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Abstract:  

Interference with immune cell proliferation represents a successful treatment strategy in T cell-mediated 

autoimmune diseases such as rheumatoid arthritis and multiple sclerosis (MS). One prominent example is 

pharmacological inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH), which 

interferes with de novo pyrimidine synthesis in actively proliferating T and B lymphocytes. Within the 

TERIDYNAMIC clinical study we observed that the reversible DHODH inhibitor teriflunomide unexpectedly 

caused selective changes in T cell subset composition and T cell receptor repertoire diversity in relapsing-

remitting MS (RRMS) patients. Using a preclinical antigen-specific setup, we saw that DHODH-inhibition 

preferentially suppressed the proliferation of high-affinity T cells. Mechanistically, DHODH inhibition 

interferes with oxidative phosphorylation and aerobic glycolysis in activated T cells via functional inhibition of 

complex III of the respiratory chain. Interestingly, the affinity-dependent effects of DHODH inhibition were 

closely linked to differences in T cell metabolism. High-affinity T cells are more dependent on oxidative 

phosphorylation during early T cell activation, which explains their increased susceptibility towards DHODH 

inhibition. In a mouse model of CNS autoimmunity, DHODH inhibitory treatment also resulted in preferential 

inhibition of high-affinity autoreactive T cell clones. Importantly, T cells from RRMS patients exhibited 

increased levels of oxidative phosphorylation and glycolysis compared to T cells from healthy controls, which 

were reduced with teriflunomide treatment. Together, these data point to a novel mechanism of action where 

DHODH inhibition corrects metabolic disturbances in T cells, which primarily affects profoundly metabolically 

active high-affinity T cell clones. Hence, this may promote recovery of an altered T cell receptor repertoire in 

MS and other autoimmune diseases.  

 

One Sentence Summary: Inhibition of a mitochondrial enzyme by pharmacological DHODH inhibition 

modulates antigen-specific immune responses in an affinity-dependent fashion.  
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Introduction 

As documented in several successful clinical trials, inhibition of de novo pyrimidine synthesis, which is crucial 

for rapid expansion of activated lymphocytes, is a well-established strategy for treatment of T cell-mediated 

autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS) (1–6). Leflunomide, along 

with its active metabolite teriflunomide, are well known inhibitors of the mitochondrial enzyme dihydroorotate 

dehydrogenase (DHODH), the fourth enzyme in the de novo pyrimidine biosynthetic pathway. Both preclinical 

data and data sets from clinical trials illustrate the impact of pharmacological DHODH inhibition on 

lymphocyte proliferation and expansion (7–9). However, as illustrated by a recently published placebo-

controlled trial (10), it is still poorly understood how these drugs exert a selective effect on autoreactive T cells 

while only slightly affecting immune responses against bacteria and viruses. Although antibody titers for de 

novo immune responses were slightly impaired in this study, they were sufficient for seroprotection, while 

cellular memory responses to recall antigens were not affected. It has been proposed that the inhibitory effect of 

teriflunomide on lymphocyte proliferation might depend on the antigen used for T cell activation; however, this 

has not been experimentally addressed so far (11).  

 

It has been demonstrated that development of autoimmunity can be driven by avidity maturation of prevailing 

autoantigen-specific T cell populations. Selective depletion of high-affinity T cell clones can prevent 

development of organ-specific autoimmunity, e.g. in an animal model of autoimmune diabetes. Likewise, an 

increase in antigen-affinities has been implicated in disease progression in different models of T cell-mediated 

autoimmunity (12–14). Also, in an animal model of MS, transgenic mice bearing a higher affinity autoantigen-

specific T cell receptor (TCR) exhibit a significantly higher disease incidence than mice with a low affinity 

TCR for the same antigen, demonstrating that high-affinity T cells bear high pathogenicity also in central 

nervous system (CNS) autoimmunity. Based on the SKG mouse model, a model for spontaneous arthritis, it has 

also been proposed that in RA, high-avidity autoreactive T cells might be central to disease pathogenesis, 
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although this has not been formally proven (15). 

 

The process of lymphocyte activation, expansion and acquisition of effector functions is unique with regard to 

the specific bioenergetic as well as biosynthetic needs of these cells. In recent years, several studies have 

elucidated the metabolic properties and requirements of distinct lymphocyte populations under different 

conditions. In a nutshell, resting T cells primarily use oxidative phosphorylation (OXPHOS) and the breakdown 

of fatty acids via the tricarboxylic acid (TCA) cycle to supply energy (16, 17). Upon activation, they rapidly 

switch to aerobic glycolysis to ensure energy supply as well as generating macromolecules and “building 

blocks” to enable cell growth and expansion. However, despite these general principles, there are fundamental 

differences in the metabolic profile of distinct lymphocyte populations depending on their activation state. For 

example, naïve T cells depend on the combined upregulation of OXPHOS and aerobic glycolysis for initiation 

of T cell proliferation, whereas effector T cells mainly depend on glycolysis for fulfillment of effector functions 

(18). Moreover, activated memory T cells display an increased capacity for OXPHOS in comparison to freshly 

activated T cells, which is the basis for their bioenergetic advantage over naïve T cells and explains their 

increased expansion kinetics (19). These insights into the distinct bioenergetic profiles of T cells gave rise to the 

concept of immune-metabolism as a novel therapeutic target, allowing a more selective interference with 

distinct immune cell subsets or activation states. 

Here, we demonstrate that teriflunomide treatment of relapsing-remitting MS (RRMS) patients resulted in a 

reduction in TCR repertoire diversity due to depletion of individual T cell clones (results from an “in depth” 

immune profiling controlled clinical study in RRMS patients and healthy controls (HCs), TERIDYNAMIC). 

Following this line, we observed that the extent of teriflunomide-mediated inhibitory effects on T cell 

proliferation depended on the antigen-affinity of T cells, as high-affinity T cells were much more affected by 

teriflunomide compared to low-affinity T cells. Interestingly, DHODH inhibition resulted in a profound 

decrease in OXPHOS as well as aerobic glycolysis of activated T cells, thus directly linking DHODH with the 

immune-metabolism of T cells. During initial T cell activation, OXPHOS inhibition seemed to be especially 
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pivotal for DHODH-mediated interference with T cell proliferation. Accordingly, the differential response of 

high-affinity and low-affinity T cells can be explained by different metabolic demands depending on their 

antigen-affinity, as high-affinity T cells exhibited a greater dependence on OXPHOS than low-affinity T cells. 

Hence, our study demonstrates that DHODH inhibition exerts specific effects on distinct T cell clones based on 

their individual metabolic profiles, thus providing novel insights into the mechanisms underlying the selective 

immune interference in the context of autoimmune diseases while preserving protective immunity against 

pathogens. 

 

Results  

DHODH inhibition causes distinct alterations in T cell subsets and the T cell receptor repertoire of patients 

with RRMS 

So far, the in vivo effects of teriflunomide on T cell subsets in RRMS patients have not been fully elucidated. 

To address this question, we investigated the CD4+ T cell subset composition in RRMS patients before and 

during teriflunomide treatment by multi-color flow cytometry as part of the TERIDYNAMIC clinical trial 

(NCT01863888). Baseline data from 50 RRMS patients are depicted in Table S1. As the known 

antiproliferative effects of teriflunomide treatment include a mild but consistent lymphopenia (1) (Table 1), we 

assumed that teriflunomide treatment would result in a uniform reduction in T cell subset counts in the 

peripheral blood of RRMS patients. Surprisingly, we observed distinct effects of teriflunomide treatment on 

different T cell subsets with an absolute reduction in T helper 1 (Th1) cells, but not Th2 or Th17 cells (Fig. 1 

A). While absolute numbers of regulatory T cells (Treg) and of the subset of inducible regulatory T cells 

(iTregs) remained unaffected (Fig. 1 A, Fig. S1, A and B), we observed a selective increase in the proportion of 

inducible regulatory T cells (iTreg) under teriflunomide (Fig. 1 B; Fig. S1, A and B). This relative increase in 

iTregs was even more pronounced in a subgroup of previously untreated RRMS patients receiving 

teriflunomide (Fig. S1, C and D). Accordingly, this differential effect of teriflunomide resulted in an increased 

ratio of iTregs/Th1, whereas the ratio of iTregs/Th17 was not modified (Fig. S1 E). With regard to markers of 
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Treg functionality, expression levels of CD39 and CTLA-4 remained unchanged under teriflunomide treatment 

(Fig. S1, F and G). In this line, the suppressive capacity of Tregs derived from teriflunomide-treated RRMS 

patients in an autologous suppression assay was not significantly altered when compared to their respective 

baseline levels (Fig. S1 H). Likewise, the cytokine profile of Tregs from teriflunomide-treated patients was 

unaffected (Fig. S1 I).  

Based on these results we hypothesized that such differential effects on distinct T cell populations might in turn 

result in changes of the TCR repertoire, as some T cell clones might be more affected than others. First, we 

performed a detailed analysis of the TCR repertoire from 14 treatment-naïve RRMS patients at an early disease 

stage in comparison with 10 age-and sex-matched HCs. Here we observed significant differences in the TCR 

repertoire between treatment-naïve RRMS patients and HCs (Fig. 1, C and D) characterized by an increase in 

TCR repertoire diversity reflected by higher numbers of unique clones in the CD4+ compartment and - to a 

lesser extent in the CD8+ compartment. Moreover, patients with RRMS exhibited a greater percentage of clones 

with shared amino acid sequences (termed sample overlap), which indicates that the frequency of common or 

shared clones is higher in RRMS patients than in HCs (Fig. 1, C and D). Importantly, teriflunomide treatment in 

the TERIDYNAMIC clinical trial resulted in a reduction in CD4+ TCR repertoire diversity within several weeks 

after treatment initiation, as numbers of unique clones were significantly reduced upon treatment (Fig. 1 E). 

Additionally, teriflunomide treatment resulted in a significant decrease in sample overlap in RRMS patients, 

suggesting a reduction of shared clones by teriflunomide (Fig. 1 E). For CD8+ T cells similar, albeit less 

pronounced teriflunomide-induced changes were observed (Fig. 1 F). To exclude potential confounding effects 

of previous disease modifying treatments (DMT) on the TCR repertoire, we performed a second analysis 

focusing on treatment-naïve RRMS patients before and during teriflunomide treatment and could corroborate 

the effects of teriflunomide on the TCR repertoire (Fig. S1, J and K). Importantly, we did not observe 

alterations in CD4+ TCR repertoire diversity in RRMS patients following immune-modulatory treatment with 

dimethyl fumarate (DMF), interferon-β (IFNβ) or glatiramer acetate (GLAT) (Fig. 1, G and H). These results 

indicate that immune modulation per se does not result in TCR repertoire changes (20).  
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These differential effects suggest that some T cells might be more susceptible towards DHODH-mediated 

changes than others, which implies the presence of a preferential effect of DHODH inhibition on distinct T cell 

clones. In order to investigate the DHODH-mediated impact on antigen-specific T cell responses in more detail, 

we switched to the murine system employing T cells from transgenic mice that are specific for distinct model 

antigens. 

 

Affinity-dependent effects of DHODH inhibition on T cell proliferation 

We compared the effects of DHODH inhibition on T cell proliferation by employing transgenic T cells that 

recognize antigenic peptides with different antigen-affinities. First, to evaluate the effect of teriflunomide on 

CD4+ T cells we made use of myelin oligodendrocyte glycoprotein (MOG)-specific T cells from 2D2 mice, 

which are known to cross-react with a particular neurofilament (NFM15-35) peptide (21) with a higher affinity 

than their cognate MOG35-55 peptide as shown by Rosenthal et al. (22). Interestingly, we could demonstrate that 

teriflunomide was more effective in restricting proliferation of CD4+ T cells upon high-affinity stimulation 

compared to low-affinity stimulation (Fig. 2, A and B). This was accompanied by a differential effect on CD4+ 

T cell expansion with a 91 % inhibition of high-affinity stimulated CD4+ T cells compared to 59 % inhibition of 

low-affinity stimulated CD4+ T cells (Fig. 2 C), while the viability of cells was not affected (Fig. S2 A). 

For further corroboration we switched to transgenic CD8+ T cells from OT-I mice recognizing altered peptide 

ligands of the model antigen ovalbumin with distinct antigen-affinities (SIINFEKL>SIIQFEKL>SIITFEKL) 

(Fig. 2, D-F) (23). Again, we observed a differential effect of DHODH inhibition depending on the affinity of 

the peptide used, which was furthermore illustrated by generation analysis of proliferating CD8+ T cells (Fig. 2 

D). Importantly, this differential effect cannot be explained by mere quantitative differences in T cell activation, 

as it was observed among different antigen concentrations (Fig. S2 B). 

Finally, we made use of transgenic T cells recognizing an identical peptide albeit with distinct antigen-affinities. 

Therefore, we employed OT-I transgenic T cells recognizing the ovalbumin peptide SIINFEKL with a high 

affinity and transgenic T cells from OT-III that are specific for the same antigen, but with a lower affinity (24). 
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Again, teriflunomide was much more effective in restricting proliferation of high-affinity CD8+ T cells 

compared to low-affinity CD8+ T cells (Fig. 2, G-I). Importantly, polyclonal stimulation of high- versus low-

affinity CD8+ T cells abrogated teriflunomide-mediated differences in T cell proliferation (Fig. S2, C and D), 

illustrating that the observed differences are indeed linked to antigen-specific stimulation. 

 

In contrast to the strong anti-proliferative effect we did not observe a significant effect of DHODH inhibition on 

effector molecule production when evaluating IFNγ as well as granzyme B production by both high-affinity and 

low-affinity CD4+ and CD8+ T cells on a per cell basis using intracellular flow cytometry (Fig. S2, E-H). 

Hence, the well-known (25, 26) and robust decrease in proinflammatory cytokine secretion in the supernatants 

of teriflunomide-treated T cells is thus most likely due to inhibition of T cell expansion rather than a direct 

effect on cytokine production on a cellular level (Fig. S2, I and J). 

Further experiments revealed that a structurally distinct DHODH inhibitor, brequinar, exerted comparable 

affinity-dependent effects on T cell proliferation (Fig. S3, A-C). Importantly, other anti-proliferative drugs such 

as the purine synthesis inhibitor mercaptopurine and the DNA intercalating agent mitoxantrone did not exhibit 

any affinity-dependent effects over a range of concentrations despite robust interference with T cell 

proliferation (Fig. S3, A-D). Following this line, we observed that the affinity-dependent effects of 

teriflunomide and brequinar on T cell proliferation could be rescued upon addition of the pyrimidine base 

uridine, but not the purine base guanosine (Fig. S3 E), further illustrating that inhibition of DHODH-mediated 

de novo pyrimidine synthesis is indeed pivotal for teriflunomide-mediated effects on T cell proliferation; 

therefore, these data do not support a profound DHODH-independent effect of teriflunomide. 

 

DHODH inhibition interferes with energy generation via OXPHOS and aerobic glycolysis 

In light of the intimate topological relationship of DHODH with components of the electron transport chain we 

wondered whether pharmacological DHODH inhibition might affect oxidative phosphorylation (OXPHOS) in 

activated T cells. Indeed, in the presence of teriflunomide, OXPHOS was significantly impaired in activated 



9 
 

CD4+ as well as CD8+ T cells (Fig. 3, A-D). In naïve T cells, where generally low OXPHOS activity is 

observed, this effect could not be seen (Fig. 3, B and D; Fig S4, A and B). Also brequinar, a structurally distinct 

DHODH inhibitor, reduced the ability for maximal respiration (Fig. S4 C). In accordance with the role of 

DHODH, uridine supplementation was capable to rescue impaired OXPHOS by teriflunomide (Fig. S4 D). 

