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1 Introduction

Differences in the behaviour of matter and antimatter (CP violation) have been observed in
several processes and, in particular, in charmless B decays. The current understanding of
the composition of matter in the Universe indicates that other mechanisms, beyond those
proposed within the Standard Model (SM) of particle physics, should exist in order to
account for the observed imbalance in the matter and antimatter abundances. The study
of CP-violating processes may therefore be used to test the corresponding SM predictions
and place constraints on extensions of this framework. In this work, a set of CP-violating
observables is measured using B” meson decays reconstructed in the (77~ )(K 7 ™) quasi-
two-body final state.! Particular emphasis is placed on the B® — p(770)°K*(892)° decay
(hereafter, denoted by B — p? K*0).

IThe inclusion of charge conjugate processes is implied.



Figure 1. Leading Feynman diagrams in the B°— p°K*? decay, from left to right: doubly
Cabibbo-suppressed tree, gluonic-penguin and electroweak-penguin diagrams.

Direct CP violation manifests through the difference between partial widths of a de-
cay and its CP conjugate. The first decay in which direct CP violation was observed
in B mesons was B®— K*7~ [I, 2]. The measured CP asymmetry of this channel is
known to be Acp = —0.082 £ 0.006 [3]. Decays of the B meson to 7K final states and
to their vector counterparts, pK™*, proceed via a remarkably rich set of contributing am-
plitudes. For the neutral modes B? — 7% K? and B? — p°K*?, the tree level contribution,
b — uus (depending on the CKM matrix elements V,,;V,Y,), is doubly Cabibbo suppressed
and higher order diagrams dominate the decay (see figure 1). Such contributions originate
from the b — dds (Vi V;%) process that may proceed either via colour-allowed electroweak-
penguin or gluonic-penguin transitions. When accounting for the helicity amplitudes of
the B — p? K*9 vector-vector (V' V) decay, the electroweak-penguin amplitude contributes
with different signs depending on the considered helicity eigenstate. This allows for several
interference patterns in the decay and plays an important role in its polarisation since both
penguin amplitudes are comparable in magnitude. A detailed discussion on these phenom-
ena can be found in ref. [4]. Other theoretical works [5] predict enhanced direct CP-violating
effects in the B?— p°K*? decay due to the interference with the B® — wK*® decay and
due to isospin-breaking consequences of this interference. The angular analysis of V'V de-
cays also gives access to T-odd triple product asymmetries (TPA), which are observables
suitable for comparison with theoretical predictions, such as those in ref. [6].

In the past, the theoretical approach to the study of B decays into light-vector mesons
was influenced by the idea that quark helicity conservation and the V—A nature of the weak
interaction induce large longitudinal polarisation fractions, of order f° ~ 0.9. However,
this prediction holds only for decays dominated by tree diagrams [7, 8], whilst in penguin-
dominated decays this hypothesis is not fulfilled [9-11].2 Low values of longitudinal po-
larisation fractions in penguin-dominated decays could be accounted by the SM invoking
a strong-interaction effect, both in the QCD factorisation (QCDF) [4] and perturbative
(pQCD) [13] frameworks. This so-called polarisation puzzle might be resolved by combin-
ing measurements from all the B— pK* modes (B — p°K*Y, B — p~ K*t, Bt — p0K*+
and Bt — ptK*Y). This would allow also to probe physics beyond the SM [14, 15].

2The decay B® — K*°K*° (f° = 0.80712 [12]) seems to be an exception.



The decay mode B?— p° K*0 and its scalar-vector counterpart B — f5(980) K* have
previously been studied by the BaBar [16] and Belle [17] collaborations. The BaBar collab-
oration determined the longitudinal polarisation fraction of the CP-averaged BY — p?K*0
decay to be f0 = 0.40 + 0.08 £ 0.11. The measurement of the CP-averaged longitudinal
polarisation of BY — w(— 777~ 7%)K*0 decays has been performed by both BaBar and
Belle collaborations yielding f° = 0.72 4+ 0.14 4+ 0.02 [18] and f° = 0.56 £ 0.297003 [19],
respectively.

In this paper an amplitude analysis of the BY decay to (7t7~)(K*7~) final
state in the two-body invariant mass windows 300 < m(7T7~) < 1100 MeV/c? and
750 < m(K+t7~) < 1200 MeV/c? is presented. The analysis uses the data sample collected
during the LHC Run I, corresponding to an integrated luminosity of 1fb~! of pp collisions
taken by the LHCb experiment in 2011 at a centre-of-mass energy of /s = 7TeV and
to 2fb™! recorded during 2012 at /s = 8 TeV. In the considered (7+7~) invariant-mass
range the vector resonances p® and w are expected to contribute, together with the scalar
resonances fo(500), fo(980) and fy(1370). The (K*7~) spectrum is dominated by the
vector K*(892)° resonance, but contributions due to the nonresonant (K7 ~) interaction
and the K((1430)° state are also accounted for. A measurement of the CP asymmetries
for the different amplitudes is made, whereas no attempt is done to measure the overall
branching fraction or the global direct CP asymmetry. The focus of the analysis is on
the polarisation fractions of the vector-vector modes as well as the relative phases of the
different contributions.

