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The amino acid L-threonine undergoes 
three phase transitions between ambient 
pressure and 22.3 GPa which modify both 
hydrogen bonding and the molecular 
conformation. 

 

 

Abstract 
 
The crystal structure of L-threonine has been studied to a maximum pressure of 22.3 GPa 

using single-crystal X-ray and neutron powder diffraction.  The data have been interpreted in 

the light of previous Raman spectroscopic data by Holanda et al. ( J. Mol. Struct. (2015), 1092, 

160-165) in which it is suggested that three phase transitions occur at ca. 2 GPa, between 8.2 

and 9.2 GPa and between 14.0 and 15.5 GPa. In the first two of these transitions the crystal 

retains its P212121 symmetry, in the third, although the unit cell dimensions are similar either 

side of the transition, the space group symmetry drops to P21.  The ambient pressure form is 

labelled phase I, with the successive high-pressure forms designated I’, II and III, respectively. 

Phases I and I’ are very similar, the transition being manifested by a slight rotation of the 

carboxylate group.  Phase II, which was found to form between 8.5 and 9.2 GPa, follows the 

gradual transformation of a long-range electrostatic contact becoming a hydrogen bond 

between 2.0 and 8.5 GPa, so that the transformation reflects a change in the way the 

structure accommodates compression rather than a gross change of structure. Phase III, 

which was found to form above 18.2 GPa in this work, is characterised by the bifurcation of a 

hydroxyl group in half of the molecules in the unit cell. Density functional theory (DFT) 

geometry optimisations were used to validate high-pressure structural models and PIXEL 

crystal lattice and intermolecular interaction energies are used to explain phase stabilities in 

terms of the intermolecular interactions.   

1 Introduction 
 
The amino acids have been studied extensively in the context of high-pressure polymorphism 

because they serve as model systems for the behaviour of H-bonding in other, potentially 
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more complex molecules, but also in part because of their biological significance.1, 2 Glycine, 

the simplest amino acid, has three ambient pressure polymorphs which show differing 

stabilities under compression. α-Glycine has been shown to be stable to 23 GPa by Raman 

spectroscopy.3 The crystal structure has been determined by X-ray single-crystal and neutron 

powder diffraction at 6.24 and 6.4 GPa,5 respectively.  Very recent angle-dispersive X-ray 

diffraction measurements show that the phase persists to 50 GPa.6  By contrast, β-glycine 

transforms to δ-glycine at 0.8 GPa, while the γ-form gradually yields the ε-polymorph 

between 2.0 and 4.3 GPa.4, 7 ε-Glycine transforms back to the γ-form via a, sixth, short-lived 

ζ-polymorph.8  L-serine has four high-pressure polymorphs.9-14  The ambient pressure form, 

L-serine I, transforms to L-serine II and III on rapid compression at ca. 5 and 8 GPa and to L-

serine IV above 5.6 GPa on slow compression.15 L-cysteine I transforms on compression above 

1.8 GPa to give L-cysteine III and then again on decompression from 4.2 to 1.7 GPa to form L-

cysteine IV.16 Structural changes in L-α-glutamine were studied to 4.9 GPa but it does not 

undergo any phase transitions.17 L-alanine also remains in the same ambient pressure phase 

on compression to 13.6 GPa but it undergoes reversible amorphisation at 15 GPa.18, 19 

  The role of H-bonding and other non-bonding interactions are important in 

understanding phase stability as a structure evolves under compression to fill space more 

efficiently and avoid short repulsive contacts.20 Crystallographic studies of complex molecular 

materials, however, rarely achieve pressures beyond 10 GPa. The Cambridge Structural 

Database (CSD) (v.4.0, November 2018) contains almost 3000 entries which specify the 

pressure of the structure determination, and a list of these is included in Microsoft Excel 

format in the ESI. There are 2561 entries determined at above 10 atm, and 2457 above 1000 

atm (0.1 GPa).  Only 14 molecular compounds have been studied above 10 GPa (100 000 atm), 

only one of which is an amino acid, L-alanine (LALNIN51), whose structure was determined 

by powder methods at 13.6 GPa (see Table S1, ESI).18 The highest pressure entry is that of CO2 

at 28 GPa (SACBAA) which was also obtained by powder diffraction; 21 the next highest 

pressure entry is that of benzene (BENZEN09) at 24 GPa but the entry lacks 3D coordinates.22  

The highest pressure entry in the CSD of a complex molecular compound, determined by 

single-crystal diffraction and with refined 3D coordinates is that of palladium (II) oxathioether 

(NONWES30) at ca. 14 GPa.23   

A search of the Inorganic Crystal Structure Database (ICSD) for non-metal compounds 

at pressures greater than or equal to 10 GPa results in 187 hits.   Amongst the molecular 
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elements,24-26 oxygen becomes metallic at 96 GPa.27 The structure of a high-pressure phase 

of molecular nitrogen has been determined by single-crystal X-ray diffraction at 56 GPa,25 and 

the structure of polymeric nitrogen, which forms at 110 GPa and 2000 K, has been 

determined using X-ray diffraction and Raman scattering at 115 GPa.28  

Beyond the elements, there are 84 crystal structures of molecular solids at pressures 

greater than 10 GPa deposited in the ICSD, comprising 15 different compounds. Some notable 

examples include the single-crystal structure determinations of arsenolite and its helium 

clathrate to 30 GPa29 and the van der Waals compound Kr(H2)4 whose structure was 

determined at 11.24 GPa.30 Xenon difluoride has been studied by powder X-ray diffraction 

and computational methods and is shown to undergo two phase transitions at 28 and 59 GPa, 

with metallisation predicted to occur at 152 GPa.31  

Although crystal structures of complex molecular solids above 10 GPa are quite rare, 

spectroscopic methods, particularly Raman spectroscopy, have been very useful in detecting 

phase transitions.  This approach has been used extensively to study amino acids.32 We now 

describe the crystal structure of L-threonine (Figure 1) to 22.3 GPa with the aim of identifying 

the structural features associated with the three phase transitions which have been 

characterised by a series of Raman studies, most recently by Holanda et al.33  

2 Experimental 
 
2.1 X-Ray Crystallography 
 

L-threonine (99% Sigma-Aldrich) was recrystallised from a 656 mM ethanol solution by 

slow evaporation; forming colourless, blade-shaped crystals. Single-crystal diffraction data 

were collected at ambient pressure and room temperature using a cut crystal measuring 0.2 

x 0.2 x 0.1 mm³ on a Bruker 3-circle goniometer APEX-II diffractometer using Mo-Kα radiation 

(λ=0.71073 Å).  