Interestingly, aerobic glycolysis was also severely impaired in activated CD4+ and CD8+ T cells in the presence 

of teriflunomide (Fig. 3, E-H; Fig. S4, E and F). Importantly, detailed kinetic analysis revealed that 

teriflunomide-mediated inhibition of CD8+ T cell proliferation was only effective during the first 24h of T cell 

activation, whereas DHODH inhibition at later time points only marginally affected T cell proliferation (Fig. 3 

I). The inhibitory effect of teriflunomide on mitochondrial respiration itself was independent from the time 

point of initiation during T cell activation, as it was equally suppressed upon initiation at different time points 

throughout the 48h of T cell activation (Fig. 3 J). The same was observed with respect to aerobic glycolysis 

(Fig. 3 J). Thus, it can be concluded that OXPHOS is required during the initial phase of T cell proliferation, i.e. 

during the first 24h, whereas at later time points, DHODH-mediated inhibition of OXPHOS does not critically 

influence T cell proliferation. Following this line, we analyzed T cell proliferation in the presence or absence of 

low doses of oligomycin, an ATP synthase inhibitor, at different time points. As expected, initiation of 

proliferation was substantially impaired in the presence of even low doses of oligomycin (5-10 nM) (Fig. S4 G), 

again demonstrating that the initiation of proliferation requires mitochondrial ATP synthesis (Fig. S4 H). In 

contrast, oligomycin did not influence proliferation of already actively proliferating T cells and hence did not 

abolish the DHODH-mediated inhibitory effects on T cell proliferation (Fig. S4, I and J). These data 

corroborate our hypothesis that DHODH-mediated OXPHOS inhibition is critical during the early stages of 

T cell proliferation but dispensable later on. Finally, we addressed whether selective interference with OXPHOS 

employing specific inhibitors of either complex I or III of the electron transport chain might impact aerobic 

glycolysis. Indeed, OXPHOS inhibition by the complex I inhibitor rotenone or the complex III inhibitor 

antimycin A did result in an impairment of aerobic glycolysis, therefore indicating that aerobic glycolysis at 

least to some extent depends on preserved OXPHOS activity, providing further evidence of the close 
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relationship between both pathways of energy generation in activated T cells (Fig. 3 K).   

 

Differential metabolic capacities of high- and low-affinity T cells 

Following up on our initial observation of affinity-dependent differences in the extent of DHODH-related 

effects on T cell proliferation, we hypothesized that this phenomenon might be linked to differences in T cell 

energy metabolism. We therefore compared the metabolic profiles of high-affinity and low-affinity T cells and 

observed profound differences between OT-I and OT-III T cells both with regard to OXPHOS and aerobic 

glycolysis. High-affinity CD8+ T cells were shown to display greater capacities for OXPHOS as well as for 

aerobic glycolysis, respectively (Fig. 4, A and B). Kinetic analysis further revealed that both maximal 

respiration and glycolytic capacity were more rapidly upregulated in high-affinity CD8+ T cells compared to 

low-affinity CD8+ T cells (Fig. 4 C). Interestingly, the extent of DHODH-mediated inhibition of OXPHOS was 

comparable between high-affinity and low-affinity CD8+ T cells, suggesting that the differential susceptibility 

towards DHODH-mediated effects is rather due to differences in their metabolic capacity than affinity-

differences in DHODH function or relevance (Fig. S5 A). Indeed, a direct comparison of the metabolic 

capacities of OT-I and OT-III T cells demonstrated that OT-I T cells upregulate OXPHOS and glycolysis under 

stress, while OT-III T cells increase glycolysis more than OXPHOS (Fig. 4 D). In general, OT-I T cells display 

a greater energetic capacity compared to OT-III T cells, meaning that OT-III T cells seem to be less dependent 

on OXPHOS in comparison to OT-I T cells as illustrated by the PhenoGram of OT-I and OT-III T cells 48h 

after antigen-specific stimulation. Here, OT-III T cells display a strongly limited respiratory capacity compared 

to OT-I T cells, whereas the difference in glycolytic capacity was less pronounced (Fig. 4 D). Also for CD4+ 

T cells, high-affinity stimulation resulted in a more pronounced upregulation of OXPHOS as well as glycolysis 

and ultimately a higher energetic capacity as compared to low-affinity stimulation (Fig. 4, E-G). 

Finally, when assessing the function of each respiratory complex separately, OT-I T cells showed a higher 

complex activity (I-IV) compared to OT-III T cells, again demonstrating that OT-I T cells have a higher 

OXPHOS ability (Fig. S5 B). In light of the strong dependence of initial T cell proliferation on OXPHOS, this 
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might explain the distinct inhibitory effect of DHODH inhibition on high-affinity T cell proliferation in 

comparison to low-affinity T cell proliferation.  

 

Given the affinity-dependent differences in kinetics of energy generation, we next addressed the kinetics of 

antigen-specific T cell proliferation in high-affinity and low-affinity T cells in more detail. Indeed, high-affinity 

T cells display a small but crucial kinetic advantage in comparison to low-affinity T cells at early time points, 

i.e. 36h and 48h after T cell activation, thus mirroring the kinetic differences of energy generation (Fig. 5, A and 

B). Mechanistically, TCR-derived signals are converted into metabolic activities via a range of key transcription 

factors serving as intracellular metabolic checkpoints such as IRF4, mTOR or c-Myc (27, 28). We therefore 

analyzed the expression pattern of these key metabolic transcription factors in high-affinity versus low-affinity 

T cells early upon TCR-mediated activation. Interestingly, we observed a more pronounced nuclear expression 

of IRF4, c-Myc and phospho-S6 ribosomal protein, a downstream target of mTOR, in OT-I versus OT-III 

T cells upon stimulation (Fig. 5, C-E). Of note, DHODH inhibition did not affect IRF4, c-Myc and phospho-S6 

ribosomal protein, neither in high-affinity nor in low-affinity T cells (Fig. 5, C-E). 

As these data suggest that affinity-dependent intracellular signals are routed into discrete transcriptional 

networks via modulation of several key transcription factors serving as checkpoints of metabolic T cell 

programming, we next compared the transcriptional profile of high-affinity and low-affinity T cells with regard 

to a broad range of metabolically relevant genes in more detail. Importantly, we observed profound differences 

in the expression levels of numerous metabolically relevant genes in activated high-affinity versus low-affinity 

T cells as depicted by principal component analysis and scatter plot, respectively (Fig. 5, F and G; Fig. S5, C-

E). Interestingly, these differences were only present upon T cell activation (Fig. 5, F and G; Fig. S5, C-E). 

Moreover, as expected, DHODH inhibition itself did not affect gene expression of metabolically relevant genes 

(Fig. 5, F and G). Finally, we observed that in total, 53 out of 168 investigated metabolic genes were affinity-

dependent, and the majority (48 out of 53) of those were also dependent on TCR stimulation (Fig. 5 H, Table 

S2).  
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Together, these data indicate that affinity-dependent signals via the TCR are intracellularly translated into 

distinct metabolic programs via distinct modulation of a set of key metabolic transcription factors, which in turn 

result in a differential metabolic capacity of high-affinity versus low-affinity T cells. 

 

Pharmacological DHODH inhibition interferes with mitochondrial complex III function 

In light of the profound differences between high-affinity and low-affinity T cells with regard to mitochondrial 

respiratory capacity, we wondered whether this might be due to quantitative differences in mitochondrial 

content. However, mitochondrial DNA content was not different between high-affinity and low-affinity T cells 

(Fig. 6 A). These results could be corroborated by immunohistochemical visualization and quantification of 

mitochondria illustrating equal presence of mitochondria in activated OT-I and OT-III T cells both in the 

presence or absence of teriflunomide (Fig. 6, B and C).  

We next investigated whether DHODH inhibition might directly interfere with the function of individual 

complexes of the mitochondrial respiratory chain, a hypothesis that is supported by the close proximity of 

DHODH to the ubiquinone pool located between complexes II and III (29). First, immunohistochemistry 

analysis of complex IV (COX) activity revealed a significant increase in COX activity upon T cell stimulation, 

which was significantly less pronounced in the presence of teriflunomide (Fig. 6 D), indicating that 

pharmacological DHODH inhibition restricts overall OXPHOS capacity. For a more detailed assessment of 

individual complexes of the respiratory chain, we measured the activity of mitochondrial complexes I, II/III and 

IV of the respiratory chain by using intact cells that were first permeabilized and then analyzed using the 

Agilent Seahorse technology. Here, OT-I T cells were activated in the presence or absence of teriflunomide as 

previously. After 48h, mitochondrial complexes were successively blocked using specific inhibitors. 

Measurement of oxygen consumption rate (OCR) revealed that upon inhibition of complexes I to III, OXPHOS 

was decreased by teriflunomide, while the difference was abolished after substrate supplementation of complex 

IV, indicating that teriflunomide blocks mitochondrial respiration at complex III (Fig. 6 E).  
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Taken together, these data illustrate that DHODH inhibition functionally interferes with complex III activity of 

the electron transport chain in activated T cells, but does not affect mitochondrial content or structure. 

 

DHODH inhibition exerts affinity-dependent effects on effector T cells in vivo 

Given the profound affinity-dependent effects of DHODH inhibition in our in vitro model systems we then 

aimed to evaluate whether such affinity-dependent effects might also occur in vivo in the context of T cell-

mediated autoimmunity. To this end we made use of an established animal model of MS, where mice were 

immunized with the major histocompatibility complex (MHC) class II MOG35-55 peptide and received oral 

treatment throughout disease course with either leflunomide, the precursor of teriflunomide, or vehicle. In 

accordance with the literature (25, 30, 31), EAE disease course was significantly ameliorated under leflunomide 

treatment (Fig. 7 A), accompanied by a strong reduction of infiltrating CD4+ T cell numbers - including those of 

cytokine producing cells - in the CNS (Fig. 7, B and C). Matching our observations from the TERIDYNAMIC 

study, absolute numbers of IFNγ-producing CD4+ T cells in the periphery were significantly reduced under 

leflunomide, whereas numbers of IL-17A producing CD4+ T cells were not affected (Fig. 7 D). When studying 

different murine Treg subpopulations in these EAE mice under leflunomide, we observed a distinct increase in 

the subpopulation of Tr1 cells in the circulation, whereas other Treg subpopulations were not affected by 

leflunomide treatement (Fig. S5 F). 

To specifically follow antigen-specific T cells during EAE, we performed tetramer stainings of myelin-specific 

CD4+ T cells by using the MOG35-55 IAb tetramer. Indeed, we observed a significant reduction in the frequency 

of MOG-specific CD4+ T cells in the CNS from leflunomide-treated mice (Fig. 7 E). Following this line, we 

aimed to investigate the antigen-affinities of MOG-specific T cells within the CNS and made use of an elegant 

method to quantify affinities of antigen-specific T cell responses employing 2D-microscopy as described 

previously (32, 33). At day 10 after EAE induction, immune cells were isolated from the CNS of these mice and 

single isolated CD4+ T cells were subjected to 2D microscopy; at least 26 cells per group (w/o n=26, +LF n=28; 

neg. ctrl n=4) were analyzed in a blinded fashion. Importantly, the adhesion frequency of CD4+ T cells to 
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MOG35-55-loaded MHC class II molecules as a direct correlate to antigen-affinities was significantly reduced in 

leflunomide-treated EAE mice compared to vehicle-treated EAE mice (Fig. 7 F). A more detailed analysis 

further revealed that this significant decrease in mean antigen-affinities in leflunomide-treated mice was mainly 

driven by the ablation of high-affinity MOG-specific CD4+ T cells (Fig. 7 G). As these data indicate that 

DHODH inhibition has an impact on the affinity-spectrum of autoreactive T cells in vivo, we aimed to translate 

this finding to the human situation. Here, we made use of a published set-up (34, 35) allowing detection of 

myelin-specific CD4+ T cells by DRB1*0401/MOG97-109 and DRB1*0401/PLP180-199 tetramer staining in HLA-

DR4+ RRMS patients before and during teriflunomide treatment. Importantly, teriflunomide treatment reduced 

the frequency of MOG- and PLP-specific T cells in the subset of treatment-naïve HLA-DR4+ RRMS patients 

available to us (Fig. 7, H and I). Together, these data demonstrate that pharmacological DHODH inhibition 

indeed preferentially affects high-affinity T cells during an antigen-specific autoimmune response in vivo. 

 

RRMS patients are characterized by an altered metabolic profile of activated T cells  

Finally, we aimed to address the potential relevance of DHODH-mediated metabolic alterations in human 

RRMS patients. When comparing the metabolic profile of activated CD4+ T cells from RRMS patients and HCs 

we observed that T cells from RRMS patients during relapse (n=24) but not in the absence of disease activity 

(n=25), exhibit an enhanced OXPHOS as well as glycolytic activity as compared to HCs (n=24) (Fig. 8, A and 

B), suggesting that during disease activity, T cells exhibit a disturbed metabolic profile. Along this line, 

activation-induced increase in mitochondrial respiratory activity as well as glycolysis, as reflected by the 

relative increase in OCR and ECAR upon T cell stimulation, further illustrates the enhanced metabolic potential 

of these T cells (Fig. 8, C and D). Again, these metabolic changes were exclusively observed in T cells from 

patients with an ongoing RRMS relapse. We next investigated the metabolic profile of CD4+ T cells in RRMS 

patients after teriflunomide treatment. Indeed, we observed a trend towards diminished OXPHOS and aerobic 

glycolysis in teriflunomide-treated RRMS patients (Fig. 8, E and F), and the same trend was observed in CD8+ 

T cells (Fig. S6, A). Furthermore, addition of teriflunomide in vitro inhibited both OXPHOS and aerobic 
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glycolysis in activated human T cells both from HCs and RRMS patients (n=10 per group) (Fig. 8, G and H; 

Fig. S6, B-E).  

Taken together, these data suggest that T cells from active RRMS patients exhibit an augmented cellular 

metabolism, which might contribute to the known immune dysregulation in MS and which is amenable to 

pharmacological DHODH inhibition. 

Discussion  

Here, we demonstrate that pharmacological interference with DHODH, a mitochondrial enzyme in the 

pyrimidine-synthesis pathway and the target of therapeutic agents used for treatment of rheumatoid arthritis and 

MS, does not uniformly suppress proliferation of activated T cells but instead exerts distinct effects on different 

T cell clones, which is mainly determined by the affinities of antigen-specific T cell responses and its associated 

distinct metabolic profiles.  