2 Detector and simulation

The LHCD detector [20, 21] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < 17 < 5, designed for the study of particles containing b or ¢ quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-
rounding the pp interaction region, a large-area silicon-strip detector located upstream of
a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the magnet. The tracking system
provides a measurement of the momentum, p, of charged particles with a relative un-
certainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum
distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with
a resolution of (15 + 29/pr) um, where pr is the component of the momentum transverse
to the beam, in GeV/c. Different types of charged hadrons are distinguished using infor-
mation from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers. The identification of the
particles species (PID) is performed with dedicated neural networks based on discriminat-
ing variables that combine information from the above mentioned detectors [22].

The online event selection is performed by a trigger, which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a soft-



ware stage, which applies a full event reconstruction. In the offline selection, trigger signals
are associated with reconstructed particles. Selection requirements can therefore be made
on the trigger selection itself and on whether the decision was due to the signal candidate
(Triggered On Signal, TOS), other particles produced in the pp collision (Triggered Inde-
pendent of Signal, TIS), or a combination of both. In this work, the overlap of both trigger
categories is included in the TIS category and candidates are split according to TIS and
TOSnotTIS trigger decision to define disjoint analysis samples.

Simulated samples are used to describe the detector acceptance effects, to optimise
the selection of signal candidates and to describe the BY— K*OK*9 background. They
are corrected using data. Simulated samples of both resonant, B®— p°K*0, and nonres-
onant, B — (777~ )(K*7~), modes are combined to describe the signal candidates. In
the simulation, pp collisions are generated using PyTHIA [23, 24] with a specific LHCb
configuration [25]. Decays of hadronic particles are described by EVTGEN [26], in which
final-state radiation is generated using PHOTOS [27]. The interaction of the generated parti-
cles with the detector, and its response, are implemented using the GEANT4 toolkit [28, 29]
as described in ref. [30].

3 Signal selection

The event selection is based on the topology of the B® — p?(— nt7 ) K*(— K*77) de-
cay. Each vector-resonance candidate is formed by combining two pairs of oppositely
charged tracks that are required to originate from a common vertex, to have transverse
momentum above 500 MeV/c and large impact parameter significance, X%P > 16, with re-
spect to any PV in the event. Here the impact parameter significance is defined as the
difference in the vertex fit x? of a given PV when it is reconstructed with and without the
track candidate. In addition, each vector resonance candidate is required to have trans-
verse momentum larger than 900 MeV/c and total momentum larger than 1GeV/c. The
B candidates are formed by combining the aforementioned four tracks, which must form
a good quality vertex. These candidates are required to have flight direction aligned with
their momentum vector and a small significance, X%P < 20, of the impact parameter with
respect to their production PV.

The final-state particle with the largest neural network PID kaon hypothesis is as-
signed to be the kaon candidate, while the remaining three particles are required to be
consistent with the pion hypothesis. A dedicated PID requirement on the kaon candi-
date, against its probability of being identified as a proton, reduces the contribution from
the AY — pr~ a7~ decay mode to a negligible level. Pairs of (777~) and (KT7~) are
formed selecting the combinations that fulfil the two-body invariant-mass range require-
ments 300 < m(rT77) < 1100 MeV/c? and 750 < m(K ™ m~) < 1200 MeV/c?, while having
a four-body invariant mass within the 5190 < m(r "7~ K T7~) < 5700 MeV/c? range. Back-
grounds from partially reconstructed B® decays do not enter the selected m(r*m~ K+7~)
invariant-mass range. The potential ambiguity on the assignment of the same-sign pions
to the (7*7~) and (Kt7~) pairs is reduced to a negligible level by the requirements on
the invariant masses.



A possible source of background is due to B®— D%(— K7~ )rTn~ decays, where the
final state particles are incorrectly paired. To remove this background, candidates are
reconstructed under the alternate pairing hypothesis and those within a 20 MeV/c? win-
dow around the known mass of the D° meson [3] are rejected. The requirements placed
on the two-body invariant masses and a dedicated constraint on one of the angular vari-
ables, |cosfr.| < 0.8 (variable defined in section 5), strongly suppress background con-
tributions from other decays proceeding via three-body resonances, such as B®— D™,
B%— a1(1260)" K+ or B®— K;(1270)" 7.

Background due to random combinations of tracks (combinatorial) is suppressed by
means of a boosted decision tree (BDT) [31, 32] multivariate classifier. The discriminating
power of the BDT is achieved using several kinematic (transverse momentum of the B°
candidate) and topological variables (related to the B decay vertex, such as the fit quality
and the separation from the PV), which are optimal for discrimination between the signal
and the background while not biasing the two-body invariant mass distributions.

Different BDTs are trained for the 2011 and 2012 data-taking periods to account for
their different centre-of-mass energies. Candidates in the upper side band of the four-body
invariant mass spectrum, m(rT7r~K+t7~) > 5540 MeV/c?, are used as the background
training sample while candidates from a simulated signal sample are used as the signal
training sample. Both samples are randomly split into two to allow for testing of the
BDT performance and to check for possible overtraining of the algorithm. The optimal
threshold for the BDT output value is determined by requiring a background rejection
power in the training and testing samples larger than 99%. This choice maximises the
product of signal purity and significance. Once the full selection is applied, 0.1% of events
contain multiple candidates, which share at least one of the final-state particles. Among
these, only the candidate with the highest BDT output value is kept in the analysed sample.
The resulting data sample is dominated by signal candidates, with a small contribution
from random combinations of tracks and from B?— (K7~ )(K~n") decays. In addition,
there is a hint of a BY — (7+7~)(K*7~) contribution in the selected data sample.