Below 7 GPa diffraction data were measured at room temperature using silicon (111) 

monochromated synchrotron radiation (λ=0.4780 Å) on Station 9.8 at the Synchrotron 

Radiation Source, Daresbury, UK.  A single crystal of L-threonine measuring ca. 0.1 mm³ was 

loaded in a Merrill-Bassett type diamond anvil cell (DACs) along with a ruby chip in 4:1 

methanol-ethanol as a pressure-transmitting medium.34, 35 A total of six diffraction 
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measurements were carried out between  1.26 to 6.67 GPa using a Bruker-Nonius APEX II 

diffractometer following the collection strategy of Dawson et al.36  

Single-crystal diffraction data between 4.0 and 22.3 GPa were measured at room 

temperature on Beamline 12.2.2 at the Advanced Light Source in Berkeley, California, USA, 

which has been described in detail elsewhere.37, 38 Crystals measuring ca. 50 µm³ were cut 

from larger single crystals and mounted with a ruby sphere in a BX-90 type DAC39 consisting 

of 500 µm Boehler-Almax cut diamonds mounted in tungsten-carbide backing seats.40 The 

rhenium gasket hole had an initial diameter 320 µm and thickness of ca. 70 µm. The cell was 

gas-loaded in neon using a GSECARS/COMPRES gas-loader41 at the Advanced Light Source. 

Data were collected in steps of approximately 1.4 GPa; and on decompression at 13.0 GPa on 

a custom-built Huber diffractometer with silicon (111) monochromated synchrotron radiation 

(λ=0.4959 Å) and a Perkin-Elmer amorphous silicon detector, using a combination of 

shutterless ϕ-scans at 0.25° and 1° step-widths across the half-opening angle (±40°) of the 

sample chamber and cell body. Additional low-pressure measurements were performed in 

the same manner from 2.6 to 5.9 GPa on a separate sample.  

In all cases, pressure was measured using the ruby fluorescence method.42  

 

Figure 1 Molecular structure of L-threonine at ambient conditions 
showing the numbering scheme used. Ellipsoids are shown at the 
50 % probability level. 
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2.2 Structure analysis 

Diffraction data were processed using the APEX3 suite of programs.43 Data reduction 

was carried out using SAINT,44 employing dynamic masks generated by ECLIPSE45 to mask 

shaded detector areas. Absorption and shading corrections were applied using the multi-scan 

procedure SADABS.45 Data-sets were initially analysed using  XPREP,46 the structures at 

ambient pressure and following a phase transition at 18.2 GPa were solved using direct 

methods (SHELXT)47 and then refined by full-matrix least-squares on |F|2 (SHELXL)48 using the 

ShelXLe graphical user interface.49 Otherwise refinements started from the atomic 

coordinates of the preceding pressure point.    

There is a single-crystal to single-crystal phase transition at 18.2 GPa which reduces the 

space group symmetry from P212121, to P21, though the unit cell metrics are similar either 

side of the transition. The structure was modelled with a two-fold axis about a as a twin law, 

but the twin fraction refined to 0.05(5).  The orthorhombic cells of the structure below 18.2 

GPa were placed in a non-standard setting to match that of the monoclinic phase in order to 

facilitate comparisons between phases.  

Intramolecular bond distances in all high-pressure refinements were restrained to those 

of the ambient pressure structure. Data sets were modelled with isotropic displacement 

parameters in order to reduce the number of refined parameters. H-atoms were placed in 

calculated positions and allowed to ride on their parent atoms. The hydroxyl hydrogen atom 

was placed on the site forming the most favourable H-bond geometry while also being 

staggered with respect to O3-C3.  The refinement and H-atom placement strategies are 

discussed below.   Selected crystal and refinement data of structures in the different phases 

are collected in Table 1.  A full set of parameters for all structures collected over the course 

of this study are available in the ESI (Table S2).  CCDC 1903563-1903583 contains the 

supplementary crystallographic data for this paper. These data can be obtained free of charge 

via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, 

Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk. 

 

2.3 Neutron Powder Diffraction at High Pressure 
 

In order to improve the precision of the equation of state (EOS) of L-threonine and to 

corroborate the X-ray measurements, a series of neutron powder diffraction measurements 
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was collected on compression from 0.00 to 8.77 GPa in steps of ca. 0.55 GPa using the PEARL 

instrument at the ISIS facility, Rutherford Appleton Labs, Didcot, UK. Deuterated L-threonine 

(CDN Isotopes, used as received) was loaded into a TiZr capsule gasket with a 4:1 mixture of 

deuterated methanol and ethanol, and a pellet of lead as a pressure marker. The sample was 

compressed using a type V3 Paris–Edinburgh cell with WC type anvils. Pressure 

measurements were obtained from the equation of state of lead.50 Unit cell parameters were 

extracted by the Pawley method using TOPAS.51  

 

2.4 PIXEL Energy Calculations 

The PIXEL method is a semi-empirical computational technique for the calculation of 

lattice and intermolecular interaction energies in molecular crystal structures.   The 

calculations are based on a pixelated model of the molecular electron densities within a 

cluster generated about a central reference molecule using the space group symmetry of the 

crystal structure.  The interaction energies between the reference molecule and the other 

molecules in the cluster are obtained by summing the Coulombic, polarisation, dispersion and 

repulsion terms between individual electron density pixels. The sum of energies within the 

cluster gives the lattice energy, and this is broken down into individual molecule-molecule 

contributions. The energies are also broken down into constituent Coulombic, polarisation, 

dispersion and repulsion contributions. Full details of the method and its application are 

available in references 10, 52-56. 

