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Abstract  26 

The urea cycle is an endogenous source of arginine that also supports removal of 27 

nitrogenous waste following protein metabolism. This cycle is considered inefficient in 28 

salmonids, where only 10-15 percent of nitrogenous waste is excreted as urea.  In rainbow 29 

trout, arginine is an essential amino acid that has attracted attention due to its many 30 

functional roles. These roles include the regulation of protein deposition, immune responses 31 

and polyamine synthesis; the latter is directly linked to the urea cycle and involved in tissue 32 

repair. The key enzymes used in the urea cycle, namely arginase, ornithine 33 

transcarbamylase, argininosuccinate synthase and argininosuccinate lyase, in addition to 34 

two rate limiting enzymes required for polyamine synthesis (ornithine decarboxylase and s-35 

adenosylmethionine decarboxylase) are poorly studied in fishes, and their responses to 36 

inflammation remain unknown. To address this knowledge gap, we characterised these gene 37 

families using phylogenetics and comparative genomics, investigated their mRNA 38 

distribution among a panel of tissues and established their transcriptional responses to an 39 

acute inflammatory response caused by bacterial infection in liver and muscle. Gene 40 

duplicates (paralogues) were identified for arginase (ARG1a, 1b, 2a and 2b), ornithine 41 

decarboxylase (ODC1 and 2) and s-adenosylmethionine decarboxylase (SAMdc1 and 2), 42 

including paralogues retained from an ancestral salmonid-specific whole genome 43 

duplication. ARG2a and 2b were highly upregulated following bacterial infection in liver, 44 

whereas ARG1b was downregulated, while both paralogues of SAMdc and ODC were 45 

upregulated in both liver and muscle. Overall, these findings improve our understanding of 46 

the molecules supporting the urea cycle and polyamine synthesis in fish, highlighting major 47 

changes in the regulation of these systems during inflammation.  48 

 49 

Key words: Urea cycle, polyamine, salmonids, genome duplication, immune, arginase 50 

 51 

  52 



1. Introduction 53 

The ornithine-urea cycle, first discovered by Krebs and Henseleit [1], is central to the 54 

metabolism of arginine and the excretion of nitrogenous waste. In fish, most nitrogenous 55 

waste is excreted as ammonia through the gills, with <10% excreted as urea in rainbow trout 56 

[2]. There are four main enzymes directly involved in the urea cycle, arginase, ornithine 57 

transcarbamylase, argininosuccinate synthase and argininosuccinate lyase, which 58 

metabolise and recycle arginine, ornithine, citrulline and argininosuccinate [3]. Arginine is a 59 

versatile amino acid with functional roles including the modulation of protein deposition, 60 

production of ornithine for polyamine synthesis, regulation of immune responses through 61 

nitric oxide (NO) production, and removal of nitrogenous waste [4]. Arginine also stimulates 62 

the release of insulin, glucagon and growth hormone in fishes, which may regulate 63 

metabolism and growth [5].  64 

 65 

During the urea cycle (Fig. 1), arginine is converted to ornithine by the arginase (ARG) 66 

enzymes, resulting in urea as the by-product. Ornithine can then be converted into citrulline 67 

by ornithine transcarbamylase (OTC), used in proline synthesis by the action of ornithine 68 

aminotransferase, or for polyamine synthesis, where ornithine decarboxylase (ODC) 69 

converts ornithine into the polyamine putrescine [6]. Recycling citrulline back into arginine is 70 

Figure 1. Pathway diagram of urea cycle, nitric oxide cycle and polyamine synthesis. Amino acids 
are coloured in red boxes, enzymes in green, polyamines in orange, co-substrates in pink and 
molecules as dark blue. Enzyme acronyms are as follows: ARG, arginase; OTC, ornithine 
transcarbamylase; ASS, argininosuccinate synthase; ASL, argininosuccinate synthase; CPS, 
carbamoyl phosphate synthase; iNOS, nitric oxide synthase; SAMdc, S-adenylosylmethionine 
decarboxylase; ODC, ornithine decarboxylase; SPDS, spermidine synthase; SPMS, spermine 
synthase. Co-substrate acronyms are as follows: SAM, s-adenosylmethionine; DC-SAM, 
decarboxylated s-adenosylmethionine. 



