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Abstract
System-level provenance offers great promise for improving
security by facilitating the detection of attacks. Unsuper-
vised anomaly detection techniques are necessary to defend
against subtle or unpredictable attacks, such as advanced
persistent threats (APTs). However, it is difficult to know in
advance which views of the provenance graph will be most
valuable as a basis for unsupervised anomaly detection on
a given system. We present baseline anomaly detection re-
sults on the effectiveness of two existing algorithms on APT
attack scenarios from four different operating systems, and
identify simple score or rank aggregation techniques that
are effective at aggregating anomaly scores and improving
detection performance.

1 Introduction
Numerous provenance-tracking systems have been intro-
duced with the aim of recording detailed information about
activity at the operating system level. A natural and often-
cited motivation for such systems is to support security goals,
since, if the provenance records are sufficiently detailed and
complete, then it should be possible to detect, or even in-
terrupt, attacks on the monitored system. Recent work on
systems such as SPADE [11], LPM [6], and CamFlow [22] has
shown that it is possible to provide detailed, whole-system
provenance efficiently and maintainably on top of commod-
ity operating systems such as Linux using kernel modules.
Likewise, the DARPA Transparent Computing program has
supported the development of provenance recording systems
on mainstream operating systems such as Windows, BSD,
Linux, and Android, in order to facilitate detection of so-
phisticated attacks carried out as part of Advanced Persistent
Threat (APT) campaigns [5, 24].
Unfortunately, simply recording enough information is

only (at most) half of the problem. The resulting provenance
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records are often large and complex: it is not unusual for a sin-
gle day’s activity to result in several gigabytes of provenance
data. Manually inspecting this data to look for suspicious
behavior is not feasible, especially considering that APT ac-
tivity may constitute only a fraction of a percent of the full
system provenance record. Therefore, automated analysis of
the data is imperative.

One natural (and common) approach [14] to find attacks is
to define queries or patterns to use as “alarms”, typically cor-
responding to behavior that attackers are known to perform
that is very rare among benign activity. For example, it is
suspicious if a process creates a file, executes it, then deletes
it. Coming up with such alarms is a time-consuming and
manual process, and does not guard against new or varying
attacker behavior.
Another natural approach would be to apply supervised

machine learning algorithms to learn what attacks look like
from the data [19]. While this would potentially help de-
crease the manual effort required to come up with alarms,
there are several obstacles that make it difficult to apply this
approach. First, it requires developing a corpus of provenance
data containing realistic attacks, together with annotations
indicating which parts of the graph are part of an attack.
This is time-consuming and labor-intensive. Secondly, since
APT-style attacks are typically a very small fraction of the
graph, there is a severe class imbalance problem. Finally, this
approach presumes that the background activity (which we
wish to distinguish from attack activity) is stable over time;
if this is not the case, then an anomaly detector may lose
effectiveness over time due to drift.

Because of these complications, we advocate an unsuper-
vised approach in which we assume no access to training
data. Indeed, a large number of unsupervised anomaly de-
tection techniques have been studied, both for conventional
datasets [1, 8] and for graphs [3]. Unfortunately, work on
graph anomaly detection has mostly focused on relatively
simple kinds of graphs, e.g. undirected or unlabeled graphs.
Provenance graphs are directed, have node and edge labels,
and typically also have properties on nodes and edges. An-
alyzing large provenance graphs to identify anomalies is
computationally expensive.
We consider an alternative approach, in which we as-

sociate each object with one or more views of its behavior,
which we call contexts(see section A for a brief definition and
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examples). Each context consists of a set of related attributes
or features, and we hypothesize that at least some attacks
can be detected by examining these attributes. Moreover, the
contexts are essentially records of conventional discrete or
boolean features and so a variety of existing anomaly detec-
tion algorithms can be applied to them off-the-shelf [16, 23].

In this paper, we focus on contexts based on process activ-
ity in OS-level provenance graphs. Typical contexts include
the events (i.e. types of system calls performed), process exe-
cutable name or parent, and network activity. As we shall
show, even simple anomaly detection algorithms can be sur-
prisingly effective at finding attacks. However, no single
context always provides the best detection performance: it
depends to some extent on the type of attack, the operating
system, and the background activity against which attacks
are supposed to stand out. This is a big disadvantage for an
unsupervised system, because the choice of which contexts
are worth monitoring depends on information that may not
be available in advance. While it is possible to combine all of
the contexts into a single large one, and this does help, this
is not feasible for approaches whose complexity grows with
the number of attributes.

