T11 spinous processes and laminae. The lateral aspects of the T9 and T11 137 

vertebral bodies and spinous processes were clamped to stabilize any movement of the 138 

spinal cord. A bilateral laminectomy was performed at T10, leaving the dura exposed but 139 

intact. After securing the spinal column, the PCI3000 Precision Cortical Impactor™ 140 

(Hatteras Instruments, Cary, NC) was used with the following settings: a 2 mm impactor 141 

tip, 1.5 m/s velocity, 1.8 mm impact depth, and 100ms dwell time, at a 90° angle to the 142 

cord (24). Sham laminectomy animals underwent the same procedure as SCI-treated 143 

animals, excluding the contusion injury on the spinal cord. Upon completion of spinal 144 

surgery, the spinal fascia and muscle followed by the skin were sutured. Atipamezole was 145 

administered, and the rat was placed in a warm incubator to recover (27 – 28 °C). Finally, 146 

a radio frequency identity detection (RFID) chip was ‘injected’ subcutaneously into the 147 

right flank of each rat, to permit tracking by the ActualHCA system. During the 148 

postoperative recovery phase, all animals received buprenorphine (Buprenex®) 149 

(0.1mg/kg) analgesia together with saline, subcutaneously administered twice daily for 3 150 

days after surgery. Bladders were manually expressed twice a day for the SCI animals 151 

until return of bladder function (<2 ml of urine in early morning expression for three 152 

consecutive days).  153 

The study was carried out in two consecutive periods of 12 weeks, for all experimental 154 

groups (SCI, TBI and non-CNS injured control; randomly n=3 per group) to reach a total 155 

of n=6 animals per group. Sex allocation was informed by the literature; female rats are 156 
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commonly used for SCI studies and male rats for TBI studies. To test for gender effect on 157 

locomotor activity and body temperature, 6 surgery-naïve control animals (n=3 males and 158 

n=3 females) were also used.  159 

Conventional behaviour tests 160 

Using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale, open field locomotion 161 

assessment was carried out daily during the first week post-injury and then once weekly 162 

over 11 weeks, to characterize the functional outcome after spinal injury in the SCI and 163 

non-CNS injured control group (Suppl. Fig. 1A). A modified neurological severity score 164 

(mNSS) was used to evaluate motor ability, balance and alertness during the first week 165 

post-injury in the TBI group (Suppl. Fig. 1B). 166 

Histology  167 

At the end of the study (12 weeks post-injury) animals were deeply anaesthetized with 168 

sodium pentobarbital (50 mg/kg, i.p.; Sagatal, Rhone Merieux, Harlow, UK), and received 169 

a transcardiac perfusion with phosphate-buffered saline (PBS; 0.01 M, pH 7.4), followed 170 

by 4 % paraformaldehyde (PFA) in phosphate buffer (0.1 M, pH 7.4). Tissues were 171 

dissected out, post fixed in 4 % PFA for 2 h, and cryoprotected in 20 % sucrose in 0.1 M 172 

phosphate buffer at 4°C until further processing. Serial 20 μm coronal sections of whole 173 

brain and horizontal sections of spinal cord (extending approximately 1 cm rostral and 1 174 

cm caudal from the contusion centre) were cut using a cryostat for histology. 175 

Representative serial sections were processed for Cresyl Violet (Nissl) staining. All brain 176 

tissue staining was performed between bregma - 1.28 mm and bregma -2.34 mm, where 177 

the lesion was located. Spinal cord staining was performed between the dorsal contusion 178 

site and approximately half the cord thickness.  179 
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Automated home cage recording system 180 

The automated home cage recording system (Home Cage Analyser (ActualHCA™) 181 

system, Actual Analytics Ltd, UK) was used and specially fitted for standard IVCs 182 

(Allentown). Each automated home cage recording system was placed on a bespoke 183 

frame to support the placement of the IVC directly on top of the baseplate RFID reader. 184 

The infrared HD video camera and mini-computer for data recording were placed on a 185 

side slot frame facing one of the long sides of the IVC. On the top of the frame, an infrared 186 

lighting panel was placed above the top of the IVC (see Figure 1 for representation of the 187 

HCA system set up).  188 

RFID transponders for animal identification and temperature measurements were 189 

supplied by BioMark (Boise, ID83702, US). The Biomark BioTherm13 Passive Integrated 190 

Transponder (PIT) is an RFID device with a 2.1 ± 0.1 mm diameter and 12.0 ± 0.4 mm 191 

length applied for subcutaneous implantation (ISO standards 11784/11785). All devices 192 

were factory calibrated (temperature range 33.0 - 43.0 ˚C). The baseplate RFID reader 193 

was designed to work with BioTherm13 RFID transponders.  194 

The baseplate RFID reader consists of an array twelve transceiver coils, situated in 195 

waterproof casing underneath the cage. Each individual coil covers a separate 12 x 12cm 196 

square region underneath the cage floor and can detect the presence of an RFID chip up 197 

to a height of 13 cm. The twelve coils are arranged in a regular 3 x 4 grid spanning a total 198 

area of 36 x 48 cm, allowing motion in the plane of the cage floor (30 cm x 41 cm) to be 199 

recorded. Activity in the vertical plane (e.g. rearing) is not captured by the baseplate 200 

reader, but can be extracted from the concurrent video recorded (33). Rats are detected 201 

by the nearest antenna reading the ID and temperature from the RFID transponder. 202 
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Intermediate positions between adjacent antennae are sorted by applying a filtering 203 