In this study the cluster radius was 15 Å, and the molecular electron densities were 

obtained from GAUSSIAN-0957 with the 6-31G** basis set at the MP2 level of theory. The 

PIXEL calculations themselves were accomplished with the CLP-PIXEL suite.54  The electron 

densities were calculated on a grid of dimensions 0.08 x 0.08 x 0.08 Å3, but in order to speed 

up subsequent energy calculations, blocks of 4 x 4 x 4 pixels were combined into superpixels 

(i.e. the condensation level was 4). 

Individual intermolecular interaction energies obtained using PIXEL (and symmetry-

adapted perturbation theory at the SAPT2+3 level, see below) are shown in Table 2 at ambient 

pressure and 17.1 GPa. A breakdown of the lattice energy at each pressure and a comparison 

of relative energies with those calculated by DFT (see below) are given in Tables S3 and S4 of 

the ESI.  Also available in the ESI are listings of contact energies at 18.2 GPa (Tables S5 and S6) 
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and plots showing dimers formed within the first coordination spheres at 0, 17.1 and 18.2 

GPa in Figs. S1-4) 

 

2.5 Periodic Density Functional Theory (DFT) Calculations 

Geometry optimisations were carried-out on the ambient pressure crystal structure as 

well as those at 3.97, 5.91, 6.12, 8.50, 9.82, 11.19, 13.94, 15.20, 15.78, 17.05, 18.20, 20.62 

and 22.31 GPa, using the plane-wave pseudopotential method in the CASTEP58 code as 

incorporated in Materials Studio.59 The PBE exchange-correlation functional was used with 

the ‘on the fly’ pseudopotentials embedded in the program and the Tkatchenko-Scheffler 

correction for dispersion.60 The basis set cut-off energy was 780 eV and Brillouin zone 

integrations were performed with a Monkhorst-Pack61 k-point grid spacing of 0.07 Å-1.  These 

conditions gave a convergence in total energy of better than 1 meV/atom. 

The starting coordinates for the optimisations were taken from the single-crystal X-ray 

diffraction structures with distances to hydrogen normalised to typical neutron values. The 

cell dimensions were fixed to the experimental values, and the space group symmetry was 

retained. In geometry optimisations the energy convergence criterion was 5x10-6 eV/atom, 

with a maximum force tolerance of 0.01 eV Å-1 and a maximum displacement of 5x10-4 Å; the 

SCF convergence criterion was 1x10-8 eV/atom.  

 

2.6 Symmetry-adapted Perturbation Theory (SAPT) Calculations 

SAPT calculations were performed at the SAPT2+3 level of theory on dimers taken from the 

ambient pressure and 17.1 GPa structures using the PSI4 code (version 1.0.54) with the 

aug-cc-pvdz basis set.62, 63  

 

2.7 Other Programs Used 

Geometric parameters were calculated using PLATON.64 EoSFit7-GUI65 was used for EOS 

calculations. OLEX2-1.2,66 DIAMOND 3.067 and  MERCURY (CCDC)68  were used for structure 

visualisation. CONQUEST69 was used to survey the CSD and MR_PIXEL70 was used to facilitate 

setting-up of PIXEL calculations. Topology calculations were accomplished with TOPOSPRO.71 
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2.8 Validation of computational methods 

In the following analysis, the results of PIXEL calculations are used to interpret the 

structural changes occurring on compression.   The use of this method has been validated by 

comparison of lattice energy of L-threonine with the experimental value, by comparing the 

total energies of the compressed structures with those obtained by DFT calculations, and 

finally by comparing individual molecule-molecule energies at ambient pressure and 17.1 GPa 

with values obtained with symmetry adapted perturbation theory. 

The experimental enthalpy of sublimation of L-threonine is 161 kJ mol−1 at 298.15 K, 72 

but once proton transfer between the ammonium and carboxylate groups during sublimation 

is taken into account,73 the energy of sublimation of zwitterionic L-threonine is 

270.7±7 kJ mol−1, which compares with the PIXEL value of 252.0 kJ mol−1. 

The pressure-dependence of the lattice energy of L-threonine was calculated using the 

PIXEL method and periodic DFT (see Section 3.4.1 and Table S4 in the ESI).  The goodness-of-

fit of the PIXEL calculated energies from ambient pressure to 22.3 GPa is 0.85, which improves 

to 0.93 if the highest-pressure structure is discounted. 

Individual intermolecular interaction energies obtained using PIXEL and symmetry-

adapted perturbation theory at the SAPT2+3 level are shown in Table 2 at ambient pressure 

and 17.1 GPa. At ambient pressure the mean (and median) differences are 1.4(−6.8) kJ mol−1; 

the corresponding figures at 17.1 GPa are −1.2 (1.3) kJ mol−1. The largest difference at 17.1 

GPa is in interaction G/H, for which the PIXEL and SAPT energies are −1.0 and +17.9 kJ mol−1, 

respectively. 
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Table 1 Selected crystallographic information 

Pressure (GPa) 0.00 2.05 3.23 8.50 

Phase I I I’ I’ 

Crystal data 

Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121 Orthorhombic, P212121 Orthorhombic, P212121 

Temperature (K) 298 296 296 298 

a, b, c (Å) 5.1481 (1), 13.6138 (2), 7.7426 (1) 5.0359 (6), 13.462 (3), 
7.2375 (16) 

5.0055 (2), 13.4104 (9), 7.1162 
(4) 

4.879 (3), 13.135 (8), 6.658 (6) 

α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 

V (Å3) 542.64 (2) 490.67 (16) 477.68 (5) 426.7 (5) 

Radiation type Mo Kα Synchrotron, λ = 0.4780 Å Synchrotron, λ = 0.4780 Å Synchrotron, λ = 0.4959 Å 

μ (mm-1) 0.12 0.07 0.07 0.08 

Crystal size (mm) 0.20 × 0.10 × 0.10 0.10 × 0.10 × 0.10 0.10 × 0.10 × 0.10 0.06 × 0.05 × 0.04 

Data collection 

Diffractometer Bruker APEX-II CCD Bruker-Nonius APEX II Bruker-Nonius APEX II Perkin-Elmer a-Si Detector 