4 Fit to the four-body invariant mass spectrum

A fit to the four-body invariant mass distribution is performed simultaneously on the four
categories studied in the analysis (split according to trigger decision and data-taking year).
The fit is also simultaneous in the two charge-conjugate final states, which define the B°
and BY samples.

For each category, signal weights from the four-body invariant mass fit are used to
produce background-subtracted data samples by means of the sPlot [33] technique. This
allows the amplitude fit to be performed on a sample that represents only the signal and
avoids making assumptions on the multidimensional shapes of the backgrounds.

Prior to performing the four-body invariant-mass fit, the B — (K7~ )(K~7*) con-
tribution is subtracted by injecting simulated events with negative weights after estimation
of their per-category yield. In order to perform this estimation, the PID selection require-
ment on one of the final-state pions is changed to select (K7~ )(K ~7") candidates instead
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Figure 2. Fit to the invariant-mass distribution of selected (left) B° and (right) B° candidates
after the subtraction of B?— K*K*? background decays. The four trigger and data-taking year
categories are aggregated in the figures. The contributions due to the B — (7+7~)(K*7~) signal,
BY— (7t~ )(K*7~) background and combinatorial background are represented by the solid green,
red and grey lines, respectively. Data are shown using black dots and the overall fit is represented
by the solid blue line.

of the nominal (777~ )(K*7™) final state. The (K7~ )(K~7") four-body invariant-mass
spectrum is fitted to obtain the yield of this background, which is then corrected by the
ratio of PID efficiencies, computed using data, to obtain its final contribution to the anal-
ysed data sample. The reason for this particular treatment is that, when the kaon is
misidentified as a pion, the reconstructed mass of these candidates spans widely in the
spectrum underneath the B? and Eg signal peaks. To ensure a proper cancellation of this
background, the injected B?— (K7~ )(K~n") simulated events are weighted according
to a probability density function (PDF) whose physical parameters (describing the V'V,
VS and SS amplitudes) are taken from a previous measurement [34].

The resulting data samples are fitted to a model where the signal peak is described
with an Hypatia distribution [35], consisting of a Gaussian-like core and asymmetric tails.
Its parameters, except for the mean and width values which are free to vary, are deter-
mined from a fit to the distribution of signal candidates obtained from simulation. The
contribution from the B?— (777~ )(KTn~) mode is described by the same distribution
used for the signal, except for its mean value that is shifted by the known BY and B° mass
difference [3]. Finally, an exponential function accounts for the combinatorial background.
Figure 2 shows the simultaneous four-body invariant-mass fit result separated for B° and
B° samples. Table 1 shows the yields obtained in each of the eight fitting categories.

5 Amplitude fit

An amplitude analysis is performed on the background-subtracted samples obtained as
described in section 4. The isobar model [36-38], in which an overall rate is built from the
coherent sum over the considered contributions, is used to build the total decay amplitude
under the quasi-two-body assumption. In the nominal fit, a total of fourteen components,



Final State Year | Trigger B B Combinatorial
9011 TIS 985+34 20+ 9 249 + 23
() || TOSMOTIS | 615807 | 745 agae1r
9012 TIS 2451 +54 62+ 13 487 £ 35
TOSnoTIS | 1422 4+ 41 30+ 9 250 + 24
Final State Year | Trigger B B Combinatorial
5011 TIS 1013 + 34 4+ 7 204 + 22
(Kt || TOSMOTIS | 620426 6+ 4 6912
5012 TIS 2521 +53 46+ 13 437 4+ 32
TOSnoTIS | 1439 4+ 40 124 7 220 + 23

Table 1. Yields obtained in the extended simultaneous four-body invariant mass fit to the four
categories and for the two final states. The quoted uncertainties are statistical only.

listed in table 2, are accounted for in the analysed region of the (7*7~) and (KTm™)
two-body invariant masses.

The angular distributions are described using the helicity angles, depicted in figure 3,
where 6, is the angle between the 7% direction in the (777 ~) rest frame and the (7F77)
direction in the B rest frame, 0 is the angle between the K+ direction in the (K+7~)
rest frame and the (K "7 ~) direction in the B rest frame, and ¢ is the angle between the
(rt7~) and the (K*7~) decay planes. The angular functions, ¢;(0xr, 0k, ), are built
from spherical harmonics and are listed in table 2. The dependence of the total amplitude
on the two-body invariant masses, R;(Mmzr, mr), is described by the product of (7F77)
and (K*7~) propagators, M(m;;), and distinguishes resonances with the same angular
dependence. These terms depend on the mass propagator choice and are described as

d(Kr)(nm) Lo drm Ln
Ri(mﬂ—ﬂ-,mKﬂ-) - BLBO X (W> X BLR X <77m) X M(mﬂ—ﬂ—)

(5.1)
4dKn
mpgr

Lp/
X BLR’ X < > X M’(mKﬂ.) X (I)(mmr,mKﬂ.),

where ¢;; stands for the relative momentum of the final state particles in their parent’s
rest frame; ®(myx, M) represents the four-body phase-space density, my¢, the Breit-
Wigner mass of the resonance R(); and By, represents the Blatt-Weisskopf [39] barrier
penetration factor, which depends on the resonance radius and on the relative angular
momentum between the decay products, L. The value of L influences not only the angular
distributions but also the shapes of the two-body invariant-mass distributions due to the
aforementioned barrier factors, which originate in the production and decay processes of
a resonance. In the nominal fit the barrier factor arising from the production process of
the vector-mesons is not included, and thus the value Lo = 0 is used. A systematic
uncertainty is assigned because of this assumption.
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Figure 3. Definition of the helicity angles in the B® — p°K*0 decay.