correction algorithm (33). When more than one animal is detected by the same antenna, 204 

the greater strength signal corresponds to the closest animal (19). Continuous video 205 

recordings were acquired by using infrared (IR) LEDs at 860 nm wavelength to illuminate 206 

the cage from above, and USB 3.0 cameras with matched 4.5 mm lenses and daylight 207 

filters (700 nm cut-off) were used to capture grayscale videos at 25 fps at HD (720p) 208 

resolution.  209 

Data acquisition  210 

At a pre-defined time, animals were transferred into the automated home cage recording 211 

system (Fig. 1). Three animals per experimental group (SCI, TBI, control) were studied 212 

weekly for a 12 week study period, since the automated recording system functions 213 

optimally when only tracking 3 animals within the same cage (25). For the CNS-injured 214 

and non-CNS-injured control animals, RFID data (animal ID, locomotor activity and 215 

temperature) and IR video data were captured 24 h/day, 3 days/week, for up to 12 weeks. 216 

Naïve non-surgery animals (n=3 male in 1 cage; n=3 female in 1 cage) were studied for 217 

5 days only.  218 

Actual HCA Capture™ software (Actual Analytics Ltd, Edinburgh, UK) was used to 219 

manage data capture and system calibrations, before IR video and matched baseplate 220 

RFID data were stored to a local hard drive. Throughout each experiment, data analysis 221 

was carried out using a time-binning of 5 min and video segment length of 30 min. Time-222 

binning indicates the duration of time represented by each datum in the data analysis 223 

report (e.g. 100 mm travelled in 5 min). 224 

Data sampling and analysis 225 
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RFID data were pooled and analysed using the Actual HCA Analyser™ software (Actual 226 

Analytics Ltd, Edinburgh UK). We plotted ‘transitions’ against time as a measure of 227 

‘Locomotor Activity’ (33). Specifically, one transition defines the movement of an animal’s 228 

RFID chip across the electromagnetic field boundary between two adjacent antennae. 229 

This measure directly correlates with locomotion activity and distance. Subcutaneous 230 

body temperature was also recorded via RFID chips.  231 

Automatic RFID recordings aligned with the IR video recordings (~13.72 GB data per day 232 

for a single cage of 3 animals in VLC media and HDF5 file formats) were used to visually 233 

investigate selected behaviours (aggression, grooming, rearing, feeding and drinking). 234 

With over 216 days (~23 days/week x 12 weeks x 6 groups = 216 days) of IR video 235 

footage recorded, data sampling was required. RFID activity automatic data was tracked 236 

per group per week 1, 6 and 12, to represent early subacute, late subacute and chronic 237 

phases of injury, respectively (26, 27). Periods showing larger activity patterns were 238 

selected for visualization of the video recorded data to better identify the display of 239 

behavioural expressions (Suppl. Fig. S2).The five behaviours of interest were selected 240 

based on their frequency of occurrence, after reviewing preliminary IR video footage and 241 

ease of detection and insight into regular behaviour: aggression, grooming, rearing, 242 

feeding and drinking. Further characterization and details are summarized in Fig. 2.  243 

 244 

Statistical analyses 245 

All the behaviour (the primary study endpoint), was assessed blind, with the researcher 246 

unaware of the allocated intervention. Data from the two 12 week recording periods were 247 
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pooled together such that n=6 per experimental group, with n=3 animals grouped per 248 

cage was analyzed. 249 

Locomotor activity data were not normal distributed, so were analyzed using Kruskal-250 

Wallis Test (with Pairwise Mann-Whitney U test post hoc analysis tests). Temperature 251 

data were normally distributed, so were analyzed using two-way ANOVA (with Tukey’s 252 

post hoc analysis tests). Data were shown as mean and standard error of the mean (SEM) 253 

and comparisons were selected as statistically significant at p < 0.05. These analysis 254 

were performed in R v3.5.1.  255 

For the specific behavioural expressions (i.e. aggression, individual grooming, rearing, 256 

feeding and drinking data acquired in combination from the RFID digital data with the IR 257 

video recordings) mean ± SEM were calculated for the duration of time and each 258 

behaviour was expressed during a sample 5 min period per 12 h light or dark phase per 259 

group per week (pgpw). Temporal changes in behavioural phenotype within each group, 260 

and differences in phenotype between groups at defined time-points, were each assessed 261 

by two-way ANOVA and Tukey’s post-hoc test when statistical significance was identified. 262 

Statistical significance was set at p < 0.05. These analyses were performed using Prism, 263 

version 7.03 (GraphPad Software Inc., San Diego, CA). 264 

A correlation analysis (Ping_which test?)was used to assess the association between the 265 

information provided by the automated RFID recordings (Nm of transitions indicating 266 

locomotor activity; including light and dark phase activity analysis) and the conventional 267 

behaviour tests, and also the histological endpoints (spinal cord cavity and ventricle sizes 268 

for the SCI and TBI groups, respectively). These analyses were performed using Prism, 269 

version 7.03 (GraphPad Software Inc., San Diego, CA). 270 
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Results 271 

Subacute behavioural analysis of naïve animals 272 

Locomotor activity and temperature data demonstrating circadian pattern 273 

Using the automated RFID digital data from the automated home cage recording system, 274 

locomotor activity and temperature data for naïve male and female rats were collected 275 

from 5 days (24/7 recordings; 3 rats/ group). Naïve animals showed no significant 276 

difference in locomotor activity and body temperature between male and female in the 277 

light or dark phases (Fig. 3A-D). Qualitative observations showed spikes of increased 278 

locomotor activity during the dark phase for both male and female groups, but no 279 

significance was observed. (Fig 3A-B). A circadian light/dark pattern was statistically 280 

significant for both the body temperature of male and female rats (male: p = 0.001, female: 281 

p < 0.001) (Fig. 3D). 282 

Locomotor activity changes in SCI, TBI and Control animals  283 

SCI induces a reduction on locomotor activity during the first week post-injury 284 