In this paper, we present baseline results of two published
anomaly detection algorithms over different views of pro-
cess activity in data using two scenarios from the DARPA
Transparent Computing program.We then consider different
ways of aggregating the scores or rankings obtained from
different contexts. We present detailed experimental results
to investigate which aggregation techniques work best with
each of the two algorithms, and compare the results with the
naive approach of fusing all the contexts together. Overall,
we can conclude that across a wide variety of settings, the
geometric mean provides a reliable and effective means of
combining rankings, typically matching or exceeding the
best individual scoring technique. Moreover, aggregation
techniques frequently outperform the analysis of the whole
dataset, when that analysis is possible.

2 Background
2.1 Anomaly detection
We will use two existing anomaly detection algorithms as
baselines. These are not the only available unsupervised
algorithms suitable for discrete data. However, the two al-
gorithms we consider are simple and have relatively few
parameters that need to be tuned. Aside from the high-level
descriptions below, the rest of the paper does not depend
on detailed understanding of either algorithm: we can think
of both as black boxes which, given a sequence of objects
O = o1, . . . ,on each with some Boolean attributes, assign
each object a score indicating in some sense the degree of
(dis)similarity to the dataset as a whole.

The Attribute Value Frequency (AVF) [16] algorithm is very
simple: it first scans the data to obtain frequency counts (or

equivalently, probability estimates) of each attribute value.
In a second pass, each record is scored by adding together
the frequencies/probabilities of the actual attribute values
present in that record. In this way, records with many rare
attributes tend to have a low score. Though this algorithm
appears rather simple-minded, it is surprisingly effective
on our data. In a previous study [7], we have found that it
provides detection performance competitive with more so-
phisticated techniques such as OC3 (discussed below) while
also being trivial to implement over streaming data (unlike
OC3).
The One Class Classification by Compression (OC3) algo-

rithm is, as the name suggests, based on attempting to com-
press the dataset (or at least, minimize an estimated com-
pressed size). This approach is justified by the Minimum
Description Length principle [12], which identifies the best
explanation of some dataset as the hypothesis that enables
the best compressed representation of it (or equivalently, the
best predictions of unseen data). The underlying compres-
sion algorithm used by OC3 is Krimp, a system for identi-
fying a subset of “interesting” attribute combinations in a
dataset by defining a code table consisting of attribute com-
binations, and using this table to compress the dataset. As a
simple example, if a dataset contains many co-occurrences
of a = 1,b = 1, c = 1, then Krimp might create a code table
entry for this combination, and use it to represent these three
attributes whenever they co-occur. OC3 works as follows:
first use Krimp to compress the dataset, then the anomaly
score of each record is its estimated compressed size. Records
that compress poorly (i.e. have high scores) are considered
more anomalous: they have few patterns that the compressor
can take advantage of to represent succinctly.

2.2 Score and rank aggregation
Because OC3 anomaly scores correspond to estimates of
compressed size, there is a natural aggregation technique for
them: simply add the scores obtained from different contexts.
This is, of course, also possible for AVF, but, if we assign
AVF scores of zero to objects not present in a context, then
such objects will be considered much more anomalous than
they should be (since zero is the most anomalous possible
score). Nevertheless, we will consider this approach for both
AVF and OC3 and see whether this intuition is borne out by
experiments. We call this aggregation approach sum.