In the selected region of (777 ~) invariant mass the following resonances are expected
to contribute and thus are included. The scalar (S) resonances f,(500) and fy(1370), de-
scribed with relativistic spin-0 Breit-Wigner functions, and the f3(980) meson, described
with a Flatté parametrisation [40, 41]. Also included are the vector (V') resonances w, de-
scribed with a relativistic spin-1 Breit-Wigner shape, and p°, described with the Gounaris-
Sakurai parametrisation [42]. The functional forms of these parametrisations are given
in appendix C.

The analysed invariant mass region of (K *7~) candidates is dominated by two contri-
butions: the vector K*(892)° resonance, described with a relativistic spin-1 Breit-Wigner,
and scalar states, which are comprised of the resonant state K (1430)° and a nonresonant
component. The phase evolution of the scalar amplitude is parametrised by the LASS func-
tion [43], while its modulus is modified with a real exponential form factor obtained from
a one-dimensional fit to the (K*7 ™) invariant-mass spectrum of the efficiency-corrected
data sample.

Depending on the spin of the resonant states, different possible amplitudes can con-
tribute to the final state: the combination of two scalars or of a scalar with a vector reso-
nance proceeds via one possible configuration, while in case of two vector resonances three
transversity amplitudes contribute to the decay rate (A°, Al and AL). The transversity
(0,]], L) basis is obtained from a linear transformation of the helicity (00, ++, ——) states
that results in amplitudes with defined P eigenvalues. Table 2 gathers the list of considered
amplitudes with their corresponding parity and the angular and two-body invariant mass
dependence for each term.

The fit PDF is defined as the differential decay rate,

d°r
o
dm2_dm?,_d cosOrd cos b dg

14 14
X Z Z[Aigi(eﬂﬂa 9K7r7 ¢)Rz‘(mm, mKﬂ')] [Ajgj(eﬂ'ﬂa eKﬂ'? (b)Rj(mWﬂ'J mKﬂ')]*7

i=1 j=1

(M, MKr) (5.2)

where indices i and j run over the list given by the first column of table 2.
The normalisation of the PDF implies that one of these quantities must be fixed to a
reference value. For convenience, each amplitude is described in the fit by two parameters



i State Parity A; 9i(Orn, Ok, @) M (Mgr) M (M)

1 VvV 1 AgK* c0S O r cOS Opcr M,y (Mgr) Mg+ (Mmgr)

2 VvV 1 A‘le* \% Sin O sin O cos ¢ My(mpr) Mg+ (Mpcr)

3 VV -1 AL ﬁ Sin @,y sin O g sin ¢ My(Mnr) Mg (migcr)

4 VV 1 AQ c0S O cOs O My (mpr) Mg+ (Mgcr)

5 VV 1 ABK* % sin 0, sin O g cos @ My (Magr) Mg« (Migcr)

6 VV -1 AUJ;K* ﬁ Sin @ sin O sin ¢ My (Mpr) Mg+ (mgcr)

7T VS 1 Ap(Km) % €08 O Mp(Mgr) Mgy (Mscr)

8 VS 1 Ay (k) % cos O My (M) Mgy (Mekcr)

9 SV 1 Ay s00)rc % cos Ocr My, (500) (Mar) Mg+ (M)
10 SV 1 Agy(9s0) K+ % cos O M, (980) (Mrr ) MEc+ (M)
1 SV L Ag o)k 5 co80xcr M g, (1370) (M ) M (k)
12 8§ L Ay 500) (k) 3 M, (500) (Merr ) Mgy (MK )
13 SS L Ay 980) (k) : My 980) (M) Mgy (Miscr)
14 S L Ajgasmo)rn 3 Mo (1370) (Merr ) Mgy (M)

Table 2. Contributions to the total amplitude and their angular and mass dependencies.

representing the real and imaginary parts. The cartesian representation of these complex
quantities is preferred to avoid degeneracies in the determination of the phases in case of
amplitudes with small magnitudes. The A, ) (VS) component has a sizeable fit fraction,
so it is picked as the reference for the normalisation of the PDF in both B® and B° models,
which is ensured by the following arbitrary choice

Re(Ap(Kﬂ)) = 2, and Im(Ap(Kﬂ.)) =0. (5.3)

Therefore, the parameters that are determined from the fit correspond to the relative
strength of each contribution to the decay rate with respect to that of the V.S(p(Kw)),
adding two degrees of freedom per contribution. To allow the identification of the squared
amplitudes with the contribution of each component, relative to the A, ), in the selected
mass range, the mass terms are normalised according to

/

my o My
// / |Ri (M, Mpcr ) |2 ® (M, mpcr )dm2_dm3. =1, (5.4)
my my

where m; and m, are the lower and upper limits of the two-body invariant mass spectra
defined in section 3. The global phases in the considered mass propagators are arbitrarily
shifted to be zero at the Breit-Wigner masses of the p° and K*0 mesons for my, and mg,
respectively. In this way all phases are measured with respect to the same reference.