a two-step process that involves two further enzymes (ASS and ASL), as well as 71 

argininosuccinate as an intermediate [7]. Citrulline and argininosuccinate also form part of 72 

the NO cycle (Fig. 1), as citrulline is generated as a by-product following conversion of 73 

arginine to NO through the action of the NO synthase enzymes [8, 9].  74 

An important set of molecules derived from the urea cycle are the polyamines, containing 75 

two or more amine groups (-NH2). The diverse functions of polyamines include regulation of 76 

protein synthesis [10], modulation of ion channels [11] and DNA and RNA binding [12]. They 77 

are also crucial for cellular proliferation and inflammatory responses [13], acting as anti-78 

oxidants and offering cellular protection through inhibition of inflammatory mediators [14]. 79 

Polyamines are derived from ornithine by the activity of ODC and s-adenylosylmethionine 80 

decarboxylase (SAMdc), with the simplest polyamine being putrescine, which can be further 81 

processed to spermidine and spermine (Fig. 1) [7]. During the immune response, high 82 

polyamine levels are found in rapidly proliferating cells and tissues [15, 16] supporting 83 

wound and tissue healing following infection or injury [6, 17].   84 

The role of arginine and urea cycle products is attracting attention due to their roles in 85 

mediating immune functions. Inflammatory responses are associated with polarising TH1 86 

cytokines including IFN-γ- or TNFα-activating M1 macrophages (‘kill’ macrophages), 87 

whereas anti-inflammatory processes activate M2 macrophages (‘healing’ macrophages) 88 

associated with TH2 cytokines including interleukin 4 and 10 (IL-4, IL-10) [18]. M1 89 

macrophages metabolise arginine into NO via inducible nitric oxide synthase (iNOS), 90 

resulting in a macrophage population with increased microbicidal activity [19]. On the other 91 

hand, anti-inflammatory responses and healing is associated with M2 cells, where arginine is 92 

converted to ornithine and subsequently metabolised to polyamines through ODC [20]. As 93 

M1 and M2 macrophages compete for arginine, the expression of either iNOS or arginase 94 

has a reciprocal regulatory effect [21]. Arginine is the sole precursor of NO and 95 

supplementation is known to increase NO synthesis in mammals [22]. 96 

Arginine is a functional feed that can modulate health and performance parameters in 97 

farmed fish. For example, arginine supplementation may enhance growth in Atlantic salmon 98 

during the transition from fresh to seawater [23], improve immune status in carp [24] and 99 

when combined with glutamine, enhance growth and feeding efficiency in Nile tilapia [25]. 100 

Despite such recent interest, little is known about the gene families encoding the enzymes 101 

involved in arginine metabolism and their response to disease and inflammation in fishes. 102 

The first objective of this study was to identify and characterise the genes encoding the main 103 

urea cycle enzymes and the two rate limiting enzymes in polyamine synthesis in rainbow 104 

trout, including any paralogues retained during salmonid evolutionary history. The second 105 



objective was to establish the mRNA expression of these genes in rainbow trout, performed 106 

in a panel of tissues under control conditions, and following a bacterial pathogen challenge 107 

in liver and muscle. The resultant data implies an important role for arginine in both 108 

inflammation and tissue repair. 109 

 110 

2. Materials and Methods 111 

2.1. Animal work 112 

All procedures described hereafter were carried out in compliance with the Animals 113 

(Scientific Procedures) Act 1986 under UK Home Office license PPL number 70/8071 and 114 

approved by the ethics committee at the University of Aberdeen. Juvenile rainbow trout were 115 

purchased from College Mill Trout Farm (Perthshire, U.K.). The fish were kept at the 116 

University of Aberdeen aquarium facility (School of Biological Sciences) in 400 L tanks at a 117 

stocking density of <20 kg/m3. Tanks were supplied with recirculating freshwater with a flow 118 

rate of 1.5 L/s. Fish were kept at a temperature of 14 ± 1oC and a photoperiod of 12:12 119 

light:dark. A computerised control system was used to monitor pH, ammonia concentration 120 

and oxygen levels. Fish were fed ad libitum daily with commercial pellets.  121 

To assess candidate gene expression responses across tissues, n = 4 adult rainbow trout 122 