The data from our TERIDYNAMIC trial point towards a rather selective effect of the anti-proliferative drug 

teriflunomide on different T cell populations, which was somewhat unexpected, as it is generally believed that 

teriflunomide and leflunomide interfere with the proliferation of any activated T cell due to the increased 

pyrimidine demand during activation-induced T cell proliferation (8, 11, 36). The preferential reduction in Th1 

effector cells by DHODH inhibition not only in human patients but also in the EAE model is intriguing, 

especially in light of their acknowledged role in autoimmunity (37–39). In support of these ex vivo findings we 

observed an inhibition of murine Th1 cell polarization and proliferation in vitro by teriflunomide (Fig. S 7, A 

and B). On the other hand, absolute iTreg numbers were unaffected resulting in a relative increase in the 

proportions of iTreg cells within the CD4 compartment and hence an increased iTreg/Th1 ratio, potentially 

indicating that DHODH inhibition in RRMS patients might restore a disturbed balance between 

proinflammatory versus anti-inflammatory CD4+ T cell populations. Of note, a relative increase in Tregs upon 

DHODH inhibition has also been described in other mouse models of autoimmunity (40–42). On a functional 

level, teriflunomide treatment did neither affect the suppressive capacity of Tregs nor modulate expression of 
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key regulatory molecules and cytokines, indicating that DHODH is not implicated in the regulation of Treg 

function itself. 

Based on the hypothesis that the observed selective effects of DHODH inhibition on distinct T cell populations 

might result in TCR repertoire changes, we assessed the effect of teriflunomide treatment on the TCR repertoire 

in RRMS patients. Interestingly, analysis of our patient cohort revealed that RRMS patients display an 

enhanced TCR repertoire diversity as illustrated by increased numbers of unique clones and an increased 

sample overlap. Our findings support pilot data from de Paula Alves Sousa and coworkers (43) in a small cohort 

of five RRMS patients and together suggest that in MS there is a perturbation of clonal elimination, potentially 

caused by an impaired deletion of autoreactive clones (44–47). It would be of interest to obtain more 

information about the TCR repertoire in the target organ, i.e. the CNS or at least the CSF, however, it is difficult 

to obtain CSF in a longitudinal fashion as part of a clinical study and was not included in our study protocol. 

The pilot study by de Paula Alves Sousa and coworkers indeed pointed towards an enrichment of highly 

expanded T cell clones in the CSF of RRMS patients, but an analysis of larger cohorts is needed for 

corroboration. Interestingly, treatment of RRMS patients with teriflunomide resulted in a reduction of TCR 

repertoire diversity back to the levels of HCs. Although this remains speculative, the preferential sparing of 

regulatory T cells by teriflunomide might help to restore their capacity to restrict TCR repertoire diversity by 

elimination of potentially autoreactive T cell clones (48). Of note TCR sequencing does not provide any 

information about the antigen-specificity or antigen-affinity of the T cell clones investigated, however, the 

reduction in clonal diversity points to a deletion of distinct clones as a consequence of teriflunomide treatment. 

Our analysis of myelin-specific CD4+ T cell responses in HLA-DR4+ individuals (Fig. 7, G and H) further 

supports this concept as we observed a reduction in frequencies of myelin-specific T cells in the course of 

teriflunomide treatment, albeit this analysis could only be performed in a small subset of patients.  

Experiments in preclinical models revealed that DHODH inhibition differentially inhibited T cell proliferation 

depending on the antigen-affinity of the T cell, as high-affinity T cells were more affected than low-affinity 

T cells. Recently, Man et al. could demonstrate that affinity-dependent signals from the TCR in the context of 
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infections are translated into distinct transcriptional programs, which in turn determine the metabolic function 

of effector T cells (27). In light of these data combined with the spatial relationship of DHODH with 

components of the respiratory chain, we evaluated the impact of DHODH inhibition on key metabolic functions 

of T cells. During T cell activation, mitochondrial respiration and aerobic glycolysis are both upregulated, and 

particularly mitochondrial respiration is essential for initial activation of naïve T cells (18). Our data revealed a 

so far unappreciated role of DHODH in mitochondrial respiration during T cell activation, as DHODH 

inhibition strongly interfered with OXPHOS in activated but not resting T cells. Furthermore, mitochondrial 

respiration is particularly important during the first 24h of T cell activation, but – at least in terms of 

proliferation – is dispensable later on, which is also supported by others (19). While the suppressive effect of 

DHODH inhibition on mitochondrial respiration is plausible due to the intimate spatial relationship of DHODH 

with complex III of the respiratory chain, the inhibition of glycolysis was somewhat unexpected. We therefore 

investigated whether functional mitochondrial respiration per se might be a prerequisite for functioning of 

glycolysis in activated T cells. Indeed, strong inhibition of mitochondrial respiration using complex I and III 

inhibitors likewise impaired aerobic glycolysis, hence suggesting that the observed drop in glycolytic rate upon 

DHODH inhibition is most likely indirectly due to its impairment of mitochondrial respiration. 

Comparison of metabolic profiles of activated high-affinity and low-affinity T cells revealed significant 

differences both with regard to transcriptional regulators such as IRF4, c-Myc and the mTOR pathway and 

transcriptional regulation of metabolic genes. Furthermore, a functional comparison of the metabolic capacities 

of high- versus low-affinity T cells displayed a clear metabolic advantage of high-affinity T cells both with 

respect to OXPHOS and aerobic glycolysis. Together, these data do not only provide mechanistic insight into 

the molecular mechanisms of how TCR signals that result from antigen-specific interactions of certain affinities 

can be translated into distinct intracellular programs, but also explain the differential effect of DHODH 

inhibition on high-affinity and low-affinity T cells: Irrespective of antigen-affinities, DHODH inhibition 

interferes with mitochondrial respiration; however, as high-affinity T cells depend more on mitochondrial 
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respiration for optimal energy supply during the initial steps of T cell activation, they are more susceptible to 

signals interfering with mitochondrial respiration such as DHODH inhibition.  

With regard to the in vivo relevance of the observed affinity-dependent effects of DHODH inhibition, analysis 

of the antigen-affinity spectrum of MOG-reactive T cell clones in the MOG-induced EAE model provides 

further evidence that DHODH-mediated affinity-dependent effects are also present in the context of a 

polyclonal immune response. Importantly, they illustrate that DHODH-inhibition indeed shapes the affinity 

spectrum of an autoantigen-response, as we observed a preferential ablation of high-affinity MOG-specific 

T cells in the CNS of leflunomide-treated EAE mice. It has been described that self-reactive T cells with 

relatively high avidity can escape thymic negative selection and contribute to autoimmune disease manifestation 

(13, 14, 49). Interestingly, development of organ-specific autoimmunity in a model of diabetes was driven by 

affinity maturation of the prevailing autoantigen-specific T cell population, and selective depletion of high-

affinity T cells prevented disease development (13). These studies underline the relevance of high-affinity T cell 

clones for disease initiation and progression in different organ-specific autoimmune diseases. Based on these 

considerations, we propose that during chronic autoimmune responses characterized by repetitive (re-)activation 

of autoreactive T cells, DHODH inhibition might prevent affinity maturation and hence reduce disease 

propagation due to its preferential inhibition of high-affinity T cell clones. 

 

From a more general perspective, the relevance of DHODH-dependent changes in T cell metabolism highlights 

the attractiveness of the concept of immune metabolism as novel therapeutic target in human autoimmune 

diseases. This concept has been fueled by several experimental studies demonstrating that modulation of 

immune metabolism can shape immune responses and thus ameliorate autoimmunity in different animal models 

(17, 50–52). One intriguing example is the illustration of differential metabolic demands of effector versus 

regulatory T cell subsets (52–54). In this line, we could demonstrate that Th1 cells display a larger capacity for 

OXPHOS as well as glycolysis compared to Th17 cells, which might render them more susceptible towards 

DHODH-mediated effects (Fig. S7 C). Intriguingly, although Tregs have been described to employ OXPHOS 
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for energy generation, a direct comparison of the metabolic properties of resting versus activated Tregs and Th1 

cells revealed that although Th1 cells displayed a generally increased glycolytic activity as compared to Tregs, 

upon activation the rise in OXPHOS activity is more pronounced in Th1 cells, at least in vitro (Fig. S7 D). 

Together, these specific metabolic features of distinct T cell subsets indirectly support our findings of a 

preferential effect of DHODH inhibition on Th1 cells as opposed to Th17 and Treg populations in vivo.  

In the context of approved immune-modulatory MS drugs, it has recently been demonstrated that dimethyl 

fumarate downmodulates aerobic glycolysis in activated myeloid and lymphoid cells via inactivation of the 

glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (55), which further supports the idea that 

therapeutic targeting of immune metabolism represents an attractive treatment concept also in MS. From 

another angle, these findings raised the idea that human autoimmune diseases might feature distinct 

perturbations in immune metabolism, which might be amenable to specific pharmacological modulation once 

fully understood. So far, a few studies have characterized the immune metabolism of T cells in the context of 

autoimmune diseases, and disturbances have been observed in rheumatoid arthritis and systemic lupus 

erythematosus, both in which CD4+ T cells are critical drivers of disease pathogenesis (56). Interestingly, these 

studies revealed disease-specific differences in T cell immune-metabolism, suggesting that there is no common 

“autoimmune signature” of immune-metabolic disturbance, but rather distinct alterations, which will require 

tailored strategies for each disease. 

In MS, the focus has been mainly on metabolic disturbances within the CNS, especially in neurons and axons, 

and mitochondrial injury as well as changes in glucose-metabolizing enzymes have been described in active MS 

lesions (57–59). In peripheral immune cells from RRMS patients, a pilot study suggested that immune cells 

from RRMS patients might exhibit altered activities in several complexes of the electron transport chain as well 

as key enzymes of glycolysis such as hexokinase I pointing towards an impaired mitochondrial respiration and 

concomitantly decreased glycolytic activity; however, the patient cohort investigated was rather small and 

active and stable patients were not separately investigated (16, 60). Another study described impaired OXPHOS 

and glycolysis in activated PBMCs from RRMS patients (61); however, using whole PBMCs for metabolic 
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measurements does not provide information about the metabolic capacities of individual immune cell subsets. 

Our study showed that isolated CD4+ T cells from active RRMS patients suffering from an acute relapse exhibit 

increased mitochondrial respiratory as well as glycolytic activity compared to those of clinically stable RRMS 

patients and HCs. This intriguing finding has two important implications. First, it supports the notion that 

T cell-mediated autoimmune diseases are indeed characterized by distinct metabolic alterations, and the 

metabolic profile seems to be unique to the individual disease pathogenesis. Second, it appears that metabolic 

alterations in T cells from RRMS patients indeed correlate with disease activity, which will be addressed in 

more detail in the future.  

Together, therapeutic targeting of metabolic alterations might represent an attractive concept in MS and might 

represent a novel, as yet unrecognized key mechanism of teriflunomide-mediated immune-modulation in this 

disease. 
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Materials and Methods 

 

Participants and study design of the TERIDYNAMIC study 

TERIDYNAMIC was an exploratory, open-label, phase 3b, clinical trial that recruited patients with RRMS 

(n=50) from 9 sites in Belgium, Germany, and the Netherlands. All age- and sex-matched HCs (n=20) were 

recruited from 1 site in Germany. Eligible subjects were 18–56 years of age and met the McDonald 2010 

criteria for RRMS. Patients with RRMS were either naive to disease-modifying treatments (DMT), received no 

DMT for ≥2 years, or received interferon-β (IFNβ) or glatiramer acetate (GLAT) therapy (with ≤3 months of 

interruption) with a period of ≥2 weeks without IFNβ or GLAT (Table S1). Patients with RRMS were excluded 

if they experienced a relapse within 30 days prior to screening, had other relevant diseases, were pregnant, 

breastfeeding, or were of childbearing potential and not utilizing effective birth control. RRMS patients were 

also excluded if they had previous or concomitant use of cytokine therapy or intravenous immunoglobulins with 

3 months of screening, fingolimod within 1 year of screening, natalizumab or other immunosuppressive agents 

within 2 years of screening, or had ever used alemtuzumab or cladribine. After up to 4 weeks of screening, 

RRMS patients received 14 mg teriflunomide orally, once a day for 6 months. All subjects who discontinued 

treatment underwent an accelerated elimination procedure as per local labeling. Follow-ups occurred 4 weeks 

after treatment discontinuation. Age- and sex-matched HCs (reference group) remained untreated during the 

screening (up to 1 week) and study period (6 month). 

The protocol and its amendments were reviewed and approved by an independent ethics committee (2016-053-

f-S). This trial was conducted in accordance with the Declaration of Helsinki and was registered on 

ClinicalTrials.gov (NCT01863888). All participants provided written informed consent prior to entering the 

study.  
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Study subjects independent from the TERIDYNAMIC trial  

An independent cohort of 14 treatment-naïve RRMS patients and 10 matched HCs were analyzed for TCR Deep 

Sequencing (Table S3). Furthermore, a separate cohort of 56 RRMS patients before and during teriflunomide 

treatment was characterized (Table S4-9). In addition treatment-naïve RRMS patients before and during 

treatment with dimethyl fumarate (DMF) for 6 months (n=14), IFNβ for 1 year (n=10) or GLAT for 1 year 

(n=10) were analyzed (Table S10). For human T cell metabolism a total of 59 RRMS patients (stable: n=35; 

relapse: n=24) and 34 matched HCs were investigated (Table S11 and S12). Stable disease was defined as 

absence of novel clinical symptoms and no MRI activity within at least 4 weeks prior to PBMC collection. 

Relapse was defined according to acknowledged clinical criteria, e.g. new or deteriorating of neurological 

symptoms which last for at least 24h in the absence of infection. Moreover, the characteristics of freshly 

isolated versus frozen PBMCs were investigated in a cohort of 23 HCs (Table S13 and S14). 

Blood sampling of MS patients with clinically definite RRMS according to the McDonald criteria, as well as 

age- and sex-matched healthy controls (HCs), was approved by the local ethics committee (2010-262-f-S) and 

all subjects signed informed consent.  

 

Cell Isolation and Immune Cell Phenotyping 

Whole blood samples were obtained from all participants at baseline, and at month 3 and 6. Peripheral blood 

mononuclear cells (PBMCs) were isolated by Ficoll® (Sigma-Aldrich Inc., St Louis, MO, USA) density 

gradient centrifugation and analyzed by flow cytometry. Adaptive immune cell subsets were identified using the 

following markers (62–67): 

Th1: CD14-CD3+CD56-CD4+CD8-CD45RA-CD194-CD196-CD183+ 

Th2: CD14-CD3+CD56-CD4+CD8-CD45RA-CD194+CD196-CD183- 

Th17: CD14-CD3+CD56-CD4+CD8-CD45RA-CD194+CD196+CD161+CD146+ 

Treg: CD3+CD56-CD4+CD8-FoxP3+CD127low 
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nTreg: CD3+CD56-CD4+CD8-FoxP3+CD127lowHelios+  

iTreg: CD3+CD56-CD4+CD8-FoxP3+CD127lowHelios- 

 

To identify potential differences between PBMCs isolated from fresh blood and frozen PBMCs with regard to 

immune cell subset composition as well as immune functions, an intensive immune cell phenotyping was 

performed from 12 HCs and analyzed side by side (Fig. S8 A, Table S13). Flow cytometric analysis revealed a 

remarkably similar pattern of immune cell subsets in fresh versus frozen samples with only minor differences in 

some subsets. 

As expected cytokine production was slightly but significantly diminished in frozen as compared to fresh CD4+ 

T cells. Importantly, longitudinal analysis of a quality control specimen derived from one healthy individual 

isolated at one time point and stored for different intervals between 0 and 12 months before analysis revealed no 

detectable impact of freezing duration for a period of 12 months (Fig. S8 B). Detailed analysis of the metabolic 

properties of freshly isolated versus frozen CD4+ T cells were also addressed in a cohort of healthy individuals 

(Fig. S8 C, Table S14) and did not reveal any significant differences in the metabolic properties of fresh versus 

frozen cells as determined by Agilent/Seahorse technology. 