The analysed distributions are affected by the selection requirements and the detector
acceptance. These effects are accounted for using the normalisation weights [44], w;;,

Wi = /E(mﬂﬂvaﬂy‘gﬂﬂ'a9K7raQZ))@(mﬂﬂymKﬂ)[gi(gﬂ'ﬂ'a0K7r7¢)Ri(m7r7r’mKﬂ')]
X 19 (Oxr, O n, @) Rj (M, mKﬂ)]*dmfmdm%ﬁd €08 O nd cos O rdo (5.5)

where € is the total efficiency evaluated using simulation and the ¢ and j indices correspond
to those of eq. (5.2). Since the efficiency depends on the trigger category and on the
kinematics of the final-state particles, a different set of normalisation weights is calculated
for each category.

From the amplitudes A;, modelling BY decays, and A;, describing B° decays, other
physically meaningful observables can be derived. In particular, for the V'V decays
B? = pPK*0 and B°— wK*°, these quantities are the polarisation fractions

A Ay 2
fVV: 0 I 1 ) )‘:07"7J- (56)
[AVy 12+ [Ayy 2+ [Apy 2
with their CP averages, f , and asymmetries, A,
—=A
; 1 2 fvv =12
f\évzi(f\éV'i_fVV)’ Apy = YV (5.7)
fvv + oy
and the phase differences, measured with respect to the reference channel, BY — p(K),
5(\3/\/ = (59/\/ - 5p(K7r)) = arg(A?/V/Ap(Kﬂ))‘ (5.8)

For comparison with theoretical predictions it is also convenient to compute the phase
differences among the different V'V amplitudes,

—-0,1-0 __ L ,L
S0 = (ol = 80) = arg(All/4%,). (5.9)

From these sets of observables, the phase differences of the CP average, %(6 5 +9B), and
CP difference, %(5 5 — 0B), are obtained. Ambiguities in this definition are resolved by
choosing the smallest value of the C'P-violating phase.

Finally, T-odd quantities as defined in ref. [6] can be obtained from combinations of
the polarisation fractions and their phase differences as

Arlr :fJ_fO sin((SJ_ —(50), .Agf = fJ_f”Sil’l((SJ_ —(5||) (5.10)
The so-called true and fake TPA are then calculated as
Ak — A Ak 4 A
2 ’ 2 ’

where k = 1,2 and the true or fake labels refer to whether the asymmetry is due to a

k _ k
AT-true - ‘AT— fake —

(5.11)

real CP asymmetry or due to effects from final-state interactions that are CP symmetric.
Observing a TPA value consistent with zero would not rule out the presence of CP-violating
effects, since negligible CP averaged phase differences would suppress the asymmetries.
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6 Results

The nominal fit, simultaneous in eight categories, is computationally very expensive due
to the high dimensionality of the model and the large number of free parameters. To cope
with this issue, the PDF is computed in parallel on a Graphical Processing Unit (GPU)
using the Ipanema [45] framework. This parallelisation reduces the computing time by
a factor ~ 50 when using Minuit [46] to minimise the likelihood function. The Ipanema
framework is implemented using pyCUDA [47] and serves as interface to minimisation algo-
rithms other than Minuit. In particular, it allows to use the MultiNest algorithm [48-50],
which employs a multimodal nested sampling strategy to calculate the most likely values
of the fitted parameters. Not relying on partial derivatives of the minimised function, the
MultiNest method is very effective in finding minima of the likelihood function in weighted
data samples, like in this work, and is thus preferred to Minuit to obtain the central values
of the result. Despite its robustness, MultiNest is much slower than Minuit and therefore
the latter was used to evaluate some systematic uncertainties using pseudoexperiments, as
explained in section 7.

The one-dimensional projections of the maximum-likelihood fit to the B? and B
weighted data samples are shown in figure 4. The contribution of each partial wave is also
shown. The fit results and their related observables, together with their statistical and
total systematic uncertainties, anticipated from section 7, are reported in table 3. The
statistical uncertainties on all the reported quantities are evaluated using pseudoexperi-
ments to properly account for possible nonlinear correlations among the parameters. The
amplitude fit is repeated using subsets of the total data sample, employing only one of the
trigger categories or data from one of the data-taking periods, yielding compatible results
within statistical uncertainties.