The automated RFID digital activity data from the automated home cage recording 285 

system (data plotted 24/7 for the 3 days post-injury; 6 animals/group), showed a 286 

significant reduction on the locomotor activity of SCI animals during the first week post-287 

injury relative to TBI (p = 0.045) and control animals (p = 0.045) (Fig. 4 & 5A). 288 

Interestingly, at week 6 post injury, there was a significant increase on the locomotor 289 

activity of SCI animals compared to TBI (p = 0.026) and control animals (p = 0.039) (Fig. 290 

4 & 5B). However, at week 12 post injury, no significance between the groups were 291 

observed (Fig. 5C). When the light and dark phases were analysed, all CNS injury groups 292 
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showed a significant difference in locomotor activity at weeks 1, 6 and 12 post injury (Fig. 293 

5A-C). Temporal analysis of the locomotor activity exhibited a significant decrease in SCI 294 

animals at week 1 and 12 compared to week 6 post injury in the light phase (p = 0.013 295 

and p = 0.039, respectively)(Fig. 5D). Furthermore, locomotor activity for SCI in the dark 296 

phase at week 1 was significantly decreased compared to both weeks 6 and 12 post injury 297 

(p = 0.003) (Fig. 5D). Interestingly, locomotor activity was not altered in TBI group (Fig. 298 

5E), but the non-CNS injured control group exhibited a significant decrease in locomotor 299 

activity at week 12 compared to week 1 in the light phase (p = 0.007), and a significant 300 

increase in locomotor activity at week 6 compared weeks 1 and 12 in the dark phase (p 301 

= 0.007) (Fig. 5F).  302 

 303 

SCI and TBI induces a reduction in body temperature at light phase of week 6 and 12 304 

post-injury 305 

Subcutaneous body temperature recordings from automated RFID data (data plotted 24/7 306 

for the 3 days post-injury; 6 animals/group) showed no significant changes between the 307 

CNS injury groups during week 1 and 12 post injury (Fig 6 & 7A, C). Interestingly, at week 308 

6 post injury, body temperature was significantly altered between the light and dark phase 309 

for SCI (p = 0.029) and TBI (p = 0.018), but not the control group (Fig. 7B). Temporal 310 

analysis of body temperature in SCI and TBI group exhibited a significant reduction in 311 

body temperature at weeks 6 and 12 at light phase and between light and dark phases 312 

(Fig. 7D & E). In the non-CNS injured control group, no significant alteration in body 313 

temperature were observed between light and dark phase and in any temporal manner 314 

(Fig. 7F). 315 
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 316 

Temporal changes in selected behavioural phenotype in SCI, TBI and Control 317 

animals 318 

Feeding and drinking behaviour did not change over time with CNS injury 319 

Using the combination of RFID and IR Video data at week 1, 6 and 12 post-injury, detail 320 

analysis of recordings at the duration of time in which rats spent feeding and drinking 321 

were carried out. This was a proxy measure of food consumption and water intake, 322 

respectively. No significant changes in the expression of either feeding or drinking were 323 

observed between weeks 1, 6 and 12 for SCI, TBI and non-CNS injured control animals 324 

(Fig. 8A-F). These data suggest that the CNS injuries in these animals do not significantly 325 

limit the animals’ ability to feed and drink ad libitum. 326 

 327 

Grooming behaviour was lowest in SCI rats in the first week after CNS injury 328 

The duration of time rats spent in individual grooming, by manual curation of the RFID 329 

and IR Video data at weeks 1, 6 and 12 post-injury, as proxy measure of self-maintenance 330 

were manually analysed. At week 1 post-injury, mean dark phase grooming was 331 

significantly lower in the SCI than the non-CNS injured control group (p = 0.044) (Fig. 332 

8G). Additionally, a trend difference (p = 0.063) in dark phase grooming behaviour was 333 

also shown in TBI vs. SCI animals (Fig. 8G). However, thereafter at weeks 6 and 12, no 334 

significance difference in grooming for any groups were observed (Fig. 8H-I). These data 335 

suggest SCI interferes with the animals’ grooming activity during the first week post injury. 336 

 337 
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Rearing behaviour activity increases over time after SCI  338 

Using the RFID and IR video data, we manually analysed the duration of time rats spent 339 

rearing as a proxy measure of hind limb motor function and possibly higher interest (e.g. 340 

exploration, information gathering). Not surprisingly, at week 1 post injury, SCI animal 341 

with hindlimb paralysis had significantly fewer rearing than the control animals at the dark 342 

phase (p = 0.037) (Fig. 8J). No significance was observed in mean duration of rearing at 343 

weeks 6 and 12, between the SCI, TBI and non-CNS injured control animals (Fig. 8K-L). 344 