For detailed description see Supplementary Materials. 

 

TCR Deep Sequencing 

CDR3 sequences from CD4+ and CD8+ T-cell receptor β chains were analyzed by deep sequencing as 

previously described (68). In brief, mRNA from CD4+ T cells isolated from PBMCs was purified and reverse 

transcribed into cDNA. The TCRβ chain was then amplified by multiplex PCR using primers specific for all 54 

known expressed Vβ and all 13 Jβ regions and then deep sequenced by ImmunoSEQ™ (Adaptive 

Biotechnologies Corp., Seattle, WA, USA). The raw data were annotated according to the IMGT database 

(LeFranc, Developmental & Comparative Immunology, 2003) and subsequently analyzed with the 

ImmunoSEQ™ Analyzer software. Global repertoire properties, including the numbers of unique clones and 

sample overlap, were examined. The term unique clones describes the number of individual clones in a sample. 
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Sample overlap, the proportion of clones with shared sequences, was calculated as Σ (total numbers of 

productive reads common to all samples)/total number of productive from all samples. 

Since the numbers of unique clones directly correlate with the sequencing depth of each sequencing run, the 

number can - for pure technical reasons - vary between different runs. Only cohorts sequenced at the same time 

point or with a similar sequencing depth were compared with each other in order to avoid any technical 

influences. 

 

Mice 

C57BL/6, OT-I transgenic mice responding to Kb/OVA257-264 (69, 70), OT-III TCR transgenic mice (provided 

by Dietmar Zehn, Technical University of Munich) responding with low avidity to Kb/OVA257-264 (24) and 2D2 

TCR transgenic responding to IAb/MOG35-55 (low affinity) (71) and to IAb/NFM15-35 (high affinity) (21, 22) 

were maintained under specific pathogen–free conditions. All animal experiments were performed according to 

the guidelines of the animal ethics committee and were approved by the government authorities of Nordrhein-

Westfalen, Germany (AZ 84-02.04.2017.A073). 

 

Isolation, purification of mouse immune cells 

OT-I and OT-III CD8+ T cells or 2D2 CD4+ T cells from spleen and lymph nodes were enriched using positive 

MACS selection for CD8+ or CD4+ T cells (Miltenyi Biotech) according to the manufacturer’s instructions. 

Splenocytes from C57BL/6 mice were isolated and irradiated with 30 Gy for the antigen-specific stimulation of 

OT-I and OT-III CD8+ T cells. For antigen-specific stimulation of 2D2 CD4+ T cells dendritic cells (DC) were 

isolated using positive MACS selection for CD11b+ cells (Miltenyi Biotech) from spleens of C57BL/6 mice 

according to the manufacturer’s instructions. 

 

In vitro cultures of murine cells  
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OT-I and OT-III CD8+ T cells or 2D2 CD4+ T cells were activated either polyclonally with 4 µg/ml α-CD3 

mAb (145-1C11) and 0.5 µg/ml α-CD28 mAb (37.51) (Biolegend) or antigen-specifically. For antigen-specific 

activation OT-I and OT-III CD8+ T cells were stimulated with irradiated splenocytes from C57BL/6 mice 

loaded with 500 ng/ml, 50 ng/ml or 5 ng/ml OVA257-264 altered peptide ligands SIINFEKL (N4), SIIQFEKL 

(Q4) or SIITFEKL (T4) (EMC microcollections) and cultured for 2 or 3 days. For antigen-specific stimulation 

of 2D2 CD4+ T cells CD11c+ DC from spleens of C57BL/6 mice were loaded with 10 µM NFM15-35 peptide  

(RRVTETRSSFSRVSGSPSSGF) or MOG35-55 peptide (MEVGWYRSPFSRVVHLYRNGK) (EMC 

microcollections) and cultured for 3 days.  

When indicated, the following drug concentrations were used: 10 µM teriflunomide (TF) (Sanofi Genzyme), 

50 µM uridine, 50  µM guanosine, 5/10 nM oligomycin, 10 µM brequinar sodium salt hydrate (Bq), 

100/10/1 µM mercaptopurine (Mc), 1/0.1/0.01 µM mitoxantrone dihydrochloride (MT) (Sigma-Aldrich).  

All cells were cultured in RPMI 1640, supplemented with 10% FCS, 2 mM L-glutamine, 10 mM Hepes, 1 mM 

sodium pyruvate, 50 µM 2-mercaptoethanol (Life Technologies) and 1% Penicillin-Streptomycin (Sigma-

Aldrich).  

To evaluate the optimal TF concentration for in vitro cell culture assays, dose-dependent experiments were 

performed (0/1/10/15/20/50 µM TF) in order to identify the most effective and less toxic concentration of TF. 

Here, CD8+ OT-I cells were activated with α-CD3/28 and proliferation and cell viability was analyzed by flow 

cytometry at day 3 (Fig. S9 A). Based on functionality and cell viability, 10 µM TF was taken for further 

experiments.  

To exclude potential baseline differences between OT-I and OT-III T cells the TCR densities were examined by 

using Quantum™ R-PE MESF Kit (Bangs Laboratories) according to the manufacturer’s instructions. Indeed, 

we observed a slight difference in TCR density on the surface (Fig. S9 B). However, when comparing the 

proliferative response of OT-I and OT-III T cells both towards antigen-specific and α-CD3/28 stimulation, we 

could not detect any differences here (Fig. S2 C and D, Fig. S9 C) indicating a comparable response rate upon 
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TCR stimulation with regard to proliferation rate despite differential expression of TCR receptors. Also, there 

was no difference in activation markers (Fig. S9 D) or costimulatory molecules (Fig. S9 E). 

 

Metabolism assays of murine cells 

Measurements of OCR and ECAR were performed with a Seahorse XFp or XF96 Extracellular Flux Analyzer 

(Agilent Technologies) as described previously (72). Cells were measured in XF Base Medium Minimal 

DMEM (Agilent Technologies) supplemented with 2 mM Glutamine, 10 mM Glucose or 1 mM Pyruvate (all 

Sigma-Aldrich). OCR was evaluated under basal conditions and in response to 1 µM oligomycin, 0.6 µM 

FCCP, and 100 nM rotenone plus 1 µM antimycin A. ECAR was measured under basal conditions and in 

response to 100 mM Glucose, 1 µM oligomycin and 5 mM 2-desoxy-glucose (all Sigma-Aldrich). For 

measurement of complex activity, cells were permeabilized with 3 nM XF Plasma Membrane Permeabilizer 

(PMP) (Agilent Technologies) according to the company’s manual. OCR was evaluated as described previously 

(73). The substrates 10 mM pyruvate and 0.5 mM malate (complex I), 10 mM succinate (complex II/III), 

100 µM TMPD and 10 mM ascorbate (complex IV) were used. For inhibition, 2 µM rotenone (complex I) and 

2 µM antimycin A (complex III) were used. Assays were analyzed with the Wave Software (Agilent 

Technologies).  

 

Experimental autoimmune encephalomyelitis  

EAE was performed with age and sex matched C57BL/6 mice as previously described (74, 75). MOG35-55-

specific CD4+ T cells were isolated from the CNS of mice treated orally with 17 mg/kg leflunomide (LF) (20 

mg ARAVA, Sanofi-Aventis) or with a vehicle (control) at the disease peak (day 10/14) as described previously 

(75). 

For detailed description see Supplementary Materials. 

 

Micropipette adhesion assay  
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The 2D affinity was assessed with the micropipette adhesion frequency assay as described previously (33, 76). 

Briefly, a pMHC-coated red blood cell (RBC) and a T cell were placed on opposing micropipettes and brought 

into contact by micromanipulation for a controlled contact area (Ac) and time (t). The T cell was retracted at the 

end of the contact period, and the presence of adhesion was observed microscopically by elongation of the RBC 

membrane. This contact–retraction cycle was performed 50 times per T cell–RBC pair to calculate an adhesion 

frequency (Pa). The contact area was kept constant for all experiments so it would not affect the affinity 

comparison. For each experiment, a mean Pa was calculated based only on T cells that bound specifically to 

antigen. RBCs were loaded with pMHC monomers MOG38-49-IAb or control hCLIP103-117-IAb (NIH Tetramer 

Core Facility). Receptor densities on surface of RBCs and T cells were determined using Quantum™ R-PE 

MESF Kit (Bangs Laboratories) according to the manufacturer’s instructions as previously described (32, 76). 

RBCs were stained with α-MHC II FITC (M5/114.15.2) and T cells were stained with α-TCRβ PE (H57-587) 

(Biolegend). 

 

Metabolism assays of human cells 

Measurements of OCR and ECAR were performed with a Seahorse XFp or XF96 Extracellular Flux Analyzer 

(Agilent Technologies). Human T cells were isolated either from fresh blood or from frozen PBMC samples of 

HCs or RRMS patients and measured in XF Base Medium Minimal DMEM (Agilent Technologies) 

supplemented with 2 mM Glutamine, 10 mM Glucose or 1 mM Pyruvate (all Sigma-Aldrich). OCR was 

evaluated under basal conditions and in response to 2 µM oligomycin, 1.5 µM FCCP, and 100 nM rotenone 

plus 1 µM antimycin A. ECAR was measured under basal conditions and in response to 100 mM Glucose, 

2 µM oligomycin and 5 mM 2-desoxy-glucose (all Sigma-Aldrich).  

T cells from HCs and RRMS patients (Table S11) were thawed and either left unstimulated or were short-term 

stimulated with 10 ng phorbol 12-myristate 13-acetate (PMA) (Sigma) and 100 ng Ionomycin (Iono) (Cayman 

Chemical company) for 2.5h prior measurement of mitochondrial respiration and glycolysis inside the 

Extracellular Flux Analyzer (Agilent Technologies). Activation-induced increase in mitochondrial respiration 
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and glycolysis was calculated from cells either left unstimulated or stimulated with PMA/Iono for 2.5h prior 

measurement of OCR and ECAR (stimulated OCR or ECAR values/unstimulated OCR or ECAR values).  

 

Statistical analysis  

The baseline value was compared between patients with RRMS and untreated HCs using a Student’s t-test, or a 

Wilcoxon rank-sum test if strong violations from the Gaussian distribution occurred. The change from baseline 

to month 3 and 6 was analyzed using a linear mixed model including the respective baseline value and time as 

fixed effects and a random intercept for the patient. Adjusted least squares means (SE) at month 6 of changes 

from baseline are presented. To compare values obtained from 2 groups, 2-tailed Student’s t-test was 

performed. To compare values acquired from more than 2 groups, 1-way ANOVA or 2-way ANOVA was 

performed as indicated. 

 

Further Materials and Methods are described in Supplementary Materials. 

 

Supplementary Materials 

TERIDYNAMIC study group 

Material and Methods 

Fig. S1. Changes on T cell subsets in RRMS patients under teriflunomide treatment 

Fig. S2. Influence of teriflunomide on proliferation and cytokine production 

Fig. S3. Impact of antigen-affinities and DHODH interference on proliferation 

Fig. S4. Metabolic assessment of CD4+ and CD8+ T cells under teriflunomide treatment 

Fig. S5. Influence of DHODH inhibition on T cell metabolism, gene expression of OT-I and OT-III T cells and 

on Treg subpopulations in experimental autoimmune encephalomyelitis 

Fig. S6. Metabolism of CD4+ and CD8+ T cells from RRMS patients and healthy controls 
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Fig. S7. Effects of teriflunomide on murine Th1 differentiation and proliferation and metabolic capacities of 

Th1 cells versus Th17 and Treg cells 

Fig. S8. Comparison of freshly isolated versus frozen PBMC from healthy controls regarding immune cell 

subset composition and metabolism 

Fig. S9. Additional information supporting methodology 
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Table S1. Demographics and Baseline Disease Characteristics TERIDYNAMIC trial 

Table S2. Differentially regulated genes depicted in Fig.5 I 

Table S3. Demographics and Baseline Disease Characteristics of healthy controls and treatment-naïve RRMS 

Patients analyzed for TCR repertoire changes 

Table S4. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and 

during teriflunomide treatment analyzed for TCR repertoire changes 

Table S5. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and 

during teriflunomide treatment analyzed for immune cell phenotyping 

Table S6. Demographics and Baseline Disease Characteristics of RRMS Patients before and during 

teriflunomide treatment for at least 6 months analyzed for suppressive capacity of Tregs 

Table S7. Demographics and Baseline Disease Characteristics of RRMS Patients before and during 

teriflunomide treatment for at least 6 months analyzed for cytokine expression of Tregs 

Table S8. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and 

during teriflunomide treatment for at least 6 months analyzed for myelin specific T cell frequencies 

Table S9. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and 

during teriflunomide treatment for at least 6 months analyzed for metabolic activity 

Table S10. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and 

during treatment with Dimethyl fumarate (DMF), interferon-β (IFNβ) and glatiramer acetate (GLAT) analyzed 

for TCR repertoire changes 

Table S11. Demographics and Baseline Disease Characteristics of healthy controls and treatment-naïve RRMS 

Patients analyzed for metabolic activity 

Table S12. Demographics and Baseline Disease Characteristics of HCs and RRMS Patients analyzed for 

metabolic activity after 72h of in vitro stimulation 

Table S13. Demographics and Baseline Disease Characteristics of healthy controls analyzed for immune cell 

phenotyping of freshly isolated versus frozen PBMCs 
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Table S14. Demographics and Baseline Disease Characteristics of healthy controls analyzed for metabolic 

differences of T cells isolated from fresh blood or frozen PBMCs 
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Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Evolution and Change from Baseline in the Percentages and Absolute Counts of Overall Lymphocyte Populations and 

CD4+ T-Cell Subsets in PBMCs. Per-protocol PD population, people with RRMS treated with 14 mg teriflunomide. PBMCs isolated 

and analyzed by flow cytometry at baseline and 6 months. Data are represented as mean (SD) or median (IQR). Change from baseline 

represented as LSM change (SEM) or median (IQR). P values from linear mixed model analysis of month 6 with baseline. IQR: 

interquartile range, LSM: least squares means. 