(499 ± 54 g mean ± SEM) were used to sample a standard panel of tissues; gill, distal 123 

intestine, heart, head kidney, liver, fast-twitch skeletal muscle and spleen (within 5 minutes 124 

of death). Tissues were stored in 1.5 ml RNA later at 4oC for 24 h followed by long term 125 

storage at -80oC.  126 

For the bacterial immunological stimulation, fish (as described above) were anaesthetised by 127 

immersion in 2-phenoxyethanol and then injected intraperitoneally (ip) with either phosphate 128 

buffered saline (PBS) (0.5 ml/fish) or the pathogenic Hooke strain of the live Gram-negative 129 

bacterium Aeromonas salmonicida (AS) (1.6 x 106 ml-1 cells, 0.5 ml/fish). After ip injection, 130 

the fish were maintained in 400 L tanks in the University of Aberdeen’s freshwater challenge 131 

facility for 48 h. After 48 h, n=10 fish from both PBS and AS groups were randomly sampled 132 

and killed as previously described and both liver and fast-twitch skeletal muscle tissue 133 

sampled and stored in RNA later as described above. 134 

 135 

2.2. Sequence, phylogenetic and genomic analysis 136 

Putative protein-coding nucleotide sequences (cds) for candidate genes were originally 137 

obtained from the rainbow trout genome hosted at https://www.genoscope.cns.fr/trout/ (NCBI 138 

https://www.genoscope.cns.fr/trout/


accession: GCA_900005705.1) [26]. This was achieved using BLASTn searches with human 139 

orthologues downloaded from NCBI as the query: ODC (AH002917.2), SAMdc 140 

(NM_001634.5), ARG1 (NM_001244438.1), ARG2 (NM_001172.3), OTC (NM_0005315), 141 

ASS (AH002610.2) and ASL (M14218.1).  These sequences were also consistent when 142 

compared to the rainbow trout genome deposited on NCBI (GCF_002163505.1). For 143 

additional phylogenetic analysis, further vertebrate (coding) CDS sequences were retrieved 144 

from NCBI and/or Ensembl [27] databases. Protein sequences from Atlantic salmon, rainbow 145 

trout, northern pike, zebrafish, spotted gar, chicken, mouse and human were retrieved and 146 

accession numbers for all protein sequences are displayed in Supplementary Table 1. 147 

MatGat [28] was used to predict amino acid identity/similarity between all vertebrate proteins 148 

for each gene. Protein sequences were aligned using ClustalW in the MEGA7 software [29]. 149 

A phylogenetic tree was constructed using the Jones-Taylor-Thornton model in the 150 

maximum likelihood method in MEGA 7, bootstrapped 500 times.  151 

Intron-exon structure and gene synteny analysis was carried out for all candidate gene 152 

families. To determine the genomic neighbourhood around candidate genes and the 153 

conservation of gene order across the same species mentioned earlier, genes were 154 

manually examined in NCBIs genomic region browser. Intron-exon structures were 155 

determined from the same databases used to retrieve cds sequences.  156 

 157 

2.3. Primer design for quantitative PCR (qPCR) 158 

Due to the duplicated nature of salmonid genomes, care was taken to design paralogue-159 

specific primers for genes with more than one copy within the genome (details of all primers 160 

in Table 1). Nucleotide mRNA sequences were therefore aligned with ClustalOmega [30] in 161 

order to compare paralogues and identify distinguishing regions of sequence. To avoid 162 

amplification of genomic DNA, primers were designed to span an intron-exon junction or 163 

were placed in different exons. Primers were also designed to have an annealing 164 

temperature of ~64oC judged from OligoCalc [31] and a product length of between 100 and 165 

330 bps. Prior to qPCR analysis (section 2.5), confirmation of PCR products generated using 166 

the paralogue-specific primers was carried out by cloning and sequencing. For confirmatory 167 

sequencing the PCR products were ligated into pGEM-T easy cloning vector (Promega) and 168 

then transformed into competent Escherichia coli cells (JM109). Plasmid DNA was isolated 169 

by Qiagen mini prep kits as described by manufacturer. A minimum of 5 clones per 170 

paralogue were sent for Sanger sequencing, carried out by Eurofins.  171 

  172 



Table 1. Rainbow trout primer sequences used for qPCR with NCBI accession numbers 173 
References 1[32], 2 [33], 3 [34] 174 

 175 

Gene Sense Primer 5’-3’ Product 
size 

Annealing 
temperature 

Accession 

      