Temporal rearing activity from week 1 to week 12 did not exhibit any significant difference 345 

within the non-CNS injured control or the TBI group (Fig. 9A & C). However, during the 346 

dark phase, SCI animals exhibited a significant increase rearing in week 12 when 347 

compared to week 1 (p = 0.012) (Fig. 9B). These data suggest SCI limits the animals from 348 

carrying out rearing activity during the first week post injury. 349 

 350 

Aggression was significantly higher in TBI animals early after injury 351 

Using the RFID and IR Video data we manually recorded the duration of time that rats 352 

demonstrated aggression, as a proxy measure of antagonism. In week 1 post injury, the 353 

mean duration of aggressive behaviour was significantly higher in the TBI than SCI or 354 

non-CNS injured control groups, during the dark phase (p < 0.001, p = 0.004 , 355 

respectively)(Fig. 9D). Also, aggression in TBI was higher in the dark phase than light 356 

phase at 1 week post injury (p < 0.001) (Fig. 9D). At week 6 post injury, dark phase 357 

aggression in the TBI group was also significantly higher than SCI group, and higher than 358 

in the light phase (p = 0.014, p = <0.001, respectively) (Fig. 9E). At week 12 post injury, 359 

there was no significant difference in the expression of aggression between groups (Fig. 360 
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9F). Temporal aggression activity in the TBI group was significantly higher at dark phase 361 

week 1 post injury compared to light phase week 1 and dark phase week 6 and 12 (p 362 

<0.001, p = 0.089, p <0.001 , respectively)(Fig. 9G). Interestingly, the aggression activity 363 

was also significantly higher at week 6 post injury in dark phase compared to the light 364 

phase (p = 0.009) (Fig. 9G). These data would suggest TBI have an acute increase in 365 

aggression, which decreases with time at both light and dark phases. 366 

 367 

Assessment of injury severity  368 

Behavioural assessment 369 

The BBB scores were measured daily during week 1 post injury, and then weekly up to 370 

12 weeks post-injury in SCI and non-CNS injured control animals. Baseline pre-surgery 371 

scores in both groups consisted of a BBB score of 21 (no functional impairments). The 372 

scores were sharply reduced in SCI animals immediately after surgery (values <4 during 373 

the first week post-injury) indicating limited hindlimb movements following CNS injury (Fig 374 

9A). A subsequent gradual improvement was observed from week 3, reaching a plateau 375 

by week 7 post-injury. Non-CNS injured control animals showed no functional impairment 376 

after surgery, displaying baseline scores of 21 over the 12 weeks (Fig. 10A). 377 

mNSS scores were measured in TBI animals for  3 days post injury. Following a normal 378 

baseline average score of 0 points one day prior to surgery, a  mild functional deficit (2/20 379 

score) was detected  on the first day post-injury, as expected for a mild “closed head” TBI 380 

model. (Fig. 10B). 381 
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Correlation tests showed a significant strong association between the automated RFID 382 

activity data recorded during the dark phases in the SCI groups and their BBB scores 383 

(R=0.08806; P<0.001) and a relatively good correlation during the light phases activity 384 

data recordings (R=0.5169; P=0.001) (Fig. 11A). (do we need to add per 5 min in the 385 

legend of the graph ? 386 

  387 

Histological assessment  388 

Gross histological analysis in the SCI group revealed elongated partial thickness spinal 389 

cord lesions, with significantly larger areas of cavitation associated with loss of CNS 390 

tissue surrounded by disordered tissue extending away from the lesion (Fig. 10C & E). 391 

The non-CNS injured control group exhibited no histological damage in the spinal cord 392 

(Fig. 10C & E). 393 

Gross histological analysis in the TBI group revealed no significant morphological 394 

changes in tissue between contused brain and age-matched control brains (Fig 10D). 395 

However, a significant enlargement of the ventricles was observed when compared to the 396 

control group (Fig. 10D & F). 397 

Correlation tests showed a strong association between the automated RFID activity data 398 

recorded during the dark phase and the cord cavity size (R=0.9755, P=0.0123; Fig.11C), 399 

in accordance with the correlation observed between BBB and cord cavity size 400 

(R=0.9297, P=0.0358; Fig.11B) in the SCI group. However this correlation was moderate 401 

when associated with the recorded activity during the light phase (R=0.7234. p=0.1495; 402 

Fig 11C). 403 
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Correlations between the automated RFID activity data recorded during both the dark and 404 

the light phases and the ventricle size in the TBI group were moderate (R=0.5793, 405 

P=0.5261 and R=0.5609, P=0.2511; respectively) (Fig.11E), similar to that for the mNSS 406 

and the ventricle size (R=0.8137; P=0.09; Fig. 11D). 407 

 408 

Discussion 409 

The present study reports the ability to monitor spontaneous behavioural phenotype of 410 

rat models of SCI and TBI grouped-housed in their home cages during 12 weeks post-411 

injury using an automated recording system. Distinct changes in phenotype within each 412 

injury group at specific time points after injury, and also differences between the injury 413 

groups were identified. SCI animals exhibited less locomotor activity during the acute 414 

period following injury. TBI animals exhibited heightened aggressive behaviour during the 415 

acute and mid-term period after injury. The automated home cage recording system 416 

successfully enabled the continuous acquisition of individual behavioural and 417 

temperature data from group-housed SCI, TBI and control rats, in their home cage 418 

environment. Such home cage approaches have great potential to improving the 419 

relevance of behavioural testing in such complex CNS injury models, facilitating long 420 

term, non-invasive, non-task driven assessment, and with minimal environmental 421 

interference.  422 

Our findings also suggest that SCI has a significant impact on the animals’ behaviour. 423 