  

  
Lymphocytes	

 
CD4+ T cells	

 
CD8+ T cells	

 
CD19+ B cells	

 
Ratio 

CD4/CD8	
 
Absolute counts 
(cells/µl)	
Baseline	
Month 6	
Δ from baseline	
P value	
 

 
 
 

1882.8(651)	
1587.9(451)	

-284.94(47.3) 
<0.001	

 
 
 

1036.1(449.7)	
913.9(383.6)	

-101.14(30.91) 
0.002	

 

 
 
 

154.3 (97.7;203.9)	
118.4 (67.5;233.9)	
-34.7 (-55.5;-5.3) 

0.005	

 
 
 

N/A	

 
 
 

N/A	

  
Lymphocytes	
(% PBMC)	

 
CD4+ T cells	

(% CD3+ cells)	

 
CD8+ T cells	

(% CD3+ cells)	

 
CD19+ B cells	

(% Lymphocytes)	

 
Ratio 

CD4/CD8	
 
Percentages 
Baseline	
Month 6	
Δ from baseline	
P value	
 

 
 

79.5 (9.1)	
76.7 (11.3)	
-3.05(1.43) 

0.040	
 

 
 

82.9 (74.9;88.2)	
85.3 (79.1;91.2)	

1.6 (-0.5;3.7) 
0.006	

 
 

12.5 (8.9;18.6)	
10.9 (6.7;16.9)	
-1.0 (-3.5;0.4) 

0.009	

 
 

10.6 (7.7;14.9)	
7.7 (6.4;11.8)	
-2.0 (-4.1;0) 

0.001	

 
 

6.8 (4.2;9.9)	
7.8 (4.8;12.8)	
0.6 (-0.2;3.9) 

0.008	
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Fig. 1. CD4+ and CD8+ T cell changes in teriflunomide-treated RRMS patients from the TERIDYNAMIC study 

(A, B) Changes in CD4+ T cell subpopulations in patients with relapsing-remitting multiple sclerosis (RRMS) after 3 (3M) and 6 

months (6M) of teriflunomide (TF) treatment from the TERIDYNAMIC clinical study (demographic data depicted in Table S1). Box 

plots represent the interquartile range (IQR) with the horizontal line indicating median and error bars showing maximum and 

minimum values. P values were calculated from linear mixed model on change from baseline. (A) Absolute cell numbers of Th1 

(n=32), Th2 (n=32), Th17 (n=32) and total regulatory T cells (Treg, n=37). (B) Percentages of inducible Treg (iTreg, n=37) cells. (C, 

D) Global TCR repertoire analysis of CD4+ and CD8+ T cells from HCs (n=10) and treatment-naive RRMS patients (n=14) 

(demographic data depicted in Table S3). Graphs display numbers of unique clones and sample overlap of CD4+ (C) and CD8+ (D) 

T cells. For changes at baseline between HCs and RRMS patients, P values were calculated using a Wilcoxon rank-sum test. (E, F) 

Global TCR repertoire analysis of CD4+ and CD8+ T cells from RRMS patients at baseline and after 3M and 6M of TF treatment 

(n=15) from the TERIDYNAMIC clinical study. Graphs display numbers of unique clones and sample overlap of CD4+ (E) and CD8+ 

(F) T cells. P values were calculated from linear mixed model on change from baseline. (G, H) Global TCR repertoire properties of 

CD4+ T cells from RRMS patients at baseline and upon treatment with dimethyl fumarate (DMF) for 6 months (6M) (n=14), 

interferon-β (IFNβ) for 12 months (12M) (n=10) and glatiramer acetate (GLAT) for 12M (n=10) (demographic data depicted in Table 

S10). Graphs display numbers of unique clones (G) and sample overlap (H). For changes from baseline and (C), P values were 

calculated using a paired Student’s t-test. Horizontal lines indicate mean and error bars show SEM. *P≤0.05, **P≤0.01, ***P≤0.001.  
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Fig. 2. Antigen affinity-dependent effect of teriflunomide on CD4+ and CD8+ T cells 

(A) Proliferation of CD4+ T cells from 2D2 mice upon stimulation with NFM15–35 (high-affinity) and MOG35-55 (low-affinity) peptides 

in presence or absence of teriflunomide (TF) at day 3. Data are representative of 4 independent experiments. (B) Percentages of 

proliferated CD4+ T cells from 2D2 mice upon stimulation with NFM15–35 and MOG35-55 peptides in presence or absence of TF at day 3 

(n=4). (C) Absolute cell numbers of proliferated CD4+ T cells from 2D2 mice upon stimulation with NFM15–35 and MOG35-55 peptides 

in presence or absence of TF at day 3 (n=4). Data were normalized to cells without treatment. (D) Proliferation of OT-I CD8+ T cells 

upon stimulation with altered peptide ligands of OVA257-264 with different affinities: SIINFEKL (N4) > SIIQFEKL (Q4) > SIITFEKL 

(T4) in presence or absence of TF at day 3. Generation analysis was performed with the FlowJo proliferation tool. Data are 

representative of 3 independent experiments. (E) Percentages of proliferated OT-I CD8+ T cells upon stimulation with N4, Q4 and T4 

in presence or absence of TF at day 3 (n=3). (F) Absolute cell numbers of proliferated OT-I CD8+ T cells upon stimulation with N4, 

Q4 and T4 in presence or absence of TF at day 3 (n=3). Data were normalized to cells without treatment. (G) Proliferation of OT-I 

(high-affinity TCR) and OT-III (low-affinity TCR) CD8+ T cells upon stimulation with OVA257-264 peptide in presence or absence of 

TF at day 3. Generation analysis was performed with the FlowJo proliferation tool. Data are representative of 3 independent 

experiments. (H) Percentages of proliferated OT-I and OT-III CD8+ T cells upon stimulation with OVA257-264 peptide in presence or 

absence of TF at day 3 (n=3). (I) Absolute numbers of proliferated OT-I and OT-III CD8+ upon stimulation with OVA257-264 peptide in 

presence or absence of TF at day 3 (n=3). Data were normalized to cells without treatment. All data are displayed as mean ± SEM. 

Statistical analysis was employed by Student’s t-test and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. 3. Influence of DHODH interference on T cell metabolism 

(A) Oxygen Consumption Rate (OCR) of α-CD3/28 stimulated 2D2 CD4+ T cells in presence or absence of teriflunomide (TF) at day 

3. Data are representative of 3 independent experiments. (B) Bar graph of basal and maximal respiration from unstimulated naïve and 

α-CD3/28 stimulated 2D2 CD4+ T cells in presence or absence of TF at day 3. Data are representative of 3 independent experiments. 

(C) OCR of α-CD3/28 stimulated OT-I CD8+ T cells in presence or absence of TF at day 2. Data are representative of 3 independent 

experiments. (D) Bar graph of basal and maximal respiration from unstimulated naïve and α-CD3/28 stimulated OT-I CD8+ T cells in 

presence or absence of TF at day 2. Data are representative of 3 independent experiments. (E) Extracellular Acidification Rate 

(ECAR) of α-CD3/28 stimulated 2D2 CD4+ T cells in presence or absence of TF at day 3. Data are representative of 3 independent 

experiments. (B) Bar graph of glycolysis and glycolytic capacity from unstimulated naïve and α-CD3/28 stimulated 2D2 CD4+ T cells 

in presence or absence of TF at day 3. Data are representative of 3 independent experiments. (C) ECAR of α-CD3/28 stimulated OT-I 

CD8+ T cells in presence or absence of TF at day 2. Data are representative of 3 independent experiments. (D) Bar graph of glycolysis 

and glycolytic capacity from unstimulated naïve and α-CD3/28 stimulated OT-I CD8+ T cells in presence or absence of TF at day 2. 

Data are representative of 3 independent experiments. (I) Inhibition of proliferation of OT-I CD8+ T cells upon stimulation with 

OVA257-264 peptide in presence of TF added at indicated time points and measured at day 3 (n=3). (J) Inhibition of mitochondrial 

respiration and glycolytic capacity of OT-I CD8+ T cells upon stimulation with OVA257-264 peptide in presence of TF added at 

indicated time points and measured at day 2 (n=3). (K) ECAR of α-CD3/28 stimulated OT-I CD8+ T cells at day 3. Rotenone (Rot) 

and Antimycin A (AA) were added as indicated. Data are representative of 3 independent experiments. (Oligo: Oligomycin, FCCP: 

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, Rot: Rotenone, AA: Antimycin A, Gluc: Glucose, 2-DG: 2-Deoxyglucose). 

All data are displayed as mean ± SEM. Statistical analysis was employed by Student’s t-test and was defined as *P≤0.05, **P≤0.01, 

***P≤0.001. 
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Fig. 4. Impact of teriflunomide on high- versus low-affinity T cell metabolism 

(A, B) Oxygen Consumption Rate (OCR) (A) and Extracellular Acidification Rate (ECAR) (B) of OT-I (high-affinity TCR) and OT-

III (low-affinity TCR) CD8+ T cells upon stimulation with OVA257-264 peptide at day 2. Bar graphs display OCR of basal respiration 

and maximal respiration (A) or ECAR of glycolysis and glycolytic capacity (B). Data are representative of 3 independent experiments. 

(C) Kinetic analysis of maximal respiration and glycolytic capacity of OT-I and OT-III CD8+ T cells upon stimulation with OVA257-264 

peptide at indicated time points. Data are representative of 3 independent experiments. (D) XF PhenoGram of OT-I and OT-III CD8+ 

T cells upon stimulation with OVA257-264 peptide at day 2. Data are representative of 3 independent experiments. (E, F) OCR (E) and 

ECAR (F) of 2D2 CD4+ T cells upon stimulation with NFM15–35 (high-affinity) and MOG35-55 (low-affinity) peptides at day 3. Bar 

graphs display OCR of basal respiration and maximal respiration (E) or ECAR of glycolysis and glycolytic capacity (F). Data are 

representative of 3 independent experiments. (G) XF PhenoGram of 2D2 CD4+ T cells upon stimulation with NFM15–35 and MOG35-55 

peptides at day 3. Data are representative of 3 independent experiments. (Oligo: Oligomycin, FCCP: Carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone, Rot: Rotenone, AA: Antimycin A). All data are displayed as mean ± SEM. Statistical analysis was 

employed by Student’s t-test and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 

 

Fig. 5. Affinity-dependent gene expression 

(A) Proliferation of OT-I (high-affinity TCR) and OT-III (low-affinity) CD8+ T cells upon stimulation with OVA257-264 peptide at 

indicated time points. Data are representative of 3 independent experiments. (B) Statistical analysis of data depicted in (A). (C) 

Expression of transcription factor IRF4 in the nucleus of OT-I and OT-III CD8+ T cells after antigen-specific activation in presence or 

absence of teriflunomide (TF) for 3h (n=4). Graph displays Mean Fluorescence Intensity (MFI) analyzed by flow cytometry. (D) MFI 

of c-Myc in the nucleus of OT-I and OT-III CD8+ T cells after antigen-specific activation in presence or absence of TF for 1h (n=3). 

(E) Expression of phosphorylated S6 protein, a downstream target of mTOR, in OT-I and OT-III CD8+ T cells after antigen-specific 

activation in presence or absence of  TF for 3h (n=4). Graph displays MFI analyzed by flow cytometry (F) Heat map of the expression 

of 84 glycolytic and 84 mitochondrial respiration genes assessed in OT-I and OT-III CD8+ T cells after antigen-specific activation for 

12h in presence or absence of TF. (G) Principal component analysis (PCA) of data depicted in (F). (H) Venn diagram of all 

differentially expressed genes (OT-I versus OT-III). Orange indicates the overlap between TCR affinity–regulated genes and 

stimulation dependent-regulated genes. All data are displayed as mean ± SEM. Statistical analysis was employed by Student’s t-test or 

1-way ANOVA (C-E) and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. 6. Effect of DHODH inhibition on mitochondrial content and function 

(A) Relative mt/nDNA ratio of OT-I (high-affinity TCR) and OT-III (low-affinity TCR) CD8+ T cells upon stimulation with OVA257-

264 peptide in presence or absence of teriflunomide (TF) at day 2 (n=3). Data were normalized to OT-I w/o. (B) OT-I and OT-III CD8+ 

T cells were activated with α-CD3/28 in presence or absence of TF for 2 days. Cells were stained with DAPI (blue) and Mitotracker 

green (MT green, green). Scale bars indicate 20 µM. (C) Quantification of MT green intensity with Image J software. Dots represent 

the intensity of single images with the same size and exposure time. (D) Immunohistochemistry of complex IV (COX) activity of OT-

I CD8+ T cells unstimulated or activated with α-CD3/28 in presence or absence of TF at day 2. Scale bars indicate 10 µM. Graph data 

display quantification of densitometric mean of individual COX puncta. (E) Activity of complexes I, II/III and IV of the mitochondrial 

respiration chain in OT-I CD8+ T cells activated with α-CD3/28 in presence or absence of TF for 2 days (n=3). Cells were 

permeabilized before measurement and substrates and inhibitors of mitochondrial respiration chain complexes were successively 

added. Scheme shows simplified illustration of the mitochondrial respiration chain (complexes I-IV) with all substrates (green) and 

inhibitors (red). (Rot: Rotenone, Succ: Succinate, AA: Antimycin A, TMPD: Tetramethylphenylendiamin, Asc: Ascorbate). All data 

are displayed as mean ± SEM. Statistical analysis was employed by Student’s t-test (A and C), 1-way ANOVA (D) or 2-way ANOVA 

(E) and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 

 

Fig. 7. Relevance of DHODH inhibition in vivo 

(A) Clinical EAE score of C57BL/6 mice treated orally with leflunomide (LF, precursor of teriflunomide (TF)) or vehicle. Active 

MOG-EAE was induced in C57BL/6 mice (n = 13 per group) and the clinical disease score was assessed daily. (B, C) Absolute 

numbers of CD4+ T cells (B), CD4+ IFNγ+ and CD4+ IL-17A+ T cells (C) from the CNS of immunized mice from (A) at day 14 

analyzed by flow cytometry. (D) Absolute numbers of CD4+ IFNγ+ and CD4+ IL-17A+ T cells from the spleen of immunized mice 

from (A) at day 14 analyzed by flow cytometry. (E) Tetramer staining of MOG35-55-IAb+ CD4+ T cells isolated from the CNS of 

immunized mice treated with LF or vehicle at day 14. Y-scatter plot displays statistical analysis (n=7-8/group). (F, G) Adhesion 

frequency of MOG35-55-specific CD4+ T cells isolated from the CNS of mice treated with LF or vehicle at day 10 (n=12/group). T cells 

were tested for adhesion to MOG38-49 -IAb or negative control hCLIP103-117 -IAb. Receptor (R) density was assessed by flow cytometry 

(CD4+ T cells: 18 R/µm2, pMHC MOG38-49 -IAb: 770 R/µm2, pMHC hCLIP103-117 -IAb: 393 R/µm2) (H, I) Treatment-naïve relapsing-

remitting multiple sclerosis (RRMS) patients at baseline and during at least 6 months of TF treatment exhibiting the HLA-DR4+ 

phenotype (n=3) were analyzed for frequencies of myelin-specific T cells by using DRB1*0401/MOG97-109, DRB1*0401/PLP180-199 

tetramers and the DRB1*0401/CLIP87-101 control tetramer (demographic data depicted in Table S8). FACS plots show one 

representative example. Bar graphs display the relative ratio of MOG97-109
+ (H) or PLP180-199

+ (I) CD4+ T cells to CLIP87-101
+ CD4+ 
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T cells. Data are displayed as mean ± SEM. Statistical analysis was employed by 2-way ANOVA (A) or Student’s t-test and was 

defined as *P≤0.05, **P≤0.01, ***P≤0.001. 