Absorption correction Multi-scan Multi-scan Multi-scan Multi-scan 

 Tmin, Tmax 0.676, 0.745 0.604, 0.744 0.629, 0.744 0.453, 0.744 

No. of measured, independent and 
 observed [I > 2σ(I)] reflections 

5775, 1123, 1065   2455, 627, 542   2848, 738, 684   766, 227, 192   

Rint 0.025 0.055 0.041 0.089 

θmax (°) 26.4 17.5 17.4 14.4 

(sin θ/λ)max (Å-1) 0.625 0.628 0.625 0.500 

Refinement 

R[F2 > 2 σ (F2)], wR(F2), S 0.026,  0.070,  0.82 0.064,  0.151,  1.09 0.062,  0.152,  1.05 0.062,  0.142,  1.08 

No. of parameters 76 33 33 34 
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No. of restraints 0 17 17 17 

Δρmax, Δρmin (e Å-3) 0.18, -0.13 0.33, -0.27 0.42, -0.31 0.26, -0.23 

Pressure (GPa) 9.28 17.05 18.20 22.31 

Phase II II III III 

Crystal data  

Crystal system, space group Orthorhombic, P212121 Orthorhombic, P212121 Monoclinic, P21 Monoclinic, P21 

Temperature (K) 298 298 298 298 

α, β, γ (°) 4.842 (6), 13.025 (17), 6.589 (12) 4.768 (4), 12.883 (10), 6.353 (7) 4.735 (5), 12.823 (13), 6.275 (8) 4.620 (9), 12.52 (2), 6.037 (14) 

V (Å3) 90, 90, 90 90, 90, 90 90, 91.14 (3), 90 90, 92.54 (4), 90 

Radiation type 415.5 (11) 390.2 (6) 380.9 (8) 348.9 (12) 

μ (mm-1) Synchrotron, λ = 0.4959 Å Synchrotron, λ = 0.4959 Å Synchrotron, λ = 0.4959 Å Synchrotron, λ = 0.4959 Å 

α, β, γ (°) 0.08 0.09 0.09 0.10 

Crystal size (mm) 0.06 × 0.05 × 0.04 0.06 × 0.05 × 0.04 0.06 × 0.05 × 0.04 0.06 × 0.05 × 0.04 

Data collection  

Diffractometer Perkin-Elmer a-Si Detector Perkin-Elmer a-Si Detector Perkin-Elmer a-Si Detector Perkin-Elmer a-Si Detector 

Absorption correction Multi-scan  Multi-scan  Multi-scan  Multi-scan 

 Tmin, Tmax 0.555, 0.744 0.408, 0.744 0.463, 0.744 0.610, 0.744 

No. of measured, independent 
and 
 observed [I > 2 σ (I)] reflections 

711, 329, 194   1101, 331, 208   901, 378, 305   334, 183, 156   

Rint 0.100 0.070 0.055 0.061 

θmax (°) 18.1 18.1 16.1 14.3 
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(sin θ/ λ )max (Å-1) 0.625 0.627 0.558 0.499 

Refinement  

R[F2 > 2 σ (F2)], wR(F2), S 0.091,  0.245,  1.05 0.086,  0.228,  1.11 0.078,  0.192,  1.05 0.079,  0.196,  1.15 

No. of parameters 34 33 67 66 

No. of restraints 17 17 51 51 

Δρmax, Δρmin (e Å-3) 0.36, -0.36 0.31, -0.34 0.30, -0.27 0.24, -0.30 
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Table 2 Interactions in the first coordination sphere of L-threonine at 0.0 and 17.05 GPa. All energies are in kJ mol−1. Contact distances are to H-
atoms. 

  

      Centroid  PIXEL       SAPT 2+3   

Label Symmetry  
Pressure 

(GPa)  
 Distance 

(Å) Coulombic Polarization Dispersion Repulsion Total   Total Contacts 

A/B 
1/2−x, 1−y, 1/2+z 0.00 5.555 −93.9 −30.3 −20.3 38.7 −105.8   −119.3 N1H3···O2 = 1.94 Å 

1/2−x, 1−y, −1/2+z 17.05 4.960 −150.7 −58.4 −41.9 144.8 −106.2   −118.4 N1H3···O2 = 1.98 Å 

C/D 
1−x, −1/2+y, 3/2−z 0.00 6.965 −82.6 −32.6 −11.7 71.8 −55.1   −59.9 O3H6···O1 = 1.87 Å 

1−x, 1/2+y, 3/2−z 17.05 6.583 −109.4 −51.5 −17.4 137.7 −40.6   −43.8 O3H6···O1 = 1.73 Å 

E/F 
3/2−x, 1−y, 1/2+z 0.00 6.432 −41.7 −8.7 −7.3 4.7 −53.0   −55.6 N1H3···O1 = 2.65 Å 

3/2−x, 1−y, −1/2+z 17.05 5.633 −101.3 −35.7 −22.9 73.9 −86.0   −85.5 O1···H3(N1)/H2(N1) = 1.92/2.50 Å 

G/H 
1+x, y, z 0.00 5.148 −23.5 −27.0 −20.9 37.7 −33.6   −26.8 N1H1···O2 = 2.04 Å 

−1+x, y, z 17.05 4.768 −51.0 −58.7 −44.5 153.1 −1.0   17.9 N1H1···O2 = 1.83 Å 

I/J 
 −x, 1/2+y, 3/2−y 0.00 8.031 −9.4 −2.5 −1.9 0.1 −13.7   −13.4  C4H7···O2 = 3.59 Å 

 −x, −1/2+y, 3/2−y 17.05 7.677 −10.4 −4.4 −3.5 1.7 −16.6   −18.1  C4H7···O2 = 2.97 Å 

K/L 
1/2+x, 1/2−y, 1−z 0.00 4.934 −3.6 −12.9 −21.9 29.4 −9.0   −5.6 N1H2···O3 = 2.31 Å  

 −1/2+x, 1/2−y, 1−z 17.05 4.344 −49.8 −47.3 −47.7 153.5 8.5   19.3 N1H2···O3 = 2.04 Å 