Significant reductions in their locomotor and rearing activities were expected due to 424 

hindlimb paralysis, but its impact on grooming care was a novel observation. Undertaking 425 
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behavioural testing during the early phases post-injury can be challenging as it is likely to 426 

have more confounders associated to interventions such as surgery, anaesthesia and 427 

analgesia. But locomotor function tests are likely to show more significance during early 428 

injury times than later ones when the SCI animals have already started to regain 429 

locomotor and homeostasis functions and when improvements may be more difficult to 430 

assess. Therefore, assessing the spontaneous behaviour of SCI animals within their 431 

home cage environment provides a great source of very valuable new information with 432 

great potential for assessing the impact of any possible therapeutic approach on non-433 

locomotor related behaviours in SCI animals. It also highlights the importance of providing 434 

a good care and welfare monitoring protocols supporting grouped housing conditions to 435 

enhance as much as possible the animals’ natural behaviour, particularly within the early 436 

acute phase post-injury.  437 

In this study, grooming activity was reduced in SCI animals, particularly during the first 438 

week post-injury, when compared to non-CNS injured control animals, possibly 439 

associated to injury-linked mechanical impairments. By week 6 and 12, SCI animals 440 

showed an improvement in grooming. It is important to note that our more detailed 441 

observations were carried out in time frames expressing high frequency of activity 442 

occurrence, thus we may be missing in grooming activity during more stationary 443 

behaviour periods. Alterations in grooming behaviour have been repeatedly studied in rat 444 

SCI, but mostly associated to the biomechanical impairments to groom effectively as a 445 

behavioural test, mostly in cervical SCI models (28-30). Grooming is also associated to 446 

the animal’s self- care routine, and its failure may also be associated with mood 447 

impairments, such as depression caused by boredom and lack of social interaction (31). 448 



22 
 

Self-neglect and poor care has been reported in depressed SCI patients (32) and 449 

similarly, SCI injury has also been associated with the animal’s depressed state (33). Our 450 

study provides an objective tool to investigate such socially associated cognitive 451 

impairments in grouped animals and through long term recordings. It is quite likely that 452 

prolonged immobility in SCI animals might affect their  mood, triggering self-neglect and 453 

diminishing self-grooming behaviour, similar to that seen in humans with SCI (34).  454 

Rearing activity was also reduced in SCI animals during the first week post injury, 455 

compared to week 12 post injury when spontaneous recovery in hindlimb functions have 456 

occurred. Rearing is irrefutably dependent upon hind limb function and thus linked to BBB 457 

scorings, and SCI animals have been shown to progressively regain function by 2-3 458 

weeks post-injury. Functional CNS deficits may improve by local neuroplastic changes 459 

(35) and also gradual strengthening of local signaling networks such as central pattern 460 

generators, as previously suggested in SCI models (36). Therefore, automated home 461 

cage recording system may facilitate new avenues to assess the pace and extent of 462 

recovering of rearing activity, and in particular, allow to investigate the role of housing 463 

enrichment to stimulate regular exercise and its impact on regaining functionality.  464 

One of the major concerns when monitoring SCI and TBI animals is the ability of the motor 465 

and cognitively impaired animals to feed and drink.  Our study demonstrated using our 466 

injury paradigm that neither TBI nor SCI significantly influenced feeding or drinking 467 

behaviour. Yet the ability of the injured animals to access food and water should not 468 

undermine the importance of good care and welfare monitoring of these animals, as 469 

maintenance of an appropriate schedule of feeding and drinking will also have a direct 470 

impact on the functional recovery following SCI and TBI (37).  471 
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We were also able to identify changes in aggressive behaviour between TBI, SCI and 472 

control animals. The data demonstrated an increase in night-time aggression at week 1 473 

post injury in TBI animals, compared to SCI and control animals. Such increased 474 

aggressive behaviour persisted by week 6 post-injury in TBI animals, but was no longer 475 

detected by week 12, when compared to SCI animals. Such assessment were based on 476 

individual behavioural patterns, as described in Fig. 2, and may associated to specific 477 

alteration of social rank rather than equal degree of aggression patterns for each 478 

individual animal. The effect of TBI on aggressive behaviour in rodent models has 479 

previously been reported in mice, but there are no reports in rat TBI (38). Assessment of 480 

aggression in laboratory rodents is intrinsically challenging, owing to the diversity of 481 

behavioural patterns and its multidimensional causes, expressions and functions. Animal 482 

studies on aggression tend to focus on the ethological relevance to survival; that is 483 

aggression that promotes access to food, territorial homing, mating, offspring protection 484 

or social rank. However, CNS injury may precipitate a pathological aggression that 485 

challenges such ethologically driven adaptive behaviour (39)- it is such maladaptive 486 

aggression that we have attempted to  evaluate here. So the challenges are associated 487 

with the interpretation of different tests used for aggression, which are generally based 488 

on stimulating a defensive response, the lack of clear relationship between aggression, 489 

fear or defensiveness and how to account for the inhibitory effects of fear on the 490 

aggressive response. Furthermore, the lack of clear translation between categories of 491 

animal  and human aggression, as human aggression is directly linked to complex 492 

societal perceptions (40). Most preclinical testing for aggression is carried out using the 493 
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tube dominance test (41), but it remains uncertain whether outcomes directly relate to 494 

human aggression.   495 

The high incidence of aggressive behaviour in TBI patients is a major health concern (42, 496 

43). Translational strategies need to search for new avenues to understand and to 497 

evaluate aggression behaviour in animal models. The aggression data provided in this 498 

study, based on the individual observation of published behaviour patterns in housed-499 

grouped animals, provides a new approach to monitor such challenging behaviours in 500 