Fig. 8. Metabolic profiles of T cells from RRMS patients and healthy controls 

(A, B) Basal and maximal respiration (A) or glycolysis and glycolytic capacity (B) of human CD4+ T cells from healthy controls (HC) 

(n=24), treatment-naïve relapsing-remitting multiple sclerosis (RRMS) patients without (n=25) and with relapse (n=24) upon short-

term stimulation with phorbol 12-myristate 13-acetate (PMA) and Ionomycin (Iono) for 2.5h (demographic data depicted in Table 

S11). (C, D) Activation-induced increase in mitochondrial respiration (C) and glycolysis (D) was calculated from human CD4+ T cells 

from the cohort depicted in (A) and (B) either left unstimulated or upon short-term stimulation for 2.5h with PMA/Iono prior to 

measurement of Oxygen Consumption Rate (OCR) or Extracellular Acidification Rate (ECAR) (stimulated OCR or ECAR 

values/unstimulated OCR or ECAR values). (E) CD4+ T cells from treatment-naïve RRMS patients at baseline and after at least 6 

months of TF treatment (n=14) were analyzed for maximal respiration and glycolytic capacity upon short-term stimulation with 

PMA/Iono for 2.5h (demographic data depicted in Table S9). (F) OCR and ECAR values of CD4+ T cells from one representative 

treatment-naïve RRMS patient at baseline and during TF treatment from (E). (G) Maximal respiration and glycolytic capacity of 

human CD4+ T cells from HCs (n=10) and RRMS patients (n=10) activated with α-CD3/28 in presence or absence of TF for 3 days 

(demographic data depicted in Table S12). (H) OCR and ECAR values of CD4+ T cells from one representative RRMS patient from 

(G). (Oligo: Oligomycin, FCCP: Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, Rot: Rotenone, AA: Antimycin A, Gluc: 

Glucose, 2-DG: 2-Deoxyglucose). All data are displayed as mean ± SEM. Statistical analysis was employed by 1-way ANOVA (A-D) 

or Student’s t-test (E-G) and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Material and Methods 

 

Flow cytometry and intracellular cytokine staining  

All fluorochrome-conjugated mAbs were purchased from Biolegend. Cells were stained as described previously 

(74). OT-I CD8+ T cells were stained with α-TCR Vα-2 FITC (B20.1) and α-TCRβ 5.1,5.2 PE (MR9-4). OT-III 

CD8+ T cells were stained with α-CD8a FITC (53-6.7) and α-TCRβ 5.1, 5.2 PE (MR9-4). 2D2 CD4+ T cells 

were stained with α-CD4 FITC (GK 1.5) and α-TCRβ-11 PE (RR3-15). To assess proliferation, cells were 

labeled with eFluor670® (eBioscience) according to the manufacturer’s instructions. For staining of dead cells, 

Hoechst 33342® (Thermo Fischer) or 7-AAD (eBioscience) was used.  

For staining of transcription factors following antibodies were used: α-c-Myc Alexa Fluor® 647 (Cell 

Signaling), α-IRF4 Alexa Fluor® 647 (eBioscience), α-phospho-S6 ribosomal protein (Ser235/236) Alexa 

Fluor® 647 (D57.2.2E, Cell Signaling) (downstream target of mTOR). To evaluate the nuclear IRF4 and c-Myc 

expression, the MFI of the nuclear plus cytosolic IRF4/c-Myc (Transcription Factor Staining Buffer Set, 

eBioscience) was substracted from MFI of cytosolic IRF4/c-Myc (BD Cytofix/Cytoperm™ Kit, BD 

Biosciences) in order to obtain only the nuclear fraction of IRF4 and c-Myc. 

For intracellular cytokine release, cells were restimulated with lymphocyte activation cocktail (BD Pharmingen) 

for 3h. Afterwards CD8+ T cells from OT-I and OT-III mice or CD4+ T cells from 2D2 mice were stained with 

α-IFNγ APC (XMG1.2) and α-Granzyme B (GB11) APC.  

For analysis of effector T cells in the CNS and spleen from immunized mice the following antibodies were 

used: CD45 FITC (30-F11), CD4 PE (GK1.5), CD11b BV510 (M1/70), IL-17A APC (eBio17B7, eBioscience) 

and IFNγ BV421 (XMG1.2). 

For analysis of Treg subpopulations in the blood and spleen of immunized mice the following antibodies were 

purchased: CD4 Pacific Blue (GK1.5), CD25 Alexa Fluor® 700 (PC61), CD304 PE (NRP-1, 3E12), Helios 

FITC (22FG), CD49b PerCP/Cy5.5 (DX5), CD223 APC (LAG-3, C9B7W). 
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For staining of MOG IAb-positive CD4+ T cells isolated from the CNS of immunized mice, cells were stained 

with T-Select I-Ab MOG35-55 tetramer-PE (MBL) or without tetramer (negative control), CD4 APC (RM4-5) 

and CD3 PC5.5 (17A2) after manufactures instructions. Dead cells were discriminated using Hoechst 33342® 

(Thermo Fischer). 

For human immune cell phenotyping of frozen versus freshly isolated PBMC from HCs the following markers 

were used to determine immune cell subsets:  

Lymphocytes: FSC vs SSC, CD14- 

B cells: CD19+CD3- Lymphocytes 

T cells: CD3+CD56- Lymphocytes 

CD4: CD4+CD8- T cells 

CD4 HLA-DR+: HLA-DR+ CD4 

CD4/CD8 naive: CD45RO-CD45RA+CD197+CD62L+ 

CD4/CD8 memory: CD45RO+CD45RA- 

CD8 TEMRA: CD45RO-CD45RA+CD197-CD62L- CD8 

Treg: CD45RO+CD127lowFoxP3+CD25+ CD4 

pTreg: Helios- Treg 

tTreg: Helios+ Treg 

Th1: CD45RO+CCR4-CCR6-CXCR3+ CD4 

Th2: CD45RO+CCR4+CCR6-CXCR3- CD4 

Th17: CD45RO+CCR4+CCR6+CXCR3- CD4 

Flow cytometric measurement was performed with a Gallios flow cytometer (Beckman Coulter). Data were 

analyzed using FlowJo Software (Tree Star). 

 

Cytokine detection with ELISA  



53 
 

Cytokine levels of IFNγ, GM-CSF and TNFα were assessed in the supernatants of T cells isolated from the 

spleen and lymph nodes of OT-I, OT-III and 2D2 mice after 3 days of antigen-specific activation using 

Enzyme-Linked Immunosobent Assay (ELISA) Ready Set-Go® (eBioscience) according to the manufacturer’s 

instructions. 

 

RT2-PCR-Profiler PCR Array  

OT-I and OT-III CD8+ T cells were antigen-specifically activated for 12h. RNA was isolated using RNeasy 

Mini Kit (Qiagen) with an integrated DNA digestion on the column using RNase-Free DNase Set (Qiagen) 

according to the manufacturer’s instruction. RNA quality and quantity was assessed using a Nanodrop 1000 

Spectrophotometer (Peqlab). cDNA synthesis was performed from total RNA using a RT2FirstStrand Kit 

(Qiagen). We determined expression of glycolic genes (RT² Profiler™ PCR Array Mouse Glucose Metabolism, 

#PAMM-006Z) and genes involved in mitochondrial respiration (RT² Profiler™ PCR Array Mouse 

Mitochondrial Energy Metabolism, #PAMM-008Z) using RT2 Profiler RCR Arrays (Qiagen). Quantitative 

PCR was carried out on the CFX-384 (BioRad) using RT2 Real-Time SYBR Green PCR Master Mix 

(SuperArray Bioscience) according to the manufacturer’s protocol. As internal controls, two different 

housekeeping genes b-actin (ACTB) and beta-2-microglobulin (B2m) were used. 

Principal Component Analysis was performed on scaled and centered RT2 Profiler array data using the R 

package pcaGoPromoter version 1.18.0 (77). Dendrograms for heatmap visualization were calculated with 

Euclidean average clustering and visualized along with scaled and centered data. Differentially expressed genes 

were determined with the R package limma version 3.30.13 (78) as having an FDR-corrected p-value < 0.05 

(Benjamini-Hochberg correction) and fold change > 1.5. 

 

Analysis of mtDNA/nDNA content and ratio 

Genomic DNA was purified using QIAamp DNA micro Kit (Qiagen) and carried out according to the 

manufacturer’s instructions. The quality and quantity of genomic DNA was assessed with a Nanodrop 1000 
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Spectrophotometer (Peqlab). MtDNA/nDNA ratios were analyzed as described previously (79). Briefly, the 

gene expression was determined in triplicates using gene-specific primers for cytochrome c oxidase subunit 1 

(CO1) gene of the mtDNA and NADH dehydrogenase ubiquinone flavoprotein 1 (NDUFV1) gene of nDNA. 

The CO1 primers were 5-TGC TAG CCG CAG GCA TTA C-3 (forward primer) and 5-GGG TGC CCA AAG 

AAT CAG AAC-3 (reverse primer). The NDUFV1 primers were 5-CTT CCC CAC TGG CCT CAA G-3 

(forward primer) and 5-CCA AAA CCC AGT GAT CCA GC-3 (reverse primer). The PCR reaction mixture 

was prepared with 40 ng/ml genomic DNA and with PowerSYBR Green PCR Master Mix (Applied 

Biosystems) according to the manufacturer´s protocol. Amplification of genomic DNA was carried out on a 

StepOnePlusTM System (Applied Biosystems). Data were examined for the ratio of CT values 

(mtDNA/nDNA). 

 

Imaging  

OT-I and OT-III CD8+ T cells were activated with α-CD3/28 in presence or absence of 10 µM teriflunomide for 

2 days and stained for Mitotracker Green (final concentration: 100 nM; life technologies) and DAPI (Thermo 

Scientific) according to the manufacturer’s instructions. A confocal laser scanning microscope (Leica SP8) with 

a tunable white light laser and a laser diode of 405 nm was used for parallel dual color excitation/emission 

microscopy. Z-stacks of cells were recorded through a motorized 63x objective (HC PL APO 63x/1.20 W 

motCORR CS2) with 2 HyD SP GaAsP detectors. DAPI was excited with 405 nm, emission range was set 

between 455 to 469 nm. MitoTracker® Green was excited with 488 nm and emission recorded between 496 nm 

and 522 nm. 

 

Complex IV (COX) Immunohistochemistry  

OT-I CD8+ T cells were either unstimulated or activated with α-CD3/28 in presence or absence of 10 µM 

teriflunomide (TF) for 2 days. After spin down of cells (75,000) to super frost microscope slides (Thermo 

Fischer), cells were air dried and stored at -80 °C. Afterwards mitochondrial respiratory chain activity was 
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analyzed by sequential complex IV (COX) immunohistochemistry as described previously (80). Briefly, slides 

were air dried for 60 min at room temperature prior incubation in COX medium (100 mM cytochrome c, 4 mM 

diaminobenzidine tetrahydro-chloride and 20 µg/ml catalase in 0.1 M phosphate buffer, pH 7.0) at 37°C for 

50 min (57, 81). Subsequent immunohistochemistry, the sections were dehydrated in 70, 90 and 100% ethanol 

followed by Histoclear (National Diagnostics, Atlanta, Georgia, USA) and mounted in DPX (Sigma). Finally, 

brightfield images were taken on an Olympus BX51 microscope at 40x magnification.  

 

Experimental autoimmune encephalomyelitis  

EAE was performed as previously described (74). Briefly, age and sex matched C57BL/6 mice were immunized 

with 50 µg MOG35–55 peptide (GL Biochem (Shanghai) Ltd.) emulsified in complete Freund's adjuvant (BD) 

containing Mycobacterium tuberculosis. Two injections of 200 ng Pertussis toxin (Sigma) in PBS were also 

performed on the day of immunization and two days later. Mice were scored as previously described (75). 

Briefly, daily clinical assessment of EAE was performed using a scale ranging from 0 to 8: 0, no paralysis; 1, 

limp tail; 2, ataxia or unilateral hind limb paresis; 3, severe unilateral or weak bilateral hind limb paresis; 4, 

severe bilateral hind limb paresis; 5, complete bilateral hind limb plegia; 6, complete bilateral hind limb plegia 

and partial forelimb paresis; 7, severe tetraparesis/plegia; and 8, moribund/dead animals. MOG35-55-specific 

CD4+ T cells were isolated from the CNS and spleen of mice treated orally with 17 mg/kg leflunomide (LF) 

(20 mg ARAVA, Sanofi-Aventis) or with a vehicle (control) at the disease peak (day 10/14) as described 

previously (75). 

 

In vitro differentiation of murine Th1, Th17 and Treg cells 

CD4+ T cells were isolated from lymph nodes and spleen of C57/BL6 mice using positive MACS selection 

(Miltenyi Biotech) according to the manufacturer’s instructions. Afterwards CD4+ T cells were stimulated with 

4 µg/ml α-CD3/28 and cultured with specific cytokine cocktails to polarize the cells into a Th1, Th17 or Treg 

phenotype for 3 days (Th1: 10 µg/ml α-IL-4, 20 ng/ml IL-12; Th17: 5 ng/ml TGFβ, 20 ng/ml IL-6, 10 µg/ml α-
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IL-4,10 µg/ml α-IFNγ; Treg: 5 ng/ml TGFβ, 10 µg/ml α-IL-4,10 µg/ml α-IFNγ) (IL-12, TGFβ, IL-6 from 

Prepotech; purified α-IL-4 and α-IFNγ antibodies from Biolegend). 

 

Human Treg suppression assay 

Treg and Teff cells were isolated from frozen PBMC of RRMS patients (Table S6) before and during at least 6 

months of TF treatment using CD4+ CD25+ Regulatory T Cell Isolation Kit (Miltenyi Biotech) according to the 

manufacturer’s instructions. Subsequently, Teff cells (CD4+ CD25-) were labeled with Carboxyfluorescein 

Diacetate Succinimidyl Ester (CFSE, Invitrogen) after companies manual. Then Teff cells were cocultured in a 

1:1 ratio with or without autologous Treg and stimulated with a-human CD3 (HIT3a, Biolegend) und a-human 

CD28 (CD28.2, Biolegend) monoclonal antibodies for 5 days as described previously (82). Proliferation was 

assessed via flow cytometry. Stimulated Teff cells without Treg served as a control.  

 

Cytokine detection with Luminex 

Treg were isolated from frozen PBMC of RRMS patients (Table S7) before and during at least 6 months of TF 

treatment using CD4+ CD25+ Regulatory T Cell Isolation Kit (Miltenyi Biotech) according to the 

manufacturer’s instructions. Then, Treg cells were stimulated with a-human CD3 (HIT3a, Biolegend) und a-

human CD28 (CD28.2, Biolegend) monoclonal antibodies for 5 days. The supernatants of these Treg cell 

cultures were analyzed for cytokine release using a High Sensitivity 9-Plex Human ProcartaPlex™ Panel 

measured by Luminex MAGPIX® System. 

 

Determination of myelin-specific frequencies of human T cells 

PBMCs from three treatment-naïve RRMS patients before and during TF treatment for at least 6 months with 

the correct HLA-DR4+ genotype (Table S8) were analyzed for myelin-specific frequencies as by Cao et al. (35). 

PBMCs were loaded with a pool of peptides each 10 µg/ml (MBP85-99, MOG222-241, PLP30-49, PLP129-148, MOG97-

109, PLP180-199). Thereafter cells were cultured (5x106/ml) for 14 days in HL-1 medium containing 5% human 
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serum. IL-2 (20 U/ml) was added on days 4, 7, and 10. The cultures were split in two wells and supplemented 

with fresh medium on day 7. 

For tetramer staining, the cells were washed with PBS, then stained with 10 mg/ml PE-labeled tetramer 

(DRB1*0401/MOG97–109, DRB1*0401/PLP180-199 or control DRB1*0401/CLIP87-101) at 37˚C for 3h in HL-1 

medium with 2% human serum. Cells were stained for the last 30 min with α-CD19 APC and α-CD4 FITC 

mAbs (Biolegend); dead cells were discriminated using Zombie AquaTM (Biolegend). Flow cytometry data 

were analyzed with FlowJo software (Tree Star, Ashland, OR). 