EF-1α1 Forward CAAGGATATCCGTCGTGGCA 327 
 

64 NM_001124339.1 

Reverse ACAGCGAAACGACCAAGAGG 
 

 

actin2 Forward ATGGAAGATGAAATCGCCCC 260 64 XM_021595779.1 

Reverse TGCCAGATCTTCTCCATGTCG 
 

 

HPRT3 Forward CCGCCTCAAGAGCTAGTGTAAT 237 64 XM_021583468.1 

Reverse GTCTGGAACCTCAAACCCTATG 
 

 

RPS291 Forward GGGTCATCAGCAGCTCTATTGG 167 64 XM_021612450.1 

 Reverse 
 

AGTCCAGCTTAACAAAGCCGATG 
 

   

SAA Forward TATGATGCTGCCAGGAGAGGAC 137 64 NM_001124436.1 

 Reverse 
 

CGTCCCCAGTGGTTAGCCTT    

HAMP Forward AGGAGGTTGGAAGCATTGACAG 101 64 XM_021595153.1 

 Reverse 
 

GTGGCTCTGACGCTTGAACCT    

ODC1 Forward CGTGTGCCAGCTCAGTGTC 179 64 XM_021574142.1 

Reverse CCATGTCAAAGACACAGCGG 
 

 

ODC2 Forward TGGTGCCACCCTGAAGGCC 128 64 XM_021585068.1 

Reverse AGATGGCCTGGCTGTAGGTG 
 

 

SAMdc1 Forward GCAAGGACAAGCTAATTAAG 185 64 XM_021600286.1 

 Reverse AACCTTGGGATGGTACGGAG 
 

 

SAMdc2 Forward AACTCACGATGGAAGCGAAC 121 64 XM_021611778.1 

 Reverse AACCTTGGGATGGTACGGAG 
 

 

ARG 1A Forward AGCACCATATCCTGACGTTG 147 64 XM_021564871.1 

 Reverse CATCGATGTCATAGCTCAGG 
 

 

ARG 1B Forward GGTGGATCGCCTTGGAATCG 179 64 KX998966.1 

 Reverse CTGTGATGTAGATTCCCTCC 
 

 

ARG 2A Forward TCCAGAGAGTCATGGAAGTCACTTTCC 198 64 KX998967.1 

 Reverse CCATCACTGACAACAACCCTGTGTT 
 

 

ARG 2B Forward CTTGTTGAGGTCAACCCAGC 163 64 KX998968.1 

 Reverse GTCGAAGCTGTTCCGTGTCG 
 

 

OTC Forward CACAGCCAGGGTTCTCTCTG 116 64  XM_021597830.1 

 Reverse CAGACAGGCCGTTGATGATG 
 

 

ASS Forward TGAGATTGGAGGGAGGCATG 172 64 XM_021590913.1 

 Reverse GCCCTGTTTGATCCTCCTGA 
 

 

ASL Forward ACGCTCTCCAACTCATCACA 129 64 XM_021563243.1 

 Reverse ACCGCATGACTCAGAATCCA  



2.4. RNA extraction and reverse transcription 176 

Total RNA was extracted from 100mg of tissue homogenised in 1ml of TRI Reagent (Sigma-177 

Aldrich) following the manufacturer’s instructions. The concentration and purity of RNA was 178 

estimated using a NanoDrop 1000 Spectrophotometer (Thermo Scientific). The integrity of 179 

RNA was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies). First-strand 180 

cDNA was synthesized from 1 g total RNA using a QuantiTech Reverse Transcription kit 181 

(QIAGEN), with an integrated genomic DNA elimination step, as per the manufacturer’s 182 

guidelines in a total volume of 20 l. First strand cDNA samples were diluted 20-fold 183 

(working stock) with RNase/ DNase free water (Sigma-Aldrich) and stored at -20°C until use. 184 

 185 

2.5. Quantitative gene expression analysis 186 

qPCR analyses were performed with SYBR Green I dye chemistry using an Mx3005P 187 

System (Agilent Technologies). All assays were carried out in duplicate within 96 well plates 188 

using 15 μl reactions containing 5 μl of the 1:20-diluted cDNA (corresponding to 2.5 ng of 189 

reverse-transcribed total RNA), 500 nM sense/antisense primers and 7.5 μl Brilliant III Ultra- 190 