M/N 
 −1/2+x, 1/2−y, 2−z 0.00 6.391 −5.0 −2.7 −9.9 8.5 −9.0   −8.3 C4H7···H5(C3) = 2.42 Å 

 1/2+x, 1/2−y, 2−z 17.05 5.767 −16.5 −17.3 −22.8 64.0 7.3   2.5 C4H7···H5(C3) = 1.88 Å 
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3 RESULTS & DISCUSSION 

3.1 Phase behaviour 

The X-ray crystal structure of L-threonine was first determined by Shoemaker in 1950.74  

It exists as a zwitterion in the solid–state with charged carboxylate and ammonium groups 

situated on the α-carbon (C2) and a hydroxyl and methyl group on the β-carbon (C3) with the 

chemical formula C4H9NO3. L-threonine crystallises in the space group P212121 with four 

molecules in the unit cell (Z’ = 1) at ambient pressure and temperature, with the unit cell 

parameters: a=5.14810(10) Å, b=13.6138(2) Å, c=7.74260(10) Å and V= 542.642(15) Å³. The 

atom labelling, which follows Shoemaker’s work, is given in Figure 1.   

The phase behaviour of L-threonine has been most recently studied using Raman 

spectroscopy by Holanda et al., who inferred three structural phase transitions at ca.2 GPa, 

between 8.2 and 9.2 GPa and between 14.0 and 15.5 GPa based on changes in the slopes of 

frequency-pressure plots and the splitting, appearance or disappearance of bands.33  We shall 

label the phases formed in these transitions I’, II and III, respectively.  Over the course of this 

and two earlier Raman studies the transition to phase I’ had been observed between 1.1 and 

1.6 GPa,33 at 1.9 GPa (in D-threonine)75 and at 2.2 GPa,76 the authors ascribing these 

differences to the influence of the different pressure-transmitting media used in the three 

studies (methanol-ethanol, Nujol and argon).  

The variation of the unit cell volume and dimensions with pressure is shown in 

Figure 2.  The structure remains orthorhombic, space group P212121, from ambient pressure 

to 17.1 GPa, i.e. throughout the range for phases I, I’ and II,33 and it is clear that the structures 

of these phases are very closely related.   

The discontinuity between 17.1 and 18.2 GPa, seen in all four curves, corresponds to 

the transition from phase II to III, which occurred between 14.0 and 15.5 GPa in Holanda’s 

study.  The difference in the transition pressure may, as these authors suggest, be the result 

of the influence of the pressure-transmitting medium (Ne in our case). Alternatively, it may 

reflect the sensitivity of spectroscopic methods to local structural changes, as was the case in 

[Cu(pyrazine)(H2O)2F2], where premonitory disordering of Jahn-Teller directions, observed by 

high pressure electron paramagnetic resonance, was not evident in the average structure 

obtained by analysis of Bragg scattering in single-crystal diffraction measurements.77 
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Figure 2 Variation of (a) the normalised lattice parameters and (b) unit cell volume of L-
threonine as a function of pressure. Neutron data, collected using the d8 isotopologue, are 
shown as diamonds. X-ray diffraction data, collected using isotopically normal threonine, 
are shown as circles. There is little evidence of any isotopic effect at the resolution of these 
experiments.  The curve is the equation of state of phase I and I’.  
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At 17.1 GPa the unit cell dimensions of phase II are a = 4.768(4), b = 12.883(10), c = 

6.353(7) Å, V = 390.2(6) Å3, representing a volume reduction of 28 % compared to the 

ambient-pressure structure. The cell dimensions after the transition to phase III at 18.2 GPa 

are a = 4.735(5), b = 12.823 (13), c = 6.275(8) Å, β = 91.14(3)°, V = 380.9 (8) Å3, so that after 

the phase transition, though the 21 operations along the a and c directions are lost, the 

translational symmetry of the lattice is preserved and Z is still equal to four, but Z’ = 2.  The 

structure remains in phase III up to 22.3 GPa, the highest pressure reached in this study.  At 

22.3 GPa the unit cell volume is 348.9(12) Å3, representing a 36 % reduction compared to 

ambient pressure. Pressure release from 22.3 GPa to 13.0 GPa re-forms phase II. Further X-

ray decompression measurements were not performed, but Holanda’s Raman measurements 

indicate full reversibility from 27 GPa to ambient pressure. 

Fitting the pressure-volume data of L-threonine-d9 I and I’ obtained in the neutron 

powder diffraction experiment to a Vinet equation of state78 gives values of the bulk modulus 

(K0) and its first derivative (K’) of 15.23(8) GPa and 7.97(6), respectively. The zero-pressure 

volume in this fit was fixed to 540.236 Å³ and χ2 was 1.94.  The bulk modulus of L-threonine 

is comparable to other hydrogen bonded amino acids, e.g. L-serine I is 23.4 GPa and those of 

polymorphs II and III are 14.7 and 13.9 GPa;79 and that of L-alanine is 13.1(6) GPa.18 

 Superposition of the equation of state curve on all the pressure-volume points 

collected in this study between ambient pressure and 17.1 GPa shows the points between 9.8 

and 17.1 GPa lie to systematically lower volume, pointing to the formation of phase II 

between 8.7 and 9.8 GPa.  This is consistent with the phase I’ to II transition observed between 

8.2 and 9.2 GPa by Holanda et al.,33 albeit with a more subtle signature than the transition to 

phase III.   The transition is also marked by a small discontinuity in the b-axis length [Figure 

2(a)].  

It will be seen from Figure 2(b) that all the points between ambient pressure and 

8.7 GPa are consistent with the same equation of state, and there appears to be little 

indication in the plots for the I to I’ transition proposed by Holanda et al. near 2 GPa (see also 

below). 
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3.2 The Effects of Pressure on the Intramolecular Structure 
 

High pressure data sets almost always suffer from low completeness as a result of the 

limited scattering geometry of the diamond anvil cell. Accordingly, the data-sets of threonine-

I, I’ and II collected here had completenesses of between 43 and 73 %, the corresponding 

figures for the lower symmetry phase III were 32–45 %.  As a result, it is usually necessary to 

place restraints on the structure refinements, and bond distances and angles were restrained 

to values observed at ambient pressure.   