 

Isolation and purification of human T cells for analysis of metabolism 

PBMCs were isolated from voluntary RRMS patients and HCs. CD4+ and CD8+ T cells were enriched using 

positive selection via MACS technology (Miltenyi Biotech) according to the manufacturer’s instructions.  

 

In vitro cultures of human T cells for analysis of metabolism 

Human CD4+ and CD8+ T cells were activated with 4 µg/ml α-CD3 mAb (OKT3) (Biolegend) and 0.5 µg/ml α-

CD28 mAb (CD28.2) (eBioscience) and cultured in X-Vivo Media 15 (Lonza) in presence or absence of 10 µM 

TF for 3 days (Table S12). 
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Fig. S1 
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Fig. S1. Changes on T cell subsets in RRMS patients under teriflunomide treatment 

(A-B) Changes in CD4+ T cell subpopulations in patients with relapsing-remitting multiple sclerosis (RRMS) after 3 (3M) and 6 

months (6M) of teriflunomide (TF) treatment from the TERIDYNAMIC clinical study (demographic data depicted in Table S1). (A) 

Percentages of total regulatory T cells (Treg) (n=37) and natural Treg (nTreg) (n=37) cells. (B) Absolute numbers of inducible (iTreg, 

n=37). (C, D) Changes in CD4+ T cell subpopulations in treatment-naïve RRMS patients after 3M and 6M of TF treatment from the 

TERIDYNAMIC clinical study. (C) Absolute numbers of Th1 (n=7), Th2 (n=7), Th17 (n=7) and total Treg cells (n=8) within the 

CD4+ T cell population. (D) Percentages of total Treg (n=8) and subpopulation analysis of nTreg (n=8) and iTreg (n=8). (E) Changes 

in CD4+ T cell subpopulations in RRMS patients after 3M and 6M of TF treatment from the TERIDYNAMIC clinical study. Ratio 

from percentages of iTreg/Th1 (n=32) and iTreg/Th17 (n=32). (F, G) Data from treatment-naïve RRMS patients at baseline and after 

3M and 6M of TF treatment (demographic data depicted in Table S5). Mean Fluorescence Intensity (MFI) of CD39 (n=4) (F) and 

CTLA-4 (n=6) (G) from total Treg, nTreg and iTreg cell populations. All box plots represent the interquartile range (IQR) with the 

horizontal line indicating median and error bars showing maximum and minimum values. P values were calculated from linear mixed 

model on change from baseline. (H) Suppressive capacity of Treg isolated from frozen PBMC of RRMS patients before and after at 

least 6M of TF treatment (n=10) (demographic data depicted in Table S6). Effector T cells from the same donor were cultivated either 

with autologous Treg or alone and stimulated with α-CD3/28 for 5 days. Proliferation was assessed by flow cytometry. (I) Detection 

of indicated cytokines in the supernatant of Tregs isolated from RRMS patients before and during at least 6M of TF treatment (n=18) 

(demographic data depicted in Table S7) after α-CD3/28 stimulation for 5 days. (J, K) Global TCR repertoire analysis of CD4+ (J) 

and CD8+ (K) T cells from treatment-naïve RRMS patients at baseline and after 3M and 6M of TF treatment (n=20) (demographic 

data depicted in Table S4). Data display numbers of unique clones and sample overlap. P values were calculated from linear mixed 

model on change from baseline. Horizontal lines indicate mean and error bars show SEM. *P≤0.05, **P≤0.01, ***P≤0.001.  
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Fig. S2 
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Fig. S2. Influence of teriflunomide on proliferation and cytokine production 

(A) Viability of CD4+ and CD8+ T cells. 2D2 CD4+ T cells upon α-CD3/28 stimulation and OT-I (high-affinity TCR) as well as OT-

III (low-affinity TCR) CD8+ T cells upon stimulation with OVA257-264 peptide in presence or absence of teriflunomide (TF) at day 3. 

For further analysis, Hoechst-negative viable cells were taken. Data are representative of 3 independent experiments. (B) Proliferation 

of OT-I CD8+ T cells upon stimulation with altered peptide ligands of OVA257-264 with different affinities: SIINFEKL (N4) > 

SIIQFEKL (Q4) > SIITFEKL (T4) in presence or absence of TF at day 3. Data are representative of 3 independent experiments. (C) 

Proliferation of OT-I and OT-III CD8+ T cells upon α-CD3/28 stimulation in presence or absence of TF at day 3. Data are 

representative of 3 independent experiments. (D). Percentages of proliferated cells and inhibition of proliferation of OT-I and OT-III 

CD8+ T cells upon α-CD3/28 stimulation in presence or absence of TF at day 3 (n=3). (E, F) Percentages (E) and Mean Fluorescence 

Intensity (MFI) (F) of IFNγ and granzyme B (GrB) expression of 2D2 CD4+ T cells upon stimulation with NFM15–35 (high-affinity) 

and MOG35-55 (low-affinity) peptides in presence or absence of TF at day 3 detected via intracellular cytokine staining after 

restimulation (n=3). (G, H) Percentages (G) and MFI (H) of IFNγ and GrB expression of OT-I and OT-III CD8+ T cells after antigen-

specific activation in presence or absence of TF at day 3 detected via intracellular cytokine staining after restimulation (n=3). (I) 

Detection of the cytokines IFNγ, tumor necrosis factor alpha (TNFα) and granulocyte-macrophage colony-stimulating factor (GM-

CSF) in the supernatant of 2D2 CD4+ T cells after antigen-specific activation in presence or absence of TF at day 3. Data are 

representative of 3 independent experiments. (J) Detection of the cytokines IFNγ, TNFα and GM-CSF in the supernatant of OT-I and 

OT-III CD8+ T cells after antigen-specific activation in presence or absence of TF at day 3. Data are representative of 2 independent 

experiments. All data are displayed as mean ± SEM. Statistical analysis was employed by 1-way ANOVA (D) or Student’s t-test (E-J) 

and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. S3 
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Fig. S3. Impact of antigen-affinities and DHODH interference on proliferation 

(A) Proliferation of OT-I (high-affinity TCR) and OT-III (low-affinity TCR) CD8+ T cells upon stimulation with OVA257-264 peptide in 

presence or absence of teriflunomide (TF), brequinar (Bq), mercaptopurine (Mc) or mitoxantrone (MT) at day 3. Data are 

representative of 3 independent experiments. (B) Percentages of proliferated OT-I and OT-III CD8+ T cells after antigen-specific 

activation in presence or absence of TF, Bq, Mc or MT at day 3 (n=2). (C) Generation analysis of proliferated OT-I and OT-III CD8+ 

T cells after antigen-specific activation in presence or absence TF, Bq, Mc or MT at day 3. Data are representative of one experiment 

with 3 technical replicates. (D) Proliferation profiles and cell viability of OT-I CD8+ T cells after antigen-specific activation in 

presence or absence of TF, Mc or MT at day 3. Highlighted concentrations were taken for further experiments based on functionality 

and viability of the cells. (E) Proliferation of OT-I and OT-III CD8+ T cells after antigen-specific activation in presence or absence of 

TF, Bq, uridine or guanosine at day 3. Data are representative of 3 independent experiments. All data are displayed as mean ± SEM. 

Statistical analysis was employed by Student’s t-test and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. S4 
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Fig. S4. Metabolic assessment of CD4+ and CD8+ T cells under teriflunomide treatment 

(A) Oxygen Consumption Rate (OCR) of unstimulated naïve 2D2 CD4+ T cells in presence or absence of teriflunomide (TF) at day 3. 

Data are representative of 3 independent experiments. (B) OCR of unstimulated naïve OT-I CD8+ T cells in presence or absence of TF 

at day 2. Data are representative of 3 independent experiments. (C) OCR of OT-I CD8+ T cells stimulated with α-CD3/28 in presence 

or absence of brequinar (Bq) at day 2. Data are representative of 3 independent experiments. (D) OCR of OT-I CD8+ T cells 

stimulated with α-CD3/28 in presence or absence of TF and uridine at day 2. Data are representative of 3 independent experiments. 

(E) Extracellular Acidification Rate (ECAR) of unstimulated naïve 2D2 CD4+ T cells in presence or absence of TF at day 3. Data are 

representative of 3 independent experiments. (F) ECAR of unstimulated naïve OT-I CD8+ T cells in presence or absence of TF at day 

2. Data are representative of 3 independent experiments. (G) Proliferation OT-I CD8+ T cells upon stimulation with OVA257-264 peptide 

in presence or absence of TF and indicated concentrations of oligomycin (oligo) at days 0 and 2. Data are representative of 2 

independent experiments. (H) OCR of OT-I CD8+ T cells upon stimulation with OVA257-264 peptide in presence or absence of oligo 

and TF at day 2. Data are representative of 2 independent experiments. (I) OT-I CD8+ T cells were stimulated with OVA257-264 peptide 

in presence or absence of TF for 2 days. Afterwards cells were labeled with eFluor670 and cultured OVA257-264 peptide in presence or 

absence of oligo for up to 2 days. Data display proliferation at day 0, 1 and 2 after addition of oligo. Data are representative of 2 

independent experiments. (J) Analysis of proliferation of OT-I CD8+ T cells shown in (I). Graphs indicate Mean Fluorescence 

Intensity (MFI) relative to d0. Data were normalized to OT-I CD8+ T cells. Data are representative of 2 independent experiments. All 

data are displayed as mean ± SEM. 
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Fig. S5 
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Fig. S5. Influence of DHODH inhibition on T cell metabolism, gene expression of OT-I and OT-III T cells and on Treg 

subpopulations in experimental autoimmune encephalomyelitis 

(A) Mitochondrial respiration of OT-I (high-affnity TCR) and OT-III (low-affinity TCR) CD8+ T cells upon stimulation with either 

OVA257-264 peptide (left) or α-CD3/28 (right) in presence or absence of teriflunomide (TF) at day 2 (n = 3). (B) Activity of complexes 

I, II/III and IV of the mitochondrial respiration chain. OT-I and OT-III CD8+ T cells were activated with α-CD3/28 for 2 days. Cells 

were permeabilized before measurement and substrates (green) and inhibitors (red) of mitochondrial respiration chain complexes were 

successively added as indicated (n=3). Scheme shows simplified illustration of mitochondrial respiration chain (complexes I-IV) with 

all substrates and inhibitors. (C-E) Scatterplot of ΔCT values of two independent groups plotted on a log base 10 scale. (C) OT-I and 

OT-III CD8+ T cells upon stimulation with OVA257-264 peptide for 12h; blue triangle indicates differentially expressed genes. (D) OT-I 

CD8+ T cells upon stimulation with OVA257-264 peptide in presence or absence of TF for 12h. (E) Unstimulated OT-I versus OT-III 

CD8+ T cells. (F) Active EAE was induced by MOG35–55 immunization in C57BL/6 mice (n = 13 per group) treated with leflunomide 

(LF, precursor of TF) or vehicle. At day 14 of EAE, spleen and blood was analyzed for regulatory T cell (Treg) markers (Helios, 

NRP-1, CD49b, LAG-3) by flow cytometry. Treg subpopulations were defined as follows: Treg CD4+CD25+FoxP3+, nTreg 

CD4+CD25+FoxP3+Helios+ or CD4+CD25+FoxP3+NRP-1+, iTreg CD4+CD25+FoxP3+Helios- or CD4+CD25+FoxP3+NRP-1-, Tr1 

CD4+CD49b+LAG-3+. (Rot: Rotenone, Succ: Succinate, AA: Antimycin A, TMPD: Tetramethylphenylendiamin, Asc: Ascorbate, 

Oligo: Oligomycin, FCCP: Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, Gluc: Glucose, 2-DG: 2-Deoxyglucose). All data 

are displayed as mean ± SEM. Statistical analysis was employed by 2-way ANOVA (B) or Student’s t-test and was defined as 

*P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. S6 

 

Fig. S6. Metabolism of CD4+ and CD8+ T cells from RRMS patients and healthy controls 

(A) Maximal respiration (left) and glycolytic activity (right) of CD8+ T cells isolated from frozen PBMCs from treatment-naïve 

RRMS patients at baseline and after at least 6 months of TF treatment (n=14). Cells were measured after short-term stimulation with 

phorbol 12-myristate 13-acetate (PMA) and Ionomycin for 2.5h (demographic data depicted in Table S9). (B) Maximal respiration 

(left) and glycolytic activity (right) of freshly isolated CD8+ T cells from HCs (n=10) and RRMS patients (n=10) 3 days after 

stimulation with α-CD3/28 in presence or absence of TF (demographic data depicted in Table S12). (C-E) Mitochondrial respiration 

(left) and glycolysis (right) of freshly isolated CD4+ and CD8+ T cells from HCs and RRMS patients 3 days after stimulation with α-

CD3/28 in presence or absence of TF (demographic data depicted in Table S12). Data are representative of 10 independent 

experiments. (Oligo: Oligomycin, FCCP: Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, Rot: Rotenone, AA: Antimycin A, 

Gluc: Glucose, 2-DG: 2-Deoxyglucose). All data are displayed as mean ± SEM. Statistical analysis was employed by Student’s t-test 

and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. S7 

 

Fig. S7. Effects of teriflunomide on murine Th1 differentiation and proliferation and metabolic capacities of Th1 cells versus 

Th17 and Treg cells 

(A, B) Murine CD4+ T cells were differentiated into Th1 cells for 3 days in presence or absence of teriflunomide (TF). (A) IFNγ 

expression was assessed by flow cytometry via intracellular cytokine staining after restimulation.Data are representative of 3 

independent experiments. Bar graph depicts percentages of IFNγ production (n=3). (B) Proliferation and absolute cell numbers of 

Th1-polarized CD4+ T cells in presence or absence of TF at day 6 (n=3). (C) XF PhenoGram of in vitro Th1- and Th17-polarized 

murine CD4+ T cells at day 3. Data are representative of 3 independent experiments. (D) XF PhenoGram of in vitro differentiated 

murine Th1 and regulatory T cells (Treg) at day 3. Data are representative of 3 independent experiments. All data are displayed as 

mean ± SEM. Statistical analysis was employed by Student’s t-test and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. S8 
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Fig. S8. Comparison of freshly isolated versus frozen PBMC from healthy controls regarding immune cell subset composition 

and metabolism 

(A) Immune cell subset analysis of either freshly isolated or frozen PBMCs from 12 healthy controls (HC) (demographic data depicted 

in Table S13) by flow cytometry. (B) Longitudinal analysis of immune cell subset composition of one HC up to 12 months (12M) by 

flow cytometry. (C-F) CD4+ T cells were either isolated from frozen or freshly isolated PBMCs from the same HCs (n=11) and 

analyzed for their mitochondrial respiration (C, D) or glycolysis (E, F) without stimulation or upon short-term stimulation with 

phorbol 12-myristate 13-acetate (PMA) and Ionomycin for 2.5h (demographic data depicted in Table S14). (OCR: Oxygen 

Consumption Rate; ECAR: Extracellular Acidification Rate). All data are displayed as mean ± SEM. Statistical analysis was 

employed by Student’s t-test and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Fig. S9 

 

Fig. S9. Additional information supporting methodology 

(A) OT-I CD8+ T cells upon stimulation with α-CD3/28 in presence or absence of indicated teriflunomide (TF) concentrations at day 

3. Cells were stained with 7-AAD to analyze cell viability and proliferation was assessed by flow cytometry. Dead cells were 7-AAD+. 