Fast SYBR Green (Agilent Technologies). The PCR cycling conditions were 1 cycle of 95°C 191 

for 3 minutes, followed by 40 cycles of 95°C for 20 seconds then 64°C for 20 seconds (two 192 

step PCR). Melting curve analysis (thermal gradient from 55°C to 95°C) was used to confirm 193 

the amplification of a single product. Each plate also included no-template controls in 194 

duplicate (cDNA replaced with water). Threshold fluorescence was set at 2500 during the 195 

linear phase of amplification. The efficiency of each qPCR assay was assessed using 196 

LinRegPCR quantitative PCR data analysis program (download: http://LinRegPCR.HFRC.nl) 197 

following Ruijter et al [35] recommendations. Expression data was then imported and 198 

analysed in Genex 5.4.3 (MultiD Analysis). Candidate gene expression was normalised to 199 

two reference genes for the tissue distribution (EF-1α and HPRT) and three genes for the 200 

infection study on muscle (EF-1α, HPRT and RPS29) and liver (EF-1α, ACTB, and HPRT). 201 

ACTB was replaced with RPS29 in muscle due to ACTB’s instability in muscle determined 202 

from the dissociation graph following qPCR. All reference gene primers used in the study are 203 

presented in Table 1.    204 

 205 

2.6. Statistical analysis 206 

Statistical analysis of qPCR data was performed in R (v3.4.0). A linear model (lm) was first 207 

constructed in R and the diagnostic plots (qq plot and residuals versus fitted values) were 208 

assessed in order to ensure both normality and equal variance. If data met the assumptions, 209 

http://linregpcr.hfrc.nl/


the one-way ANOVA results from R’s lm function could then be interpreted. If data was not 210 

normal, a log transformation was first performed and the diagnostics plots then reassessed. 211 

If the data still did not meet the models assumptions following the transformation, a non-212 

parametric test (Kruskal wallis) was then performed on the data.  213 

 214 

 215 

  216 



3. Results 217 

3.1 Comparative analysis of the urea cycle genes  218 

The phylogenetic relationships of all genes were carried out in comparison to a range of 219 

representative vertebrate lineages. Two copies of ARG1, ARG2, SAMdc and ODC were 220 

identified, along with single copies of OTC, ASS and ASL. Gene intron-exon structure, amino 221 

acid sequence analysis and synteny were performed on ODC as a representative example.   222 

Two ODC paralogues were identified in the rainbow trout genome (ODC1 accession: 223 

XM_021574142, Chr19, LOC110498573, ODC2 accession: XM_021585068.1, Chr25, 224 

LOC110505682). The open reading frame for ODC1 and ODC2 encoded 457 amino acids 225 

(aa) and 456 aa respectively, and a conserved gene structure of 8 exons and 7 introns (Fig. 226 

2) was evident between the paralogues. Across species, exons 2 and 3 were identical 227 

lengths for all species examined, while exon 4 was conserved in all teleosts, whereas in the 228 

tetrapods an additional intron is present resulting in tetrapod exons 4 and 5 being the same 229 

length as teleost exon 4 (Fig. 2). Similarly, within salmonid exon 5, an additional intron can 230 

be found in the remaining species analysed (Fig. 2). Exons 6 and 7 in salmonids and 231 

corresponding exons in the rest of the vertebrate species are highly conserved with 232 

tetrapods having 3 nucleotides less in relation to salmonid exon 6 and all species having 233 

identical length in salmonid exon 7 (Fig. 2). 234 



 235 

Phylogenetic analysis of the ODC1 and 2 proteins revealed that each molecule has an 236 

orthologue in both Atlantic salmon and rainbow trout that shared ~98% aa identity (Table 2). 237 

Within species, both rainbow trout and salmon ODC1 compared to ODC2 has 93.4% and 238 

94.7% identity respectively (Table 2).  The presence of the genes on distinct chromosomes 239 

and the branching of northern pike as a sister group to both ODC1 and 2 suggests these 240 

genes are products of the salmonid specific WGD (ssWGD) (Fig. 3). ODC1 and 2 are highly 241 

conserved with other vertebrate ODC orthologues (Table 2), for example sharing ~73% aa 242 

level identity each with human.  243 

 244 

 245 

O. mykiss ODC1 

L. oculatus ODC 

 