In order to assess the suitability of the restraints applied, the structures of phase I at 

ambient pressure and phase III at 22.3 GPa were optimised by periodic DFT.  The calculations 

indicated that bond distances change by as much as 0.071 Å, and bond angles by 5.43° (see 

Table S7 in the ESI), while the root-mean-square deviations between the optimised and 

experimental molecular structures were 0.0284 and 0.131 Å, respectively (see Tables S9 and 

S10 in the ESI, which also contains further comparison data). Use of the optimised model as 

a freely rotating rigid body in the refinement against the 22.3 GPa data set lowered the R-

factor, but only slightly (0.17 % for 183 reflections), so that it is not possible to state 

definitively whether the intramolecular bond distances and angles are significantly affected 

by pressure, as the differences are beyond the resolution of the data obtained in this study.  

By contrast, the torsion angles do vary significantly with pressure. Figure 3 shows 

differences in conformation between the ambient pressure and highest-pressure molecular 

structures, with differences apparent about the carboxylate, hydroxyl and methyl groups.  

Holanda et al. noted that the most prominent changes in the Raman spectra of threonine with 

pressure were associated with vibrations of the carboxylate moiety.  The variation of the 

orientation of the carboxylate group with pressure, represented by the O2-C1-C2-C3 torsion 

angle (τ), is shown in Figure 4. The features in these plots correlate with the phase transitions 

suggested by Holanda et al. and described in Section 3.1 

Between 0.0 and 2.1 GPa τ decreases from −83.2(2)° to −85.3(6)°, but this trend 

appears to reverse between 2.1 and 3 GPa. These changes are small, but the pressure at which 

they occur is the same as the I to I’ transition inferred from the Raman data. The small 

magnitude of the change is consistent with lack of any obvious signature in the cell 

dimensions or volume at this pressure.  
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Figure 3 Structure overlay of the two symmetry-independent molecules of threonine at 22.3 
GPa (coloured by element) [(a) molecule A and (b) molecule B] with the molecule at ambient 
pressure (coloured green). The view is down the C3-C2 bond. Overlay of the structures was 
determined using the structure overlay feature in MERCURY from atoms C1, C2 and C3 only. 

Figure 4 The O2-C1-C2-C3 torsion angle (τ) as a function of pressure. The green and red circles in phase 
III represent molecules A and B, and the open circle represents the decompression measurement. A 
second order polynomial was fitted to phase I and I’ data, the minimum of the parabolic function was 
determined to be −85.0° at 3.3 GPa. Extrapolating the curve to 17.1 GPa serves to highlight the slower 
rate of change exhibited in phase II. Plots of other torsion angles against pressure are available in the 
ESI. 
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Beyond 3 GPa the value of τ continues to become more positive, but between 8.5 and 

9.8 GPa it changes dramatically from −82(1)° to −76(2)°, the trend flattening-off again 

between 9.8 and 17.1 GPa. These changes coincide with the transition from phase I’ to II.  The 

standard uncertainties of τ become large above the phase II to III transition at 17.1 GPa.  

However, with the change in Z’ from 1 to 2, it appears that the value continues to become 

gradually more positive in one molecule (molecule B) but more negative in the other.  

Although H-atoms could not be located in difference maps, the changes in the 

positions of acceptor atoms imply that there is also a change in the orientation of the hydroxyl 

moiety over the course of the II to III transition.  Hydrogen atoms were placed in calculated 

positions (see Section 2), and based on this approach the torsion C4-C3-O3-H6 changes from 

−50° in phase II to −60° in molecule A, and to −78° in molecule B in phase III.  The change in 

the position of H6 is also seen in DFT optimisations, but is less pronounced (Table S11 and 

Figure S8 in ESI); the corresponding torsional changes over the course of the II to III transition 

are: −45 to −41° and −47° in molecules A and B, respectively. The implications of the change 

in position of H6 are discussed in Section 3.4.3.  

 

3.3 Intermolecular interactions at ambient pressure 
 

Intermolecular interaction energies in phase I at ambient pressure are listed in Table 2, 

where contacts are ordered by interaction energy and grouped in symmetry-equivalent pairs. 

Table 2 also lists the breakdown of the molecule-molecule energies into component 

Coulombic, polarization, dispersion and repulsion terms obtained from the PIXEL calculations. 

Validation of the PIXEL results against those of other methods is described in Section 2.8.  

Given that the PIXEL method is semi-empirical and developed using ambient-pressure 

structural and thermodynamic data, the level of agreement with other methods is 

remarkable.  

The strongest contacts comprising four pairs of crystallographically unique 

interactions labelled A/B–G/H. The strongest (A/B; −105.8 kJ mol−1) involves molecules 

connected by N1H3···O2 hydrogen bonds, with a hydrogen-acceptor separation of 1.94 Å 

forming a primary-level C(5) chain which runs along c. Interactions G and H involving 

N1H1···O2 hydrogen bonds (2.04 Å, −33.6 kJ mol−1) form a second primary-level C(5) chain 
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which runs along a. The combination of these two C(5) chains generates a layer in the ac plane 

(Figure 5).  

  

The third dimension of the H-bond network is completed by C(6) chains formed by 

O3H6···O1 hydrogen bonds between the carboxylate and hydroxyl groups along b, see Figure 

6 [interaction C/D in Table 2, the hydrogen-acceptor distance is 1.87 Å and the energy is 

−55.1 kJ mol−1]. This is the second most stabilising interaction in the ambient pressure 

structure.  The Coulombic interaction is almost as strong as in the A/B contacts (−82.6 versus 

−93.9 kJ mol−1), but the repulsion term is also much more positive (+71.8 versus 38.7 kJ mol−1), 

so that, paradoxically, the interaction with the shorter H-bond is also the less stabilising. 

Interactions E and F are strongly stabilising, with an energy of −53.0 kJ mol−1 but 

featuring a rather long N1H3···O1 contact of 2.65 Å with a <N1H3···O1 angle of only 110.4°. 