Based on functionality and viability data, 10µM TF was taken for further experiments. (B) TCR densities of freshly isolated CD8+ 

T cells from OT-I (high-affinity TCR) and OT-III (low-affinity TCR) mice at day 0 (n=3). (C) Division index and percentages of 

proliferated OT-I and OT-III CD8+ T cells upon stimulation with OVA257-264 peptide in presence or absence of TF at day 3 (n=3). (D) 

Expression of activation markers CD25, CD69, CD62L and CD44 on freshly isolated CD8+ T cells from OT-I and OT-III mice at day 

0 (n=3). (E) Mean Fluorescence Intensity (MFI) of costimulatory molecules (CD28, CD27 and ICOS) on freshly isolated CD8+ T cells 

from OT-I and OT-III mice at day 0 (n=3). All data are displayed as mean ± SEM. Statistical analysis was employed by Student’s t-

test and was defined as *P≤0.05, **P≤0.01, ***P≤0.001. 
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Table S1. Demographics for all participants and baseline disease characteristics for people with RRMS in the 
TERIDYNAMIC trial	

Subject Demographics Healthy Controls 
 (n=20) 

RRMS patients  
(n=50) 

Mean age, years (SD) 42.2 (8.0) 40.7 (9.4) 

Female, n (%) 14 (70) 35 (70) 

Time since first symptoms of MS, median (min; max), years 

N/A 

6.67 (0.3;37.0) 

EDSS score at baseline, median (min;max) 1.50 (0.0; 4.0) 

Naïve to DMT or no DMT >2 years, n (%) 
Recently on DMT, n (%)a 

16 (32.0) 
34 (68.0) 

Safety population 
a
IFNβ-1 or GLAT, with interruption of ≤3 months and a period of ≥2 weeks without IFNβ-1 or GLAT 

DMT, disease-modifying treatment; EDSS, expanded disability status scale; GLAT, glatiramer acetate; IFN, interferon; MS, multiple 
sclerosis; N/A, not applicable; RRMS, relapsing-remitting MS; SD, standard deviation. 

Table S1. Demographics and Baseline Disease Characteristics TERIDYNAMIC trial 

 

 

Table S2. Differentially regulated genes depicted in Fig.5 I 

Group Regulated genes 

OT-I stimulation-dependent genes 
(unstim vs. stim) 

76 genes 

Aco2, Agl, Atp5a1, Atp5c1, Atp5d, Atp5o, Atp6v1c2, Cox5b, Cox6a1, Cox6b, 
Cox7a2l, Cox8a, Cyc1, Eno3, Fbp1, G6pc, G6pdx, Galm, Gsk3b, Idh3g, Mdh1, 
Ndufa3, Ndufa7, Ndufa8, Ndufb10, Ndufb7, Ndufs1, Ndufs3, Ndufs6, Ndufs7, Ndufs8, 
Ndufv1, Ndufv2, Oxa1l, Pdhb, Pdk1,Pdk4, Pdpr, Pgam2, Pgk2, Phka1,Ppa1, Ppa2, 
Prps1l1, Pygl, Rpia, Sdhb, Sdhd, Suclg1, Suclg2, Taldo1, Tkt, Tpi1, Uqcr11, Uqcrc1, 
Uqcrc2, Uqcrh, Uqcrq, Atp4a, Atp4b, Atp5h, Cox11, Cox4i2, Eno1, Gapdhs, Gck, Idh1, 
Idh3b, Lhpp, Ndufab1, Pck1, Pdk2, Pdk3, Pgk1, Pygm, Rbks 

OT-III stimulation-dependent genes 
(unstim vs. stim) 

0 genes 
- 

Affinity-dependent genes 
(OT-I vs. OT-III) 

5 genes 
Cox6a2, Cox7a2, H6pd, Ndufv3, Phkb 

Affinity-dependent and 
stimulation-dependent genes 

48 genes 

Aco1, Aldob, Atp5b, Atp5f1, Atp5g1, Atp5g2, Atp5g3, Atp5j, Atp5j2, Bcs1l, Cox4i1, 
Cox5a, Cox6c, Cox7b, Dlat, Dld, Dlst, Eno2, Hk3, Mdh1b, Ndufa1, Ndufa10, Ndufa11, 
Ndufa2, Ndufa4, Ndufa5, Ndufb2, Ndufb3, Ndufb4, Ndufb5, Ndufb6, Ndufb8, Ndufb9, 
Ndufc1, Ndufc2, Ndufs5, Ogdh, Pgm3, Sdha, Sucla2, Ugp2, Uqcrfs1 

 
Table S2. Differentially regulated genes depicted in Fig.5 I 
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Table S3. Demographics and Baseline Disease Characteristics of healthy controls and treatment-naïve RRMS Patients 
analyzed for TCR repertoire changes	

Subject Demographics HC 
 (n=10) 

RRMS  
(n=14) 

Diagnosis N/A 14 RRMS 

Mean age, years (SD) 42.2 (8.0) 42.5 (8.1) 

Female, n (%) 7 (70) 10 (71.4) 

Time since first symptoms of MS (SD), years 

N/A 

6.7 (9.8) 

EDSS score at baseline, (SD) 1.5 (1.7) 

Naïve to DMT (%) 100 

DMT, disease-modifying treatment; EDSS, expanded disability status scale; HC, healthy controls; MS, multiple sclerosis; N/A, not 
applicable; RRMS, relapsing-remitting MS; SD, standard deviation. 

Table S3. Demographics and Baseline Disease Characteristics of healthy controls and treatment-naïve RRMS Patients 

analyzed for TCR repertoire changes 

 

 

Table S4. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before 
and during teriflunomide treatment analyzed for TCR repertoire changes 

Subject Demographics RRMS 
(n=20) 

Diagnosis 20 RRMS 

Mean age, years (SD) 45.1 (7.9) 

Female, n (%) 14 (70) 

Time since first symptoms of MS (SD), years 5.9 (5.2) 

EDSS score at baseline, (SD) 1.75 (1.5) 

Naïve to DMT (%) 100 

DMT, disease-modifying treatment; EDSS, expanded disability status scale;MS, multiple sclerosis; RRMS, 
relapsing-remitting MS; SD, standard deviation. 

Table S4. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 

teriflunomide treatment analyzed for TCR repertoire changes 
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Table S5. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before 
and during teriflunomide treatment analyzed for immune cell phenotyping 

Subject Demographics RRMS 
(n=9) 

Diagnosis 9 RRMS 

Mean age, years (SD) 47.7 (6.8) 

Female, n (%) 6 (66.6) 

Time since first symptoms of MS (SD), years 7.1 (5.3) 

EDSS score at baseline, (SD) 2.0 (0.6) 

Naïve to DMT (%) 100 

DMT, disease-modifying treatment; EDSS, expanded disability status scale; MS, multiple sclerosis; RRMS, 
relapsing-remitting MS; SD, standard deviation. 

Table S5. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 

teriflunomide treatment analyzed for immune cell phenotyping 

 

 

Table S6. Demographics and Baseline Disease Characteristics of RRMS Patients before and during teriflunomide treatment 
for at least 6 months analyzed for suppressive capacity of Tregs 

Subject Demographics RRMS 
(n=10) 

Diagnosis 9 RRMS/1 CIS 

Mean age, years (SD) 42.5 (7.9) 

Female, n (%) 7 (70) 

Time since first symptoms of MS (SD), years 10.3 (9.0) 

EDSS score at baseline, (SD) 2.9 (2.0) 

Naïve to DMT, n (%) 
Recently on DMT, n (%) 

4 (40) 
6 (60) 

DMT, disease-modifying treatment; EDSS, expanded disability status scale;MS, multiple sclerosis; RRMS, relapsing-remitting MS; 
SD, standard deviation. 

Table S6. Demographics and Baseline Disease Characteristics of RRMS Patients before and during teriflunomide treatment 

for at least 6 months analyzed for suppressive capacity of Tregs 
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Table S7. Demographics and Baseline Disease Characteristics of RRMS Patients before and during teriflunomide treatment 
for at least 6 months analyzed for cytokine expression of Tregs 

Subject Demographics RRMS 
(n=18) 

Diagnosis 17 RRMS/1 CIS 

Mean age, years (SD) 45.9 (8.6) 

Female, n (%) 13 (72) 

Time since first symptoms of MS (SD), years 8.1 (5.9) 

EDSS score at baseline, (SD) 2.3 (1.6) 

Naïve to DMT, n (%) 
Recently on DMT, n (%)  

4 (22) 
14 (78) 

DMT, disease-modifying treatment; EDSS, expanded disability status scale; MS, multiple sclerosis; RRMS, relapsing-remitting MS; 
SD, standard deviation. 

Table S7. Demographics and Baseline Disease Characteristics of RRMS Patients before and during teriflunomide treatment 

for at least 6 months analyzed for cytokine expression of Tregs 

 

 
Table S8. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 
teriflunomide treatment for at least 6 months analyzed for myelin specific T cell frequencies 

Subject Demographics RRMS 
(n=3) 

Diagnosis 3 RRMS 

Mean age, years (SD) 38.3 (7.93) 

Female, n (%) 2 (66.6) 

Time since first symptoms of MS (SD), years 3.7 (0.5) 

EDSS score at baseline, (SD) 1.5 (1.5) 

Naïve to DMT (%) 100 

DMT, disease-modifying treatment; EDSS, expanded disability status scale; MS, multiple sclerosis; RRMS, relapsing-remitting MS; 
SD, standard deviation. 

Table S8. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 

teriflunomide treatment for at least 6 months analyzed for myelin specific T cell frequencies 
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Table S9. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 
teriflunomide treatment for at least 6 months analyzed for metabolic activity 

Subject Demographics RRMS 
(n=14) 

Diagnosis 13 RRMS/1 CIS 

Mean age, years (SD) 44.5 (7.6) 

Female, n (%) 6 (43) 

Time since first symptoms of MS (SD), years 5.3 (5.3) 

EDSS score at baseline, (SD) 1.8 (0.9) 

Naïve to DMT (%) 100 

DMT, disease-modifying treatment; EDSS, expanded disability status scale; MS, multiple sclerosis; RRMS, relapsing-remitting MS; 
SD, standard deviation. 

Table S9. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 

teriflunomide treatment for at least 6 months analyzed for metabolic activity 

 

 
Table S10. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 
treatment with Dimethyl fumarate (DMF), interferon-β (IFNβ) and glatiramer acetate (GLAT) analyzed for TCR 
repertoire changes 

Subject Demographics DMF 
(n=14) 

IFNβ 
(n=10) 

GLAT 
(n=10) 

Diagnosis 10 RRMS/4 CIS 6 RRMS/4 CIS 6 RRMS/4 CIS 

Mean age, years (SD) 40.1 (8.1) 31.5 (6.9) 35.9 (11.7) 

Female, n (%) 7 (50) 7 (70) 7 (70) 

Time since first symptoms of MS (SD), years 5.3 (5.2) 1.1 (0.4) 0.6 (0.8) 

EDSS score at baseline, (SD) 2.0 (1.1) 0.5 (0.7) 1.7 (0.9) 

Naïve to DMT (%) 100 100 100 

DMF, dimethyl fumarate; IFNβ, interferonβ; GLAT, glatiramer acetate; DMT, disease-modifying treatment; EDSS, expanded 
disability status scale; HC, healthy controls; MS, multiple sclerosis; RRMS, relapsing-remitting MS; SD, standard deviation. 

Table S10. Demographics and Baseline Disease Characteristics of treatment-naïve RRMS Patients before and during 

treatment with Dimethyl fumarate (DMF), interferon-β (IFNβ) and glatiramer acetate (GLAT) analyzed for TCR repertoire 

changes 
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Table S11. Demographics and Baseline Disease Characteristics of healthy controls and treatment-naïve RRMS Patients 
analyzed for metabolic activity 

Subject Demographics HCs 
(n=24) 

RRMS 
(n=25) 

RRMS relapse 
(n=24) 

Diagnosis N/A 16 RRMS/9 CIS 20 RRMS/4 CIS 

Mean age, years (SD)  34.9 (11.5) 34.7 (11.3) 35.4 (12.4) 

Female, n (%) 15 (63) 22 (88) 18 (75) 

Time since first symptoms of MS (SD), years 

N/A 

2.2 (3.3) 1.7 (3.1) 

EDSS score, (SD) 1.2 (0.8) 1.5 (0.8) 

Naïve to DMT (%) 100 100 

Definitions: Stable disease was defined as absence of novel clinical symptoms and no MRI activity within at least 4 weeks prior to 
PBMC collection. Relapse was defined according to acknowledged clinical criteria, e.g. new or deteriorating of neurological 
symptoms which last for at least 24h in the absence of infection. 
DMT, disease-modifying treatment; EDSS, expanded disability status scale; HC, healthy controls; MS, multiple sclerosis; N/A, not 
applicable; RRMS, relapsing-remitting MS; SD, standard deviation. 

Table S11. Demographics and Baseline Disease Characteristics of healthy controls and treatment-naïve RRMS Patients 

analyzed for metabolic activity 

 

 

Table S12. Demographics and Baseline Disease Characteristics of HCs and RRMS Patients analyzed for metabolic activity 
after 72h of in vitro stimulation	

Subject Demographics HC 
 (n=10) 

RRMS  
(n=10) 

Diagnosis N/A 8 RRMS/2 CIS 

Mean age, years (SD) 31.0 (5.0) 32.1 (5.2) 

Female, n (%) 7 (70) 7 (70) 

Time since first symptoms of MS, median (min; max), years 

N/A 

8.7 (8.7) 

EDSS score at baseline, (SD) 1.8 (1.1) 

GLAT, n (%) 
IFNβ, n (%) 
NAT, n (%) 

3 (30) 
6 (60) 
1 (10) 

GLAT, glatiramer acetate; IFNβ, interferonβ; NAT, natalizumab; DMT, disease-modifying treatment; EDSS, expanded disability 
status scale; HC, healthy controls; MS, multiple sclerosis; RRMS, relapsing-remitting MS; SD, standard deviation. 

Table S12. Demographics and Baseline Disease Characteristics of HCs and RRMS Patients analyzed for metabolic activity 

after 72h of in vitro stimulation 
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Table S13. Demographics and Baseline Disease Characteristics of healthy controls analyzed for immune cell phenotyping of 
freshly isolated versus frozen PBMCs 

Subject Demographics HC 
(n=12) 

Mean age, years (SD) 30.3 (4.0) 

Female, n (%) 9 (67) 

HC, healthy controls; SD, standard deviation 

Table S13. Demographics and Baseline Disease Characteristics of healthy controls analyzed for immune cell phenotyping of 

freshly isolated versus frozen PBMCs 

 

 

Table S14. Demographics and Baseline Disease Characteristics of healthy controls analyzed for metabolic differences of T cells 
isolated from fresh blood or frozen PBMCs  

Subject Demographics HC 
(n=11) 

Mean age, years (SD) 31.2 (5.1) 

Female, n (%) 6 (55) 

HC, healthy controls; SD, standard deviation 

Table S14. Demographics and Baseline Disease Characteristics of healthy controls analyzed for metabolic differences of T cells 

isolated from fresh blood or frozen PBMCs 
 

 
 