D. rerio ODC 

E. lucius ODC 

S. salar ODC2 

S. salar ODC1 

O. mykiss ODC2 

M. musculus ODC 

G. gallus ODC 

H. sapiens ODC 

Figure 2. Intron and exon structure of ODC coding regions across vertebrates, 5’ and 3’ UTRs not shown. Black boxes represent 
exons and are drawn to scale with nucleotide base pair sizes indicated above. Black lines connecting exons are introns and are not 
drawn to scale with sizes indicated below the line in italics. The sequences used for the intron exon analysis are as follows: O. 
mykiss ODC1 (XM_021574142.1), O. mykiss ODC2 (XM_021585068.1), S. salar ODC1 (XM_014192087.1), S. salar ODC2 
(XM_014211026.1), E. lucius ODC (XM_010892375.3), D. rerio ODC (ENSDARG00000007377),  L. oculatus 
(ENSLOCT00000020613.1), G. gallus ODC (ENSGALT00000026527.5), M. musculus ODC (ENSMUST00000171737.1), H. sapiens 
ODC (ENST00000234111.8) 
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O. mykiss ODC1 
 

98.2 93.2 94.5 92.4 85 77.5 71.4 71.2 72.5 

S. salar ODC1 99.3 
 

93.4 94.7 92.8 84.6 77.9 70.8 71 72.3 

O. mykiss ODC2 96.1 96.5 
 

98.2 92.6 85.5 79.4 71 72.1 72.5 

S. salar ODC2 96.9 97.1 98.9 
 

93.4 85.9 79 71.4 72.1 72.9 

E. lucius ODC 95.4 96.1 95.2 95.9  87 79.2 71.7 72.5 72.7 

D. rerio ODC 90.7 91.8 92 92 93.1 
 

80.1 73.7 73.9 74.1 

L. oculatus ODC 87.6 88 88.2 87.3 87.6 89.7 
 

79.4 76.8 78.3 

G. gallus ODC 83.8 83.6 82.5 82.5 82.6 86.4 89.3 
 

81.5 83.9 

M. musculus ODC 84.6 85.2 85.2 84.8 84.2 87 88.4 91.2 
 

90.7 

H. sapiens ODC 83.9 84.6 83.5 83.7 83.3 85.5 89.5 92.9 94.1 
 

  

Identity Similarity 

Table 2. Comparison of amino acid identities and similarities (%) for ODC using the similarity matrix in MatGat 246 
2.02 software. Accession numbers for all proteins can be found on Supplementary Table 1 247 

Phylogenetic analysis further confirmed ODC1, ODC2 (Fig. 3) and SAMdc1, SAMdc2 248 

(Supplementary Fig. 1) as products of ssWGD with higher relatedness to their salmonid 249 

relative than to their own species duplicate. In the case of the ARG1 and ARG2, these genes 250 

are present in all vertebrates and likely diverged before the evolution of vertebrates. 251 

However as there are 4 copies of arginase present in salmonids (ARG1a, ARG1b, ARG2a 252 

and ARG2b), it can be seen that the two paralogues for arginase 1 and 2 are likely products 253 

of the ssWGD (Supplementary Fig. 2). All other genes characterised in this study (OTC, 254 

ASS, ASL) have not retained a duplicate copy (Supplementary Figures 3-5). 255 



 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

Figure 3. Maximum likelihood phylogenetic tree showing the evolutionary relationship of ODC amino acid 

sequences in vertebrates. The branch support values were gained by non-parametric bootstrapping (500 

replicates). The scale bar represents the number of modelled substitutions per site. Accession numbers from 

NCBI are as follows: O. mykiss ODC1 (XP_021429817.1), O. mykiss ODC2 (XP_021440743.1), S. salar ODC1 

(XP_014047562.1), S. salar ODC2 (XP_014066501.1), E. lucius ODC (XP_010890677.1), L. oculatus ODC 

(XP_006626107.1), D. rerio ODC (NP_571876.1), G. gallus ODC (NP_001161238.1), M. musculus ODC 

(NP_038642.2), H. sapiens ODC (AAA59968.1) 



Synteny analysis revealed highly conserved gene order in the genomic regions containing 267 

ODC1 and 2, both in relation to each other and also in comparison to single copy ODC 268 

orthologues in non-salmonid teleosts and tetrapod vertebrates (Fig. 4). At the 5’ of ODC, the 269 

most proximal neighbouring gene (NOL10) was retained in the same location in all 270 

vertebrates. We also identified several other annotated genes with high synteny located near 271 