This angle is too tight for H-bond,80 and the component energies show that the interaction is 

predominantly Coulombic with a much smaller dispersion contribution than the hydrogen 

bonds described above. The contact is therefore better regarded as a long-range intra-layer 

electrostatic contact than a hydrogen bond. This interaction has an important influence on 

the compression of L-threonine, as described in the following section. 

Figure 5 Hydrogen bonding in L-threonine at ambient pressure as 
viewed along b 
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The hydrogen bonding scheme described above appears to leave the potentially 

strong donor N1H2 unbound. There is an additional C(5) chain connected by N1H2···O3 

interactions (labelled K and L in Table 2) though the DH···X separation is quite long at 2.31 Å. 

The contact has a modest Coulombic component and is dominated by the dispersion term. It 

has an interaction energy of only −9.0 kJ mol−1.  The low value of the Coulombic contribution 

can be ascribed to the juxtaposition of both positive and negative regions of the electrostatic 

potentials of the contacting molecules.  

In addition to the contacts listed above there are two pairs of longer-range 

interactions (I/J and M/N) with energies of −13.7 and −9.0 kJ mol−1 and H···O distances of 

between 3.59 and 2.42 Å.  Topological analysis based on Voronoi-Dirichlet partitioning 

indicates that interactions I/J lie outside the first coordination sphere, a finding consistent 

with the low contributions of dispersion and repulsion to the energy of this interaction.  The 

molecular centroids define a coordination sequence of 12-42-92, which is characteristic of an 

underlying face centred cubic topology.  This arrangement persists at high pressure.  Plots of 

the first coordination spheres at 0, 17.1 and 18,2 GPa are given in Fig S5 in the ESI.  

Figure 6 Hydrogen bonding in L-threonine at ambient pressure, as viewed along c 
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3.4 The Effects of Pressure on Intermolecular Interactions 

3.4.1 The effect of pressure on the lattice energy 

 The effect of pressure on the lattice energy of L-threonine is shown in Figure 7, the 

points being calculated using the PIXEL method and periodic DFT.   

In phases I, I’ and II the lattice energies increase steadily with increasing pressure, 

which is expected as repulsion contributions increase as molecules are forced into close 

proximity. There is a discontinuity in the gradient at the II to III phase transition at 18.2 GPa 

leading to a sharp destabilisation of the lattice energy.   Examination of the contributions of 

the interactions in the first coordination sphere to the lattice energy (Figure 8) shows that all 

except the symmetry-related pair E and F are driven into destabilising regions of their 

potentials, that of the strongest H-bonding interaction A/B being particularly steep.   

Based on the trends seen in Figure 7, the lattice energy of phase II at 18.2 GPa would 

be expected to be approximately −126 kJ mol−1, compared to −124.9 kJ mol−1 for the observed 

phase III.  Although phase III is less stable than phase II in terms of internal energy, at 18.2 GPa, 

the difference in molecular volume is 2.3 Å3.  This figure, though apparently modest, 

contributes a pΔV term of −25 kJ mol−1 to the free energy change of the transition, which more 

than compensates for the change in lattice energy.  Like most high-pressure phase transitions, 

therefore, the II to III transition in threonine is driven by the need to fill space efficiently at 

high pressure.  
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Figure 8 Molecular interaction energies of contacts A-N as a function of centroid separation. 
Circles represent phases I to II (P212121), and triangles represent phase III (P21). The dotted lines 
have no functional significance and are meant to guide the eye. 

Figure 7 The variation of the lattice energy of threonine with pressure. The points are 
relative to ambient pressure (Urel). 
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3.4.2 The effect of pressure on intermolecular interactions in the ac planes 

An animation showing the path of compression of the layers formed in the ac planes 

is available in the ESI, while plots of the selected interaction distances against pressure are 

given in Figures 9 (a)–(d). 

 

By far the biggest change within the ac layers occurs in interaction E/F. Between 0 and 

9.82 GPa the N1H3···O1 distance in this interaction changes from 2.65 Å to 2.03 Å. The 

N1H3···O2 distance of interaction A/B barely varies over the same pressure range.  The angles 

subtended at H3 in the two interactions are respectively 110.4 and 162.7° at ambient pressure 

and 120.9° and 136.2° at 9.8 GPa. Interactions E/F thus change from being long-range 

Coulombic contacts at ambient pressure to ones mediated by a bifurcated H-bond at 9.8 GPa.   

The change can be viewed as the positively-charged H3 adjusting its position within 

the large and strongly negative region of the combined electrostatic potentials of the 

molecules involved in interactions A/B and E/F.  The interaction energy becomes 

Figure 9 (a)–(d) Donor–acceptor distances of selected hydrogen bonds as a function of pressure, 
Decompression measurements at 13.0 GPa are represented by open markers. Molecules A and B in 
phase III are represented by green and red markers respectively. Trendlines are meant to guide the 
eye only. 



25 
 

simultaneously more negative, the only stabilising change to occur on compression, providing 

a lower energy pathway for the structure to accommodate compression. Since interactions E 

and F are generated by a screw axis along c, the c-axis compresses substantially more than 

either the a or b-axes (Figure 2(a)).   The gradual bifurcation of H3 reflects Holanda and co-

workers’ comment that the I’ to II transition is the final result of a long process with affects 

the carboxylate rocking motion from about ca. 4.8 GPa.33  Crystallographically, we can see 

that by this stage the H3···O1 distance is already around 2.3 Å. 

While the principal structural effect of the I’ to II transition is seen in interactions E/F, 

effects are also seen in the other interactions formed in the ac plane.  The H-bonded dimers 

A/B are also slightly stabilised by the bifurcation of H3 while in phase I’, but the energy begins 

to increase rapidly after the I’ to II phase transition. Similar comments apply to interactions 

G/H, which actually becomes repulsive in phase III. 

The lengths of the a and c axes undergo more rapid compression after the II to III 

transition.  The animation of the pressure series shows that the loss of the 21 axes along a and 

c, which occurs during the transition, enables neighbouring rows of molecules linked by 

N1H3···O2 to shift in alternate directions enabling them to approach more closely, and the 

molecules to pack more efficiently. The lowering of symmetry illustrates Dove’s comment 

that high-pressure phase transitions generally favour distorted phases in order to maximise 

density.81 

 

3.4.3 Interactions between the ac planes 

An animation showing the path of compression of the layers formed in the ab planes is 

available in the ESI. The layers which form parallel to the ac planes are connected by 

O3H6···O1 H-bonds between the hydroxyl and carboxylate groups (interactions C/D), and a 

plot of the interaction distance against pressure is shown in Figure 9 (c).  