Using the nominal results and eq. (5.11) the following values of the TPA are found

APESL — 0,042 +0.005 +0.005, APK2 — _0.004 +0.006 +0.007,
AL — 0,04 4£0.04  +0.04, ASKSZ — 0,005 +0.021 +0.023,
APE L — —0.0210 + 0.0050 + 0.0022, APE 2 — _0.003 +0.006 =+ 0.005,
ALK 0,022 +£0.043 +0.016, ASKS2 0,014 +0.021 +0.017,

where the first uncertainty is statistical and the second systematic. These results are
compatible with SM expectations of TPAs below approximately 5% for charmless B® — V'V
meson decays [6]. Nevertheless, theoretical predictions of TPAs in exclusive decays are
strongly affected by the knowledge of the nonfactorisable terms in the helicity amplitudes
due to long-distance effects. The measurements reported above add valuable information
in this regard.
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Figure 4. Projections of the amplitude fit to the (left) B® and (right) B° data samples. The
four trigger and data-taking year categories are aggregated in the figures. Data are shown by black
points with uncertainties and the overall fit is represented by the solid blue line. The contributions
of the partial waves sharing the same angular dependence are shown as (VV) solid green, (V'5)
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different oscillation frequency in ¢.
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Parameter CP average, f CP asymmetry, A

|AD g |2 0.32 +£0.04 =£0.07 —0.75 +£0.07 +0.17
Al 2 0.70 +0.04 40.08 —0.049 + 0.053 = 0.019
| A |? 0.67 +£0.04 =+0.07 —0.187 £ 0.051 + 0.026
| A0 . |2 0.019 +0.010 +0.012 —0.6 +04 +04
1Al .2 0.0050 =+ 0.0029 + 0.0031 —0.30 +0.54 £0.28
| AL ? 0.0020 £ 0.0019 + 0.0015 -0.2 +£0.9 =+04
| Awremy|? 0.026 +0.011 =+ 0.025 —0.47 +0.33 £0.45
| Az, (s00y5c+ ]2 0.53 +0.05 =+0.10 —0.06 +0.09 =0.04
| Ay 080y 5+ ]2 242 +0.13 +0.25 —0.022 + 0.052 £ 0.023
A gm0y 129 +£0.09 +0.20 —0.09 +0.07 £0.04
| A, 500y (k) |2 0.174 +0.021 =+ 0.039 0.30 +0.12 =£0.09
| A, (080) (kcm) |2 118 £0.08 +0.07 —0.083 + 0.066 = 0.023
| Az, (1370) (5m) |2 0.139 +0.028 +0.039 —0.48 +£0.17 +£0.15
O 0.164 £0.015 =+0.022 —0.62 +0.09 =+0.09
Flie 0.435 +0.016 =+ 0.042 0.188 + 0.037 + 0.022
Fhie 0.401 +0.016 =+ 0.037 0.050 & 0.039 & 0.015
0 0.68 +0.17 +0.16 ~0.13 +0.27 £0.13
£l 022 +0.14 +0.15 0.26 +0.55 =+0.22
L 0.10 +0.09 =+0.09 0.3 +08 =+04
Parameter CP average, 3(05 + 6p) [rad] | CP difference, (65 — 6p) [rad]
00 i 1.57 +0.08 =+0.18 0.12 +0.08 £0.04
5L‘K* 0.795 £0.030 =+ 0.068 0.014 + 0.030 = 0.026
8l —2.365 +0.032 +0.054 0.000 + 0.032 £ 0.013
60 —0.86 +0.29 +0.71 0.03 +0.29 £0.16
sl . ~1.83 +0.29 +0.32 0.59 +0.29 +0.07
6ty 1.6 +04 £0.6 —0.25 +0.43 £0.16
Su(im) —232 +£0.22 +0.24 —0.20 +£0.22 £0.14
8 o (500) K~ —2.28 +£0.06 +0.22 —0.00 +0.06 =+0.05
8 o (980) K- 039 +0.04 =+0.07 0.018 + 0.038 = 0.022
8 o (1370) K+ —2.76 +£0.05 +0.09 0.076 + 0.051 £ 0.025
8 o (500) (K ) —2.80 +£0.09 +0.21 —0.206 + 0.088 £ 0.034
8 fo (980) () —2.982 +0.032 +0.057 —0.027 + 0.032 £ 0.013
8 o (1370) (K) 176 +0.10 =+0.11 —0.16 +0.10 =+0.04
ol 3.160 +0.035 =+ 0.044 0.014 = 0.035 4 0.026
5,')‘;(9 —0.77 £0.09 +0.06 —0.109 = 0.085 & 0.034
Lpyes —3.93 +0.09 +0.07 —0.123 + 0.085 £ 0.035
e 34 405 +07 0.84 +0.52 +0.16
S0 -1.0 +04 +06 0.57 +0.41 +£0.17
50 24  +05 +08 —0.28 +0.51 +£0.24

Table 3. Numerical fit results for the CP averages and asymmetries in the (top) modulus and
(bottom) phase differences of all the contributing amplitudes and among the V'V polarisation frac-
tions. For the numbers in the table, the first and second uncertainties correspond to the statistical
and total systematic, respectively. The total systematic uncertainty is obtained from the sum in
quadrature of the individual sources detailed in section 7, accounting for 100% correlation of the
common systematic uncertainties for B and B°.
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7 Systematic uncertainties

Several sources of systematic uncertainty are considered. In some cases their impact on the
measurements is evaluated by means of pseudoexperiments, which are simulated samples
having the same size as the analysed data sample and generated from the PDF.

Uncertainties on the parameters of the mass propagators. To assess the effect of
the uncertainty in the mass, width and radii of the (777~ ) and (K7~ ) propagators,
a pseudoexperiment is generated with the default values used in the nominal fit.
This sample is fitted two hundred times using alternative values for these parameters
generated according to their known uncertainties. The distribution of all the values
obtained for each observable is fitted with a Gaussian function whose width is taken
as the systematic uncertainty:.