ODC including KCNA1 and ROCK2. Towards the 3’ end of ODC, salmonid genes shared 272 

similarity of gene order with the northern pike, but with no other vertebrates including 273 

zebrafish, suggesting a chromosomal rearrangement prior to the salmonid / pike divergence 274 

from other teleosts. As for the genes downstream of ODC, we identified some annotated 275 

genes in two copies on both the ODC1 and 2 chromosomes, barring the YIPF family of 276 

genes. Towards the 3’ of rainbow trout ODC1 there was no YIPF gene annotated, but in 277 

Atlantic salmon YIPF was identified downstream of both ODC1 and 2.  278 

 279 

3.2. Urea cycle and polyamine synthesis gene expression   280 

Figure 4. Phylogenetic tree and gene synteny of ODC in vertebrates. The tree was constructed using the maximum likelihood 
method in MEGA7 and bootstrapped 500 times. The syntenically conserved gene blocks are shown in matching colours. The 
arrows represent transcriptional direction. Gene synteny was compiled from up and downstream locations relative to each 
species ODC taken from NCBI, ODC protein accession numbers on supplementary table 1, chromosome number and range 
(from left of the diagram to right) as follows: O. mykiss ODC1 (Chr 19, 34,937,046 > 35,209,567), O. mykiss ODC2 (Chr 25, 
63,402,440 > 63,152,107), S. salar ODC1 (Chr ssa01, 29,382,254 > 29,167,678 ), S. salar ODC2 (Chr ssa09, 27,309,511 > 
27,043,274, E. lucius ODC (Chr LG15 , 14,186,061 > 14,321,347),  D. rerio ODC (Chr 17, 51,655,239 >  51,757,548), L. 
oculatus ODC (Chr LG1, 43,496,860 > 43,340,082), G. gallus ODC (Chr 3, 97,175,730 > 96,773,203), M. musculus ODC (Chr 
12, 16,894,978 >  17,791,944), H. sapiens ODC (Chr 2, 11,179,759 >  10,427,617).  



3.2.1 Tissue distribution  281 

The relative mRNA expression levels of the characterized urea cycle (ARG1a, ARG1b, 282 

ARG2a, ARG2b, OTC, ASS and ASL) and rate limiting enzymes of polyamine synthesis 283 

(ODC1, ODC2, SAMdc1 and SAMdc2) were quantified by qPCR in seven tissues in healthy 284 

rainbow trout under control conditions (Fig. 5 for ODC1 and 2; all other genes: 285 

supplementary figures 6-8). Both ODC paralogues were expressed in all tissues examined, 286 

with ODC2 less abundant than ODC1 in all tissues barring gill (Fig. 5). ODC1 was most 287 

highly expressed in head kidney followed by spleen and gill. ODC2 had the highest 288 

expression in gill followed by head kidney. 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

The four arginase paralogues showed a more variable expression distribution 298 

(Supplementary Fig. 6). ARG1a and ARG1b both showed highest expression in the liver 299 

(Supplementary Fig. 6). ARG1a was expressed in all tissues examined, with highest 300 

expression in liver and gill. ARG1b showed highest expression in liver, with lower expression 301 

levels in gill, heart and muscle, and no detectable expression in gut, head kidney or spleen 302 

expression. ARG2a and ARG2b were expressed in all tissues, both showing highest 303 

expression in the muscle and lowest expression in liver. 304 

The single copy urea cycle genes OTC, ASS and ASL were expressed in all the tissues 305 

examined, with OTC and ASL having highest expression in muscle and ASS in gill 306 

(Supplementary Fig. 7). OTC was expressed at a very low level in the liver (Supplementary 307 

Fig. 7). The two SAMdc paralogues were expressed in all tissues, with both genes having 308 

highest expression in heart and muscle (Supplementary Fig. 8). 309 

 310 

3.2.2. Modulation of mRNA expression following bacterial infection 311 
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Figure 5. Tissue distribution of ODC1 (A) and ODC2 (B) in rainbow trout. The relative 
expression in each tissue was normalised with the expression of two housekeeping genes 

EF-1α and HPRT. Bars represent mean (± SEM), n=4. 