Objects can also be ranked based on their anomaly scores,
generating a ranking list where the objects at the top are
the most likely to exhibit suspicious activity (as object ranks
increase, the likelihood of the corresponding process hav-
ing a suspicious behavior decreases). Rank aggregation [17]
is the problem of combining several rankings of a given
set of objects into a single one that represents the differ-
ent initial rankings well. We consider a ranking of objects
O = {o1, . . . ,on } to be a function r from O → N+ whose
range is an initial segment of N+. Such a ranking can be
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obtained from a scoring function O → R by breaking ties
arbitrarily, after sorting the objects in decreasing order of
anomalousness. We assume that all rankings are total, by as-
signing unranked objects o the rankm of the highest ranked
objects.
Rank aggregation is a well-studied problem, related to

the problem of preferential voting. We will consider several
approaches that are intuitive and easy to implement. In each
case, rankings r1, . . . , rn can be aggregated by first “scoring”
each object o using the following function:

s (o) = aдд(r1 (o), . . . , rn (o))

and then sorting and reranking. This recipe can be instan-
tiated in several ways by choosing different aggregation
functions aдд. We consider the following choices:

avg(r⃗ ) =
1
n

n∑
i=1

ri

geom(r⃗ ) = *
,

n∏
i=1

ri+
-

1
n

= exp *
,

1
n

n∑
i=1

log ri+
-

min(r⃗ ) = ri where ∀j .ri ≤ r j

median(r⃗ ) =
1
2
(r ⌊n/2⌋ + r ⌈n/2⌉ )

Note that, because contexts don’t necessarily have the
same number of objects (for example, the number of objects
in PN is most likely smaller than the number of objects in PE
since processes having performed any type of event outnum-
ber processes with network activity), objects that appear in
some contexts and not others will have a blank ranking in
contexts in which they don’t appear (for example, a process
with no network activity will have a defined ranking in PE
and a blank ranking in PN).

3 Source data
We consider two datasets derived from the DARPA Trans-
parent Computing program. They result from two exercises
to evaluate provenance recorders and analysis techniques.
The characteristics of the datasets are summarized in Ta-
bles 4a and 4b in the Appendix. The first scenario corre-
sponds to around 5 days of data, and includes provenance
graphs recorded on four different operating systems, each of
which was subject to (part of) an APT-style campaign. The
second scenario corresponds to around 8 days of data, un-
der similar conditions to scenario 1. (In scenario 2, a second
Linux-based recording system was also used, but we have
omitted it since the data resulting from this system in sce-
nario 1 had too many inconsistencies for our data cleaning
to work.) There are numerous differences between scenario
1 and scenario 2: the workload is higher, the attacks are more
sophisticated, and the provenance graphs are much larger.
Also, the underlying recording systems were under active
development between the two scenarios.

As described in a previous paper [7], the ADAPT project
provides a system that ingests this data into a Neo4j database
in a uniform format, and performs duplicate elimination
and some other data cleaning. From this ingested data, we
extract several contexts. This system, and the contexts and
extraction process is described in greater detail elsewhere.
In this paper, our starting point is the extracted data, in the
form of CSV files that relate unique identifiers of processes
with descriptions of different aspects of process activity. The
contexts are:

• PE: which relates a processwith different events (classes
of system calls) such as read, write, etc.
• PX: which relates a process with the name(s) of its
executable.
• PP: which relates a process with the name(s) of its
parent’s executable.
• PN: which relates a process with IP addresses and ports
accessed.
• PA: the result of joining all of the above contexts to-
gether, using the process unique IDs as keys.

We have ingested all of these datasets into a Neo4j database
and extracted the above contexts (in each case, this is possible
using a simple Cypher query). The ingestion process for the
larger, second scenario took over a week.

Both scenarios also come with high-level, human-readable
descriptions of the attacks performed. As part of previous
work, machine-readable ground truth annotations (i.e. lists
of unique identifiers of processes and other components of
attacks) were constructed manually [7] for scenario 1. We
constructed similar ground truth annotations for scenario 2.

The raw data for scenario 1 is not publicly available. The
data for scenario 2 is available at https://github.com/darpa-i2o/
Transparent-Computing. Our contexts and ground truth data
for both scenarios are available upon request (we plan to
make it publicly available soon).

3.1 An example
We now consider some actual scores and rankings resulting
from the experiments reported later in the paper, to help
make the overall picture more concrete.