Angular momentum barrier factors. As introduced in section 5, the angular barrier
factors arising from the production of the vector meson candidates are neglected.
However, P-odd states and the V.S/SV decay channels are only allowed to be pro-
duced with relative orbital angular momentum L = 1, while the V'V P-even transver-
sity amplitudes both contain superposition of L = 0 and L = 2 orbital angular
momentum states. These other configurations are allowed and the largest difference
between the nominal and alternative fit results is assigned as a systematic uncertainty.

Background subtraction. To account for uncertainties in the background subtraction,
the parameters of the Hypatia distributions are varied according to their uncertainties
and the yield of B? — K*0K*Y misidentified events is varied by 4+20, along with the
weights applied to cancel this background component. The four-body invariant-
mass fit is repeated two hundred times to obtain alternative sets of signal weights
accounting for each of the two sets of variations introduced. These are propagated to
the amplitude fit and a systematic uncertainty assigned as described in the first item.

Description of the kinematic acceptance. Normalisation weights are obtained from
simulated samples of limited size. Their statistical uncertainty is considered by using
in the amplitude fit two hundred sets of alternative weights generated according to
their covariance matrix.

Masses and angular resolution. In the nominal fit the resolution of the five observables
is neglected. The systematic uncertainty due to this approximation is evaluated with
pseudoexperiments. An ensemble of four hundred pseudoexperiments is generated
and fitted before and after being smeared according to the resolution determined
from simulation. The bias produced in the amplitude results is used to asses this
uncertainty.

Fit method. A collection of eight hundred pseudoexperiments with the same number
of candidates as observed in data is generated and fitted using the nominal PDF to
evaluate biases induced by the fitting method.
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Pollution due to B®— a;(1260)~ KT decays. The same final state can also be
produced by the B°— a1(1260)~ KT decay followed by the a;(1260)” — nt7—m~
process. They are strongly suppressed in the analysed data sample due to the selected
range of the two-body invariant-mass pairs, but even a small pollution (~ 4% relative
amplitude with respect to the BY — pY K*? channel) may affect the results, due to the
interference terms. Three sets of four hundred pseudoexperiments are generated with
a pollution level compatible with data distributions. These three sets differ in the
phase difference between the a1(1260)~ contribution and the reference amplitude,
covering different interference patterns (0, 27/3 and 47/3). The maximum shift
induced in the fit parameters is assigned as the corresponding systematic uncertainty.
Other three-body decaying resonance contributions, such as B — K1(1270)*7~, are
found to be fully rejected by the two-body invariant-mass requirements.

Symmetrised (77m) contribution in the model. The two same-charge pions in the
final state may be exchanged and the PDF re-evaluated. This combination does
not fulfil the invariant-mass requirements on both quasi-two-body systems but the
interference between both configurations might give rise to some effect on the fit
parameters, which is evaluated by generating four hundred pseudoexperiments and
comparing the results of fitting with and without this contribution.

Simulation corrections. Differences in the distributions of the B® momentum, event
multiplicity and the PID variables are observed between data and simulation and
corrected for. Data is employed to obtain bidimensional efficiency maps, in bins
of track pseudorapidity and momentum, for each year of data taking and magnet
polarity. These maps are used to evaluate the PID track efficiency and to assign
to each candidate a global PID efficiency weight. Furthermore, a second iterative
method [51], is used to weight the simulated events and improve the description
of the track multiplicity and B momentum distributions. The final fit results are
obtained with the weights from the last iteration, and their difference with respect
to those obtained using the weights from the previous to last iteration is assigned as
the systematic uncertainty.

The resulting systematic uncertainties are reported in tables 5 and 6 in appendix B.
The pollution due to B — a;(1260)~ K+ decays represents the largest source of systematic
uncertainty for the parameters related to the V'V waves, while the uncertainty on the
parameters used in the mass propagators and the resolution effects dominate the systematic
uncertainties of the parameters related to the various S-waves.

8 Summary and conclusions

The first full amplitude analysis of BY — (7+7~)(K*7~) decays in the two-body invariant
mass windows of 300 < m(nt7~) < 1100 MeV/c? and 750 < m(KTm~) < 1200 MeV/c? is
presented. The fit model is built using the isobar approach and accounts for 10 decay
channels leading to a total of 14 interfering amplitudes. A remarkably small longitu-
dinal polarisation fraction and a significant direct CP asymmetry are measured for the
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Observable QCDF [4] pQCD [13] This work

: CP average  0.221003%02% 06570031003 0.164 4 0.015 + 0.022
o
=~ OP asymmetry —0.30707110%  0.0364700120  —0.62 +0.09 +0.09

: CP average  0.3970020-27 0.169 F0:927  0.401 +0.016 + 0.037
ES OP asymmetry - —0.0771F5519T  0.050 + 0.039 +0.015
o CP average [rad] —0.7 707708 —1.61 982 —0.77 +£0.09 =+0.06
s 120! .
=~ CP difference [rad]  0.3070397038  —0.00170017  —0.109 + 0.085 + 0.034
4.  CP average [rad] =T 3.15 1992 3.160 + 0.035 + 0.044
1k
o~ CP difference [rad] =0 —0.00310-053 0.014 + 0.035 4+ 0.026

Table 4. Comparison of theoretical predictions for the B?— p(770)°K*(892)° mode with the
results obtained from this analysis. It should be noted that the theoretical predictions involving
the CP averaged value of 5;}(* have been shifted by 7 on account of the different phase conventions
used in the theoretical and experimental works.