SCI or TBI animals (44-46).  501 

There are several challenges and limitations in this study. Firstly, our automated home 502 

cage recording systems were installed in our standard rat housing room, with no specific 503 

restrictions on access to the room by other staff. Therefore, there was no specific control 504 

for external stimuli influencing rats’ activity (e.g. general daily husbandry activities, access 505 

to the room by other researchers). Our primary objective was to assess the feasibility of 506 

using the automated recording system in our animal unit, while maintaining our regular 507 

husbandry and our animal care procedures, and thus minimizing confounding effects due 508 

to stress or other environmental effects associated to changing the housing conditions of 509 

the tested animals. Yet, most of the disruptive periods could be easily identified by the IR 510 

video recordings and it was easy to exclude them from analysis based on time recordings. 511 

A possible solution would be to keep the automated recording system in a dedicated room 512 

with access restriction.  513 

Secondly, although the generation of the body temperature and number of transition data 514 

take approximately 5 min to complete using the HCA software analysis, the revision of IR 515 

video recording is very time consuming. It may require multiple annotations when 516 
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assessing individual behaviour in group animals (each footage was reviewed 3 times to 517 

focus on each one of the 3 caged animals in each revision). However, by integrating the 518 

RFID and the IR video recording data we were able to rapidly select specific time frames 519 

associated with the automated RFID data. While this approach allowed us to investigate 520 

the detailed behaviours, including grooming, drinking, eating, aggression and rearing, our 521 

combine analysis was focused on the periods of high activity for each cage individually 522 

(expressed by ≥ 1 animal within the n=3 animals housed per cage; see Suppl. Fig. S2) 523 

and that this was not the same time point for each cage. Therefore, each cage was 524 

analysed at different times of the day, rather than a continuous assessment of each 525 

individual animal per group. Data storage and handling could also be an issue, and it is 526 

mostly associated with the storage of the IR video recording data due to the large data 527 

files. However, as mentioned above, using the RFID automated data allows for a rapid 528 

selection of specific time frames of video recording, improving data storage and 529 

management.  530 

Finally, we decided to use female rats for SCI studies and male rats for TBI studies as 531 

these are the most commonly used sexes for the models. Females rats are often preferred 532 

as easier to support bladder dysfunctions whilst male rats are driven by male TBI 533 

prevalence. Although our preliminary studies on naïve animals (non-injured, n=3 males 534 

and n=3 females, showed no differences on baselines activity and/or body temperatures 535 

(Fig. 3), it is possible beyond baseline data that we cannot exclude differential responses 536 

to CNS injury based on sex related endocrine effects. 537 

 538 

Impact on animal care and welfare and future perspectives 539 
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The use of automated home cage analysis system has provided a unique opportunity for 540 

evaluating the spontaneous behaviour in individual grouped-housed SCI and TBI animals 541 

for a long 3 month period after injury. The system has facilitated the identification of novel 542 

behaviour insights in SCI and TBI rat models, such as transient increase in aggression 543 

following TBI, a transient reduction in grooming and rearing activity following SCI, and no 544 

effect of either TBI or SCI on drinking or feeding patterns. The provision of such a unique 545 

source of behavioural observations in SCI, TBI and control group-housed animals, 546 

acquired in their own environment and with minimal interference, represents a major 547 

improvement in the quality, quantity and scientific value of the experimental data 548 

generated per animal. The monitoring versatility of this automated system to assess 549 

cognitive /social behaviour in grouped animals compared to conventional out-of-cage 550 

tests carried out in single isolated animals may enables complementary avenues to 551 

identify socially-dependent behaviours that may be favourable or adversely affected by 552 

treatment intervention. This along with the ability to support long term studies, with 24/7 553 

recordings, may impact on the number of animals required for experimentation. Moreover, 554 

being able to continuously and accurately monitor behaviour and body temperature has 555 

significant implications for laboratory animal welfare; it can inform refinement of care and 556 

monitoring protocols, severity limits and humane endpoints (17), which is particularly 557 

pertinent  for neurotrauma models. For instance, we report considerable impairments of 558 

locomotion and thermoregulation in SCI animals during the initial weeks post-surgery, 559 

which should translate in improved monitoring and care protocols. The ability to support 560 

such non-invasive long-term behaviour assessments in complex injury models while 561 

maintaining the animals housed in their own environment and cohorts represents an 562 
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important experimental refinement (in accordance with the 3Rs)  and, by providing a 563 

valuable complementary approach to other conventional tests, may overall strengthen 564 

our understanding of the behaviour outcomes.  565 

This technology considerably complements the accurate detection of subtle changes in 566 

behaviour phenotype of these complex CNS injury models. For example, handler- 567 

directed,  compensatory aggression  in response to removal from the home cage, for 568 

running a tube dominance test, may render increases in baseline aggression secondary 569 

to the neuroinjury undetectable (47). The automated analysis system provides an 570 

accurate comprehensive platform for investigating a wide range of behaviours, free of 571 

experimenter and environment interference. In summary, this technology represents a 572 

major advancement on current methods for studying behaviour in neurotrauma models, 573 

with great potential to enhance translational power of preclinical neurotrauma studies. 574 

This warrants its application in further neurotrauma and drug discovery research, in order 575 

to aid the development of effective new treatments for SCI and TBI. 576 
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 585 

Supporting information 586 

Supplementary Figure 1. (A) The 21-point BBB (Basso, Beattie, Bresnahan) locomotor 587 

scale (6) was used to assess the hind limb recovery in rats following thoracic SCI, based 588 

upon observation of their spontaneous open-field locomotion. (B) The mNSS (modified 589 

neurological severity score) for TBI in rats was used. It was modified from the original 590 

score (48) to accommodate the mild nature of the closed head injury used in this study. 591 