We consider theWindows PE dataset for scenario 1, which
contains 8 attack processes. The rankings of these processes
by OC3 are as follows:

attack# PE PX PP PN PA
a1 242 187 1 490
a2 192 5821 107 2 1
a3 73 119 164 85 50
a4 74 120 165 91 53
a5 75 121 166 92 52
a6 244 36 11 83 513
a7 27 172 72 510
a8 160 168 77 491
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As we can see, some contexts identify different parts of the
attack at position 1 or 2, which is ideal, but others are ranked
much lower. It seems that, to identify all of the attack compo-
nents, we would have to inspect at least the first 80 processes
in each basic context. If, instead, we just considered PA we
would also have to inspect the first 500 or so processes in
order to see all of the attacks, and they are relatively sparsely
distributed; one attack is at position 1, but several are ranked
around position 500.

Now, if we consider the rankings obtained by the different
aggregation approaches considered so far, they are as follows.

attack# sum avg geom median min
a1 1 1352 122 261 2
a2 2 929 77 145 8
a3 18 11 42 30 268
a4 21 13 51 44 270
a5 22 14 54 48 277
a6 27 3 3 2 41
a7 31 1322 231 96 99
a8 115 1348 540 165 282

These rankings are generally somewhat improved over the
basic contexts or even the combined context PA. The best of
them, using sum aggregation, places almost all attacks in the
top 31 and the final one at position 115. The avg approach,
which averages the rankings (not scores), gives much lower
rankings to attacks a1, a7 and a8, perhaps because these at-
tacks have no ranking in the PP context, so they are penalized
with a very low ranking.

4 Experimental results
Evaluation metrics We consider two metrics for the per-
formance of anomaly detectors, the area under ROC curve
(AUC) [1] and the normalized discounted cumulative gain
(NDCG) [15]. The receiver–operator characteristic (ROC) curve
plots the percentage of true positives (e.g. attacks) detected
vs. the percentage of false positives encountered. The area
under this curve is an estimate of the probability that a
randomly-chosen anomaly is ranked higher than a randomly-
chosen normal record. Thus, higher is better; the AUC score
ranges from 0 to 1 (a perfect score).

AUC (di j ) =
Na∑
i=1

Nb∑
j=1

di j

NaNb

where Nb is the number of benign records, Na is the number
of attacks/anomalies, and di j is 1 when attack i is before be-
nign element j in the ranking, and 0 otherwise. (This matrix
is easily obtained from the ranking r ; there are more efficient
ways to calculate AUC.)

The AUC score is widespread and standard for measuring
the performance of anomaly detectors [2]. However, for large
datasets with very sparse anomalies, it does not necessarily
conform to intuition. For example, the AUC score of PE is

over 0.99 in the example of the previous section, even though
its top-ranked attack is at position 27 while PP has instead a
top-ranked attack at position 11 but an AUC score of around
0.62, because it misses three attacks entirely. Thus, AUC is,
in some sense, a measure of the worst-case behavior: ranking
a single attack poorly (or missing attacks) can have a dispro-
portionate impact compared to giving mediocre rankings to
all attacks.
The NDCG score [15] is an alternative measure of the

degree to which a ranking matches the ideal (where all of the
anomalies are ranked at the top). It is frequently used in in-
formation retrieval settings, where it is critical that relevant
results are found near the top of the ranking: for example,
it is well known that users seldom click past the first page
of search engine results, and advertisers are willing to pay
good money to be listed as the first result. The unnormalized
DCG score is defined as follows:

DCGn =

n∑
i=1

reli
log2 (i + 1)

where n is the number of ranked elements and reli (“the
relevance of item at rank i”) is 0 if the item at rank i is benign
and 1 if the item is an attack. Like the AUC score, NDCG is
between 0 and 1 (with 1 being best), but places greater weight
on rankings close to the top, by taking the logarithm of the
ranking. The NDCG score is obtained by dividing the DCG of
a given ranking with the maximum achievable DCG, i.e. that
obtained by placing all of the attacks at the top of the ranking.
(In general, DCG and NDCG can also take the “relevance” of
different results into account; we consider all attacks to have
an equal relevance score of 1.) Among detectors with very
high AUC scores, NDCG scores are helpful for comparing
the quality of the ranking.

We do not report running time of either the base contexts
or aggregation techniques: the former are evaluated in prior
work on AVF and OC3 respectively, and the latter are imple-
mented using naive, but reasonably efficient, Python scripts.
The performance of rank aggregation can probably be im-
proved, but is not the main issue here (they all run in linear
or O (n logn) time).