The C/D interaction energy does not show any initial stabilisation with pressure, in 

contrast to interactions A/B and E/F, a consequence, perhaps, of the repulsion term, which is 

appreciable even at ambient pressure. The energy becomes more positive as the pressure 

increases and does not exhibit any major discontinuities at the phase transitions.  

The O3H6···O1 H-bond shortens steadily from 1.87 Å at ambient pressure to 1.77 Å at 

8.50 GPa.  The distance between H6 and the O2 atom of the same carboxylate group falls 
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below 3 Å at 8.50 GPa, but is still very unsymmetrical at this stage, the angles subtended at 

H6 to O1 and O2 being 158.4 and 129.5°, respectively. The transition from phase I’ to II is 

marked by greater translational movement of the neighbouring rows generated by lattice 

repeats along a relative to each other. The compression of the O3H6···O2 H-bond begins to 

level-off at this point, to be replaced by an increasing bifurcation of H6. At 9.82 GPa the 

H6···O1 and O2 distances are 1.73 and 2.91 Å, and the corresponding angles at H6 are 156.9 

and 128.5°.  By 17.1 GPa the H6···O2 distance has shortened to 2.73 Å, though without much 

change in the other parameters (H6···O1 = 1.73 Å, angles at H6 are 128.3 and 159.6°). Thus, 

the phase I’ to II transition is marked along the b axis by a change in the way that the structure 

accommodates the applied pressure. 

 The symmetry reduction that occurs in the phase II to III transition is marked by a 

change in the orientation of the hydroxyl group in half of the molecules.  The molecules 

labelled A retain the conformation of phase II, while H6B become more clearly bifurcated, so 

that at 18.2 GPa the O3BH6B···O1B increases to 1.97 Å, O3BH6B···O2B decreases to 2.62 Å, 

and respective angles at H6B are 122.1 and 129.8°.  The corresponding parameters for the ‘A’ 

molecules are like those in phase II: 1.77 Å, 2.70 Å, 146.8° and 129.5°.  The structural signature 

of the II to III transition is thus similar to the I’ to II transition in that it involves the bifurcation 

of a hydrogen bond. The difference between the transitions is that the change occurs in one 

pressure step, rather than being gradual, and involves a change in molecular conformation.  

 

4 CONCLUSIONS 
 

The crystal structure of L-threonine has been determined up to 22.3 GPa, one of the 

highest pressures ever achieved for a complex molecular material, providing amongst the 

most detailed information beyond 10 GPa ever published for this type of system.  

The structure undergoes two isosymmetric phase transitions on compression 

between 0.0 and 17.1 GPa. The ambient pressure phase I transforms to phase I’ between 2.1 

and 3.0 GPa, the result of a subtle reorientation of the carboxylate group. The transformation 

of phase I’ to phase II between 8.5 and 9.8 GPa follows a gradual transformation of a long-

range Coulombic interaction into one mediated by a bifurcated hydrogen bond.  The 

transition therefore reflects a change in the way the structure absorbs pressure rather than a 
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distinct structural change, and in this regard it is somewhat akin to a second order thermal 

event such as a glass transition.  

Further compression results in the transformation to phase III between 17.1 and 

18.2 GPa.  The II to III transition is driven by a discontinuous reduction in volume and is 

characterised by the rotation and bifurcation of the hydroxyl groups in half of the molecules 

in the unit cell. 

The crystallographic results are consistent to those seen in the earlier Raman studies.  

Indeed, the interpretation of the crystallographic data has been substantially guided by the 

Raman results of Holanda et al.33  While the phase II to III transition involves a discontinuous 

change in volume and symmetry, phases I, I’ and II are all very similar, and the designation of 

these forms as separate phases is based on discontinuities of the trends seen in Holanda et 

al.’s Raman spectra with increasing pressure.  In particular, the I and I’ transition is not at all 

obvious from examination of the crystallographic data alone, and it would probably have been 

missed without the Raman data. This said, while Raman spectra have proved to be an 

extremely sensitive tool for detecting the phase transitions, they are a less definitive guide to 

the magnitude of the structural changes. 

Above 17.1 GPa the crystal structure of L-threonine destabilises rapidly.  Holanda’s 

Raman spectra suggest that the material remains crystalline to at least 27 GPa, but the 

ultimate response of a relatively complex crystal structure such as threonine to very rapid 

onset of destabilisation is largely unexplored territory.  One possibility is amorphisation, as 

seen for L-alanine at 15 GPa.18   Cleavage of primary covalent bonds forms another potential 

route, exemplified by proton transfer in oxalic acid at 5.3 GPa,82 or even wholescale 

decomposition into amorphous networks such as is seen for benzene83, 84 and pyridine.85, 86  

Although the hydrogen bonds in L-threonine are substantially compressed up to 

22.3 GPa, it is remarkable that their distances all find precedents at ambient pressure, and 

none of them can be described as ‘abnormally short’ (Figure 10).  In the 5064 structures of 

amino acids, peptides and complexes in the CSD (v5.40 November 2018) there are 2105 

individual hydrogen bond lengths (ca. 5 %) which are equal to or shorter than the shortest 

hydrogen bond length in L-threonine at 22.3 GPa.   This is in spite of a reduction in unit cell 

volume by over one-third.   Hydrogen bonds are the strongest and most consistently-formed 

intermolecular interactions in organic crystal structures, and this study reveals that their 

robustness persists well above 10 GPa, even in relatively complex molecular crystals.   
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It has been shown that the strongest intermolecular interactions generally persist 

across phase transitions.87, 88 However, the drive to reduce volume becomes ever more 

pressing as pressure is increased, leading to a perturbation in the hierarchy of intermolecular 

interactions. It will be fascinating to discover the point at which this effect finally wins out and 

hydrogen bonds give up the ghost. 
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