 592 

Supplementary Figure 2: Method of data sampling to assess in detail specific 593 

behavioural expressions (e.g. aggression, grooming, rearing, feeding and drinking) by 594 

reviewing the RFID digital data with the IR video recordings. (A) The objective was to 595 

elucidate during a representative day of per group per week, when the rats were most 596 

active and within that time frame which behaviours were being displayed. We selectively 597 

reviewed the periods of maximum activity as we hypothesised that these periods should 598 

show maximal expression of the stereotypical behaviours that characterise each 599 

phenotype. Notably, we plotted ‘transitions’ against time because the HCA system/report 600 

recorded ‘transitions’ as a proxy for ‘activity’. Specifically, one transition defines the 601 

movement of an animal’s RFID chip across the electromagnetic field boundary between 602 

two adjacent antennae. (B) A representative graph displaying the total number of 603 

transitions. Yellow and grey shaded areas indicated the light and dark phases, 604 

respectively. The arrows indicate the peaks with the greatest number of transitions 605 

occurring within a 5 min interval, per 3 h division of each ‘light or dark’ phase that are not 606 
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caused by external events (e.g. person entering the room, changing water 607 

bottle)(arrowheads). 608 

 609 

 610 
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 729 

FIGURE LEGENDS 730 

Figure 1. Overview of the experimental design.  After the baseline recording of the 731 

behavioural tests, animals were subjected to CNS injury and implanted with the RFID chip 732 

subcutaneously before they were returned to their group in their home standard IVC 733 
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cages. During automated analysis using the home cage analysis (HCA) unit, the ICV cage 734 

were secured directly above the baseplate RFID reader to derive the positional and 735 

temperature information for each individual animal from their RFID chip. An infrared HD 736 

video camera captured an infrared gray scale video, supported by the illumination of an 737 

array of infrared LEDs for the light/dark cycle recordings. RFID baseplate and video data 738 

(24/7 h for 3 days/week for 12 weeks) was captured in a mini-computer. HCA units were 739 

kept inside the rat housing room, to maintain environmental housing conditions. 740 

Functional assessments were carried out daily for the TBI animals (mNSS scores; up to 741 

3 days) and weekly for SCI and control animals (BBB scores; up to 12 weeks). 12 week 742 

post-injury animals were humanely killed and tissue fixed-perfused for histology. 743 

 744 

Figure 2. Definitions of the five behavioural expressions selected and analysed in 745 

detail in this study. These were aggression, individual grooming, rearing, feeding and 746 

drinking, with images directly acquired from the IR video recordings. 747 

 748 

Figure 3. Locomotor activity and body temperature of naïve rats. (A) Data displays 749 

the locomotor activity of the animals derived from the number of transitions detected by 750 

the baseplate RFID reader from the individually ID chipped group-housed rats. (B) No 751 

significant difference in locomotor activity was observed between naïve male and female 752 

rats and light and dark phases. (C) Data displays the body temperature recording of the 753 

animals measured through the subcutaneous chip in the lower flank of the animals. (D) 754 

No significant difference in subcutaneous body temperature was observed between naïve 755 

male and female rats, but significant difference was observed between light and dark 756 



33 
 

phases for both genders. Data plotted for male (blue) and female (red) rats over a 5 day 757 

period from 24/7 recordings; mean +/- SEM of 3 rats per group. The 12 h light-dark phase 758 

is indicated by white-black bars above graph. 759 

 760 

Figure 4. Locomotor activity in control, SCI and TBI animals at various weeks post 761 

injury. Data display the locomotor activity (number of transitions automatically detected 762 

by the RFID reader) from the individually ID chipped group-housed rats. Representative 763 

data plotted over 2 days per week 1 (A-C), week 6 (D-F), and week 12 (G-I) post surgery 764 

from 24/7 recordings; mean +/- SEM per group. Note the lack of light/dark circadian 765 

pattern in SCI and TBI animals during the first week post injury compared to the control 766 

group. Furthermore, SCI group showed decreased activity patterns during the 1 week 767 

post injury. The 12 h light-dark cycle is indicated by white-black bars above graph. 768 

 769 

Figure 5. Comparison of locomotor activity in control, SCI and TBI between weeks 770 

post injury and injury groups. (A) Significant decrease in locomotor activity in SCI group 771 

compared to the control and TBI group at week 1 post injury. Significant increase in 772 

locomotor activity observed in the dark phase compared to the light phase for all 773 

groups.(B) Significant increase in locomotor activity in SCI group compared to the control 774 

and TBI group at week 6 post injury. Significant increase in locomotor activity observed 775 

in the dark phase compared to the light phase for all groups. (C) At week 12 post injury, 776 

no difference between injury groups, but significant increase in locomotor activity in the 777 

dark phase compared to the light phase for all groups were observed. (D) Temporal 778 

changes in locomotor activity were observed in SCI animals within the light or dark phase. 779 
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(E) No temporal changes in locomotor activity was observed in TBI animals. (F) Temporal 780 

changes in locomotor activity were observed in non-CNS injured control animals within 781 

the light or dark phase. The 12 h light-dark cycle is indicated by white-black bar above 782 

graph. 783 

 784 

Figure 6. Body temperature in control, SCI and TBI animals at various weeks post 785 

injury. Data display the subcutaneous body temperature (automatically detected by the 786 