Results on basic contexts We ran AVF and OC3 on each
of the basic contexts resulting from the two scenarios. The
results are shown on the left-hand side of Tables 1a,1b,2a
and 2b. Each table shows the AUC score and NDCG score of
each context. The best score obtained among basic contexts
is shown in boldface.
Inspecting the AUC and NDCG scores, we can observe

some trends. AUC scores are typically higher than NDCG
scores, but, from manual inspection, we find that NDCG
scores of 0.4 or higher often correspond to usable results,
e.g. ranking at least one attack process in the top 10. Almost
all of the maximum scores in scenario 1 are in this range.
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Table 1. AUC and nDCG score results for Scenario 1

(a) AVF

Source Metric PE PX PP PN PA sum avg geom median min

Windows
AUC 0.968453 0.951961 0.620603 0.998662 0.995632 0.001999 0.938251 0.998463 0.998001 0.996307
nDCG 0.603553 0.280136 0.210894 0.582564 0.526925 0.143535 0.291811 0.665215 0.589899 0.481892

BSD
AUC 0.8758 0.882951 0.794625 0.230754 0.983815 0.747818 0.910939 0.988885 0.928895 0.8283
nDCG 0.513598 0.346095 0.309749 0.264745 0.524454 0.221113 0.412501 0.63857 0.736187 0.43183

Linux
AUC 0.823249 0.831733 0.745457 0.799258 0.926913 0.119294 0.910763 0.981438 0.930732 0.997099
nDCG 0.272106 0.437784 0.206896 0.318006 0.297636 0.17425 0.260854 0.429756 0.470940 0.383228

Android
AUC 0.826797 0.570806 0 0.519608 0.830065 0.359477 0.712418 0.75817 0.742919 0.723312
nDCG 0.849505 0.390515 0 0.475447 0.834072 0.384828 0.446402 0.56294 0.636634 0.602571

(b) OC3

Source Metric PE PX PP PN PA sum avg geom median min

Windows
AUC 0.992053 0.951961 0.620603 0.997296 0.997396 0.998975 0.964583 0.994927 0.994785 0.99317
nDCG 0.302183 0.280136 0.210894 0.709458 0.643458 0.756333 0.443902 0.397767 0.421411 0.569777

BSD
AUC 0.97636 0.998894 0.845847 0.230732 0.995862 0.99911 0.949692 0.999638 0.999657 0.999203
nDCG 0.435758 0.464937 0.43545 0.341885 0.704075 0.755445 0.659702 0.677094 0.606847 0.543351

Linux
AUC 0.887883 0.831151 0.811842 0.799654 0.995978 0.997208 0.943724 0.996904 0.978369 0.998772
nDCG 0.385061 0.310158 0.244903 0.498119 0.463614 0.554706 0.26248 0.405506 0.367585 0.476284

Android
AUC 0.753813 0.570806 0.0 0.529412 0.795207 0.795207 0.712418 0.735294 0.705882 0.569717
nDCG 0.740326 0.390515 0.0 0.665942 0.6823 0.804621 0.456948 0.574719 0.772502 0.685128

Table 2. AUC and nDCG score results for Scenario 2

(a) AVF

Source Metric PE PX PP PN PA sum avg geom median min

Windows
AUC 0.8078 0.908927 0.940364 0.443169 DNF 0.454578 0.967885 0.975070 0.968712 0.879234
nDCG 0.23125 0.247556 0.232215 0.288379 DNF 0.1834 0.32027 0.335787 0.296208 0.302284

BSD
AUC 0.874365 0.917880 0.567909 0.89003 DNF 0.235826 0.884352 0.998099 0.973508 0.991859
nDCG 0.197063 0.176319 0.173573 0.340189 DNF 0.13224 0.384053 0.464222 0.428045 0.294173

Linux
AUC 0.796777 0.950376 0.808792 0.780768 DNF 0.138888 0.935786 0.991597 0.938141 0.993588
nDCG 0.296173 0.361843 0.253723 0.428993 DNF 0.214308 0.384563 0.390217 0.306841 0.460792