BY— p(770)°K*(892)" mode, hinting at a relevant contribution from the colour-allowed
electroweak-penguin amplitude,

foi- =0.164 £0.015+£0.022 and A)x. = —0.62 +0.09 £ 0.09,

where the first uncertainty is statistical and the second, systematic. The significance of
the CP asymmetry is obtained by dividing the value of the asymmetry by the sum in
quadrature of the statistical and systematic uncertainties and is found to be in excess of 5
standard deviations. This is the first significant observation of CP asymmetry in angular
distributions of B’ — V'V decays. A determination of the equivalent parameters for the
B? — wK*? mode is also made, resulting in

for =068+£0.174+0.16 and A’x. = —0.13+0.27+0.13.

The phase differences between the perpendicular and parallel polarisation, 5;';&, are found
to be very close to m and 0, for the CP averaged and CP difference values, respectively.
These are in good agreement with theoretical predictions computed in both QCDF and
pQCD frameworks. Table 4 shows a comparison among the results obtained in this analysis
and the most recent predictions in these two theoretical approaches.
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A Legend

Total PDF.

VV = pK" + wK" + interf.
RN VS = p (K7) + w (K7) + interf.
———— SV=SK '+ S,K"+S,K" +interf.
---------------- SS= S(K7m)+ S,(Km) + Sy(K7) + interf.

Where: S, S,. ;= f (500), f (980) and £ (1370)

Figure 5. Legend for the plots. The partial waves sharing the same angular dependence are
represented as (VV) solid green, (VS) dash-dotted violet, (SV) dashed dark magenta and (SS5)
dotted orange lines. The overall fit is shown by a solid blue line.

B Breakdown of the systematic uncertainties

In tables 5 and 6 the break-up of systematic uncertainty contributions for the reported
observables is shown.
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C Phase-space density and two-body invariant-mass propagators

C.1 Phase-space density

The four-body phase-space density for the decay BY — (7+7~)(K*7~) is parameterised by

D (Mpr,Mir) X ¢(Mar)q(Mmyr)q(Mpo), (C.1)

being g(m;;) the relative momentum of the final-state particles in their parent rest frame,

Vm2 = (m 4 m)2) (m2 — (mi — m;)?)

q(mij) = T
1)

C.2 Relativistic Breit-Wigner

This shape is given, as a function of the two-body invariant mass, m, and the relative
angular momentum between, L, among the two decay products by

mol'o

BW (m,L) = — (C.2)

m3 —m? —imolp(m)’

where

mo q 2L+1
FL(m) = FU (W) BL(Q) QO7dR)2 <q0> )

being dr the radius of the resonance, and mgy and I'g its Breit-Wigner mass and natural
width, as shown in table 7.

C.3 The Gounaris-Sakurai function

This parameterisation takes the form

1

GS(m) x

2
m
50

mio —m?+ Fwa[kg(hj —hyo) — (m? — mio)kiohgo] — imol'(m)

with

dm? ’

kgo = k(mo), hyo = h(my), I'(m)=T1(m),

where I' 0 is the p® natural width, mgo is the p¥ Breit-Wigner mass and dp the effective
radius (range parameter) of this meson, shown in table 7.
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Parameter Value

m, [MeV/c? | 775.26 + 0.25
T, [MeV/c? | 147.8 + 0.9
ro,[(MeV/c?) ™1 0.0053 + 0.0008
my+ [MeV/c? ] 895.55 £ 0.20
[+ [MeV/c? | 47.3 £ 0.5
o, [((MeV/c®)™1] 0.0030 £ 0.0005
my, [MeV/c? | 782.65 + 0.12
T, [MeV/c? ] 8.49 + 0.08
7o, [(MeV/c?) 1] 0.0030 £ 0.0005
m s, (500) [ MeV/e? ] 475 + 32

T4 500) [MeV/c? | 337 + 67

m g, as70) [MeV/c? | 1475 £ 6

T4 1370y [MeV/e? | 113 + 11

m s, 080) [MeV/c? ] 945 + 2
Grn [1/ MeV/c? ] 199 + 30
RYKE 3.45 +0.13

Table 7. Central values of the mass-propagator parameters and their uncertainties, used to es-
timate the corresponding systematic uncertainties. The values of the parameters used to describe

the fo(500) and fp(1370) resonances were taken from ref. [52] and the rest, from ref. [3].

C.4 The Flatté parameterisation

This shape is described by

mo(GrrPrr(mo) + 9Kk Prc K (Mo))

F(m) = - ’
( ) m(% —m?— zmo(gmrpmr(m) + gKKpKK(m))
2
\/E for m > 2mx,
pxx(m) = -

ey
i\/ 4% — 1 for m < 2my,

(C.4)

where mx = mg,m,, accordingly. The resonance mass is represented by mg and g
(9k k) stand for the strength of the coupling to the f5(980)— 77~ (fo(980)— KTK™)

decay channels. Their values are given in table 7.
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