RFID reader) from the individually ID chipped group-housed rats. Representative data 787 

plotted over 2 days per week 1 (A-C), week 6 (D-F), and week 12 (G-I) post surgery from 788 

24/7 recordings; mean +/- SEM per group. Note the slower ability of SCI and non-CNS 789 

injured control animals to recover normothermia immediately after surgery, compared to 790 

the TBI groups even when warm post-surgery recovery chambers were used. Body 791 

temperature levels did not show a circadian light/dark cycle pattern during the first week 792 

post-surgery in all groups. The 12 h light-dark cycle is indicated by white-black bars above 793 

graph. 794 

 795 

Figure 7. Comparison of body temperature in control, SCI and TBI between weeks 796 

post injury and injury groups. (A) No significant difference in body temperature 797 

between the groups at week 1 post injury. (B) Significant decrease in body temperature 798 

in SCI and TBI group at light phase compared to the dark phase at week 6 post injury. 799 

Significant increase in locomotor activity observed in the dark phase compared to the light 800 

phase for all groups. (C) At week 12 post injury, no significant difference between injury 801 

groups. (D) Temporal changes in body temperature were observed in SCI animals within 802 
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the light and/or dark phase. (E) Temporal changes in body temperature was observed in 803 

TBI animals within the light and/or dark phase. (F) No temporal changes in body 804 

temperature were observed in non-CNS injured control animals. The 12 h light-dark cycle 805 

is indicated by white-black bar above graph. 806 

 807 

Figure 8. Assessment of manually selected behavioural expressions for feeding, 808 

drinking, grooming and rearing between control, SCI and TBI animals. (A-C) No 809 

significant difference was observed in feeding between all groups at week 1, 6 and 12 810 

post injury. (D-F) No significant difference was observed in drinking between all groups 811 

at week 1, 6 and 12 post injury. (G-I) SCI animals showed a decreased grooming activity 812 

at week 1 during dark phase compared to control group (P=0.04), but by week 6 and 12, 813 

no significant difference was observed between the groups. (J-L) No significant difference 814 

was observed in rearing between all groups at week 1, 6 and 12 post injury. The 815 

expression of a given behaviour was calculated as the duration of time (sec) that each 816 

behaviour was performed by at least 1 animal within the cage during the 5 min period of 817 

observation. Data presented as mean +/- SEM of 6 animal per group and during the light 818 

and dark phases. The 12 h light-dark cycle is indicated by white-black bar above graph. 819 

 820 

Figure 9. Assessment of manually selected behavioural expressions for temporal 821 

rearing within groups and aggression between and within groups. (A) No significant 822 

difference was observed in temporal rearing within the non-CNS injured control groups at 823 

week 1, 6 and 12 post injury. (B) Significant difference was observed in rearing between 824 

week 1 and week 12at dark phase in SCI animals. (C) No significant difference was 825 
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observed in temporal rearing within the TBI groups at week 1, 6 and 12 post injury. The 826 

expression of a given behaviour was calculated as the duration of time (sec) that each 827 

behaviour was performed by at least 1 animal within the cage during the 5 min period of 828 

observation. Data are presented as mean +/- SEM of 6 animals per group and during the 829 

light and dark phases. White bars indicate LAM group, gray bars indicate SCI group, and 830 

black bars indicate TBI group. The 12 h light-dark cycle is indicated by white-black bar 831 

above graph. 832 

 833 

Figure 10. Assessment of injury severity using conventional behavioural and 834 

histological analysis. (A) BBB score of non-CNS injured control (blue square) and SCI 835 

(black diamond) animals for 12 weeks post-surgery displayed severe initial hindlimb 836 

impairment followed by some spontaneous functional improvement by week 6 post injury 837 

compared to control animals. (B) mNSS score for the closed TBI injury (black circle) for 3 838 

days post-surgery displayed limited functional impairment 24 h post compared to control 839 

animals (blue square). (C) Representative Cresyl violet (Nissl) staining of serial horizontal 840 

sections of spinal cord from control (left) and SCI (right) showing the degree of injury and 841 

tissue damage across the whole spinal cord in SCI animals compared to the control 842 

animals at 12 weeks post-surgery. (D) Representative Cresyl violet (Nissl) staining of 843 

serial coronal sections of brain from closed TBI (right) displayed ventriculomegaly 844 

compared to control brain (left) at 12 weeks post-surgery. (E) Analysis of the contused 845 

spinal cord revealed significantly larger cavity than the control spinal cord. (F)  Analysis 846 

of the brain revealed significantly larger ventricles in the mild traumatic brain injury than 847 
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the control brain. * p <0.05 and *** p <0.001, Student’s t test. Scale bars panel C, 0.5 mm 848 

and panel D, 1 mm.  849 

 850 

Figure 11. Correlation analysis between the automated RFID activity data and 851 

conventional behaviour and histological tests. A) Activity data (nm of transitions) shows 852 

highly significant good positive relationship with the BBB scores in the SCI group during 853 

the dark phases and light phases of recordings across the 1, 6 and 12 weeks post-injury. 854 

B) Good negative correlation between the BBB scores and cord cavity size (mm2) in the 855 

SCI group. C) Good negative relationship between the RFID activity data recorded during 856 

dark phases and the cord cavity, and moderate relationship for the light phase data. D) 857 

Moderate correlation between the mNSS and the ventricle size and E) the RFID activity 858 

data recorded in the dark and light phases and the ventricle size in the TBI group. (should 859 

you change the dark and light colour in the graph? Also the signs on Fig11A not too clear 860 

on grey scale..)  861 

 862 