Android
AUC 0.901339 0.978568 0.0 0.765571 0.922308 0.410756 0.950501 0.978853 0.964843 0.567684
nDCG 0.308236 0.388954 0.0 0.326172 0.356021 0.363142 0.361115 0.440106 0.388108 0.271071

(b) OC3

Source Metric PE PX PP PN PA sum avg geom median min

Windows
AUC 0.856675 0.908927 0.940364 0.443468 DNF 0.969838 0.966789 0.975697 0.959057 0.949481
nDCG 0.242088 0.247556 0.232215 0.365061 DNF 0.429694 0.313282 0.34133 0.282137 0.347435

BSD
AUC 0.935994 0.999000 0.66811 0.891853 DNF 0.999573 0.929166 0.999697 0.995166 0.999557
nDCG 0.248715 0.484461 0.243905 0.514896 DNF 0.60926 0.419966 0.653287 0.583637 0.441898

Linux
AUC 0.873358 0.944820 0.933795 0.7814 DNF 0.999113 0.958661 0.998994 0.978573 0.996368
nDCG 0.387535 0.422006 0.428522 0.354682 DNF 0.545132 0.721963 0.629404 0.674969 0.427674

Android
AUC 0.883986 0.978650 0.0 0.687021 0.982278 0.98522 0.951937 0.990545 0.987127 0.706331
nDCG 0.327773 0.392018 0.0 0.300675 0.405909 0.397795 0.606754 0.451457 0.437549 0.278839

Thus, these results suggest that AVF and OC3 are both able
to identify useful information for anomaly detection.

We can also see that there are differences among the sce-
narios and among the data sources. Scenario 1 seems to be
“easier”, in that the AUC and NDCG metrics are typically
higher than for scenario 2. Likewise, detection performance

on the BSD data seems best overall. The detection perfor-
mance of OC3 also seems somewhat better overall than AVF,
which might be expected given that AVF is much simpler.

For scenario 1, the PE context is the most effective overall,
but, in eight cases, another context such as PX or PN is better.
For scenario 2, the picture is different: while PE is often
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Figure 1. AUC vs. NDCG scores for base contexts and selected aggregates

(a) Scenario 1

0.0 0.2 0.4 0.6 0.8 1.0
AUC

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

Windows
avf basic
avf geom
avf median
oc3 basic
oc3 geom
oc3 sum

0.0 0.2 0.4 0.6 0.8 1.0
AUC

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

BSD
avf basic
avf geom
avf median
oc3 basic
oc3 geom
oc3 sum

0.0 0.2 0.4 0.6 0.8 1.0
AUC

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

Linux
avf basic
avf geom
avf median
oc3 basic
oc3 geom
oc3 sum

0.0 0.2 0.4 0.6 0.8 1.0
AUC

0.0

0.2

0.4

0.6

0.8

1.0

nD
CG

Android
avf basic
avf geom
avf median
oc3 basic
oc3 geom
oc3 sum

(b) Scenario 2
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among the most effective contexts for anomaly detection, it
was never the winner; the overall best context was PX, with
PP and PN being best 3–5 times each. These results confirm
our motivating hypothesis that it is difficult to predict in
advance which of several contexts will be most valuable for
anomaly detection.

Results of aggregation Next, we ran all of the aggrega-
tion algorithms discussed in Section 2 on the results obtained
from the basic contexts. We also show the result of PA for
all scenario 1 contexts, considering it as an aggregation tech-
niques; however, running AVF or OC3 on PA in scenario 2
is prohibitively expensive for all but the smallest (Android)
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settings. In each case, we calculate AUC and NDCG scores
in the same way as before. The results are shown on the
right-hand sides of Tables 1a,1b,2a and 2b. Again, the best
score obtained from aggregation is shown in boldface.

The results seem to exhibit general trends consistent with
the results on base contexts: for example, scenario 2 still
seems more challenging than scenario 1, OC3 still seems to
outperform AVF, etc. Considering all of the results, the best
overall results appear to be obtained by geom and median
(for AVF) and by geom and sum (for OC3). As we expected,
sum does poorly when combining AVF-based scores, since
adding the scores does not have a natural interpretation.
The results for PA are of some interest. Generally, PA

usually does a good job of improving on the basic contexts:
while it is not always better than all of them, it is usually
competitive. However, it is seldom the best choice among the
aggregation techniques. For scenario 1, PA does consistently
worse than the other aggregations except for the Android
data, where it performs best. For scenario 2, we were only
able to score PA for the Android data, but its performancewas
not competitive with other aggregation techniques there.
To get better insight into how these aggregation tech-

niques compare to the detection performance over base con-
texts (and to each other), we have plotted the AUC scores and
NDCG scores in Figure 1. In each plot, the x axis corresponds
to the AUC score and the y axis to the NDCG score. The “avf
basic” and “oc3 basic” series show the results of the different
basic contexts, and we plot geom for both detectors, median
for AVF, and sum for OC3. Since ideal performance corre-
sponds to the point (1,1), the best performance corresponds
to the upper-right corner of each plot.
In most cases, we can see that the best aggregation per-

formance for each detector significantly improves upon the
best results from basic contexts: at least one aggregate point
and usually several are near the upper right corner. Indeed,
in scenario 1, in the BSD and Linux results, all four of the ag-
gregates are clustered in the upper-right corner. The results
are more mixed for the Windows and Android data, however.
Moreover, the best overall performance is obtained with sum
and OC3. AVF aggregated using geom or median also give
good results but neither dominates the other.
For scenario 2, the results differ somewhat, perhaps be-

cause this scenario is larger and more realistic. The maxi-
mum NDCG scores tend to be lower, indicating that anomaly
detection may be more challenging in this scenario. Interest-
ingly, geom seems to be more robust for both AVF and OC3
in this scenario: for OC3, it is the best overall in three of
four scenarios, while, for AVF, median is always worse than
geom.

AUC versus nDCG In Tables 1 and 2, several configura-
tions (OS, algorithm, context/aggregator) have high AUC but
low nDCG scores. This is easily explained by the fact that
while AUC simply measures “classification” performance

i.e. attack detection performance, nDCG adds an additional
constraint, which is whether the attacks detected are close
or not to the top of the rankings, and penalizes the detected
attacks proportionally to their position in the rankings (i.e.
according to how useless to the user they are).

5 Related work
Anomaly detection AVF and OC3 are just two among
many algorithms; we have focused on them due to their
accessibility (AVF is trivial to implement and source code
for Krimp and OC3 is publicly available) and good baseline
performance. We have conducted informal experiments with
other approaches such as Frequent Pattern Outlier Factor
(FPOF) [13], Outlier Degree (OD) [20], and CompreX [4].
FPOF and OD both require parameter tuning and their de-
tection performance on our data is significantly worse than
AVF or OC3. CompreX is, like OC3, based on compression
and the MDL principle, and compared favorably with OC3
in reported experiments. We obtained good detection perfor-
mance using CompreX on scenario 1 PE data [7]. However,
CompreX is computationally expensive, and the running
time grows quickly as the number of attributes grows. Nev-
ertheless, it is worthwhile to see whether aggregation ap-
proaches are effective for these or other suitable anomaly
detection techniques.

Attack and anomaly detection over provenance has been
studied recently. StreamSpot [19] and Sleuth [14] highlight
suspicious subgraphs but rely on training data or domain
knowledge. Winnower [25] applies graph grammars to sum-
marize provenance graphs, and is fast and effective but as-
sumes a scenario in which there are many similar “clean”
provenance graphs derived frommachineswith similar work-
loads in a data center. In contrast, our approach requires no
parameter tuning, ground truth, or clean data, but so far
highlights only suspicious process nodes, not subgraphs,
making a direct comparison nontrivial. (We do use ground
truth annotations to evaluate our approach, but not to train
it.)

Aggregation and feature selection We have considered
several simple, parameter-free, and easy-to-implement, ap-
proaches to rank aggregation, drawing on Lin’s survey [17].
There are a number of other approaches that could be consid-
ered instead, such as aMarkov chain-based algorithm [9] and
Cross-Entropy Monte Carlo [18]. However, these approaches
are more computationally intensive, and good performance
relies on parameters that may be difficult to determine in
advance. Feature selection may also be applicable, but there
is little work on unsupervised feature selection for anomaly
detection; one recent proposal is [21].

6 Conclusions and future work
In this paper, building on [7], we investigated the results of
combining existing techniques for anomaly detection and
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rank aggregation on relatively new datasets that attempt to
capture realistic APT-style attack scenarios and workloads.

Our experimental results support several conclusions. First,
the baseline results further confirm that off-the-shelf algo-
rithms such as AVF or OC3 can be used to detect attacks
based on contexts that reflect a small subset of the available
provenance data, rather than by an expensive investigation of
graph structure. Compared to our previous work [7], which
only considers scenario 1, we consider the much larger and
more realistic scenario 2. Second, the baseline results also
indicate that it may be difficult to predict in advance which
contexts are most useful for anomaly detection. Instead, how-
ever, simple aggregation techniques such as summing scores,
or taking the geometric mean or median of rankings, are
quite effective, often producing improvements in both AUC
and NDCG scores simultaneously over the results from the
base contexts.
Although it is sometimes possible to obtain good overall

results by joining all of the contexts together, this can be
prohibitively expensive. Moreover, our results show that this
usually does not produce the best detection results compared
to other forms of aggregation. Themain exception to this rule
is that for smaller datasets, such as the Android data in sce-
nario 1, the PA approach was the best. The overall success of
other aggregation techniques over PA is intriguing because
it suggests that our manual partitioning of the available at-
tributes into contexts may yield a detection boost similar to
ensemble learning techniques; thus, it may be worthwhile
to try out outlier ensemble techniques, such as bagging, as
well [2]. (Boosting techniques [10] typically assume a su-
pervised setting making them less useful for unsupervised
anomaly detection.)

Like most work in this area, we cannot conclude that our
results are guaranteed to work in other, unknown scenarios
generalizability of this approach could be further investi-
gated subject to availability of more data or by considering
other anomaly detection algorithms. Despite this, overall
our results contribute to improved understanding of how
to detect attacks and anomalies in provenance using unsu-
pervised anomaly detectors and aggregation techniques to
combine contexts. These results provide a foundation for
future work on unsupervised identification of suspicious
subgraphs for human investigation, complementing existing
methods [14, 19, 25].
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A Contexts
Contexts are Boolean-valued datasets/matrices extracted from provenance graphs and represent an aspect of process behavior.
Table 3 is an example of such a context. Its rows (also called objects) are process identifiers and its columns (called attributes)
are types of system events. For each row, a value ‘1’ means that the process (represented by the row) has performed at least one
event of the type corresponding to the column and ‘0’ otherwise; the exact number of such events is ignored. For example, in
the example shown in Table 1, the process with identifier d273e9c1-372b-3e7c-8338-59bc2be6b01c has performed the following
events: EVENT_FORK, EVENT_CLOSE and EVENT_EXECUTE. Other commonly used contexts are described in Section 3.
Their characteristics are summarized in Tables 4a and 4b.

Table 3. Example of context: process identifiers vs type of system events (extracted from Linux provenance graph)
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9336bbbb-23b2-367e-b768-be33e5f130c8 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1
986128dc-ad93-3d7c-99e5-83fa71c766dd 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
d273e9c1-372b-3e7c-8338-59bc2be6b01c 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
a871728c-a30b-307b-ae70-ea67d8f8de8b 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1
e492b0e0-eec3-31ee-87c8-255e71ff5d86 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Table 4. Summary of datasets. In each context column, the upper element of a cell shows the number of rows (records) and
the lower element the number of columns (attributes).

(a) Scenario 1

Size PE PX PP PN attacks
Windows 743 17569 17552 14007 92 8

MB 22 215 77 13963
BSD 288 76903 76698 76455 31 13

MB 29 107 24 136
Linux 2.86 247160 186726 173211 3125 25

GB 24 154 40 81
Android 2.69 102 102 0 8 9

GB 21 42 0 17

(b) Scenario 2

Size PE PX PP PN attacks
Windows 9.53 11151 11077 10992 329 8

GB 30 388 84 125
BSD 1.27 224624 224146 223780 42888 11

GB 31 135 37 62
Linux 25.9 282087 271088 263730 6580 46

GB 25 140 45 6225
Android 10.9 12106 12106 24 4550 13

GB 27 44 11 213
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