Expression of the urea cycle enzymes and polyamine synthesis genes was examined in 312 

adult rainbow trout liver and muscle tissue sampled following an experimental infection with 313 

a pathogenic strain of the bacterium Aeromonas salmonicida (AS).  To confirm the fish were 314 

undergoing an inflammatory response to the infection, the expression of two marker genes 315 

for the acute phase response (APR), serum amyloid A (SAA) and hepcidin (HAMP), were 316 

examined in control and AS-infected fish. Both genes showed highly significant upregulation 317 

in infected fish (Fig. 6) indicating a strong immune response. 318 
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 330 

Following AS infection both ODC paralogues were significantly upregulated in the liver (Fig. 331 

7). In muscle, ODC1 and 2 expression did not change following infection (Fig. 7). Both 332 

SAMdc1 and 2 were significantly upregulated in liver but not muscle (Fig. 7). ARG1a was 333 

significantly downregulated in liver and unchanged in muscle whereas the opposite pattern 334 

was observed for ARG1b (Fig. 8). ARG2a and ARG2b expression was significantly 335 

increased in liver, with ARG2b also significantly increased in muscle but not ARG2a (Fig. 8). 336 

Both OTC and ASL’s expression was significantly increased in muscle, but not liver (Fig. 9), 337 

whereas ASL expression increased significantly in infected liver but not in muscle (Fig. 9).  338 

Figure 6. Relative expression of rainbow trout SAA (A) and HAMP (B) in liver tissue following a 

bacterial infection. Fish were injected intraperitoneally with either phosphate buffered saline (PBS) or 

Aeromonas salmonicda (AS). SAA and HAMP expression was normalised to housekeeping genes 

EF-1α, ACTB and HPRT. Linear model in R was used for analysis of both genes. Bars represent 

mean (± SEM), n=10, *** = p < 0.001 
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 339 

Figure 7. Relative expression of the rate limiting enzymes in polyamine synthesis, SAMdc and ODC, in rainbow 340 
trout muscle and liver tissue following a bacterial infection. Fish were injected intraperitoneally with either 341 
phosphate buffered saline (PBS) or Aeromonas salmonicda (AS). The top row of graphs show gene in liver 342 
tissue: ODC1 (A), ODC2 (B), SAMdc1 (C), SAMdc2 (D), expression was normalised to housekeeping genes EF-343 
1α, ACTB and HPRT. The bottom row of graphs show gene expression in muscle tissue: ODC1 (E), ODC2 (F), 344 
SAMdc1 (G), SAMdc2 (H), expression was normalised to housekeeping genes EF-1α, RPS29 and HPRT. Bars 345 
represent mean (± SEM), n=10, * = p < 0.05, ** = p < 0.01, *** = p < 0.001 346 

 347 

 348 

Figure 8. Relative expression of rainbow trout Arginase paralogues following a bacterial infection. Fish were 349 
injected intraperitoneally with either phosphate buffered saline (PBS) or Aeromonas salmonicda (AS). Top row 350 
represents gene expression of ARG1a (A), ARG1b (B), ARG2a (C) and ARG2b (D) in liver tissue, expression 351 
was normalised to the house keeping genes EF-1α, ACTB and HPRT. Bottom row represents gene expression of 352 
ARG1a (E), ARG1b (F), ARG2a (G) and ARG2b (H) in muscle tissue, expression was normalised to the house 353 
keeping genes EF-1α, RPS29 and HPRT. Bars represent mean (± SEM), n=10, * = p < 0.05, ** = p < 0.01, *** = p 354 
< 0.001 355 



 356 

Figure 9. Relative expression of rainbow trout OTC (A), ASS (B) and ASL (C) in liver tissue following a bacterial 357 
infection.  Second row represents relative expression of rainbow trout OTC (D), ASS (E) and ASL (F) in muscle 358 
tissue. Fish were injected intraperitoneally with either phosphate buffered saline (PBS) or Aeromonas salmonicda 359 
(AS). For the genes examined in the liver, expression was normalised to housekeeping genes EF-1α, ACTB and 360 
HPRT. For the bottom panel where muscle tissue was examined, expression was normalised to housekeeping 361 
genes EF-1α, RPS29 and HPRT. Bars represent mean (± SEM), n=10, * = p < 0.05, ** = p < 0.01, *** = p < 0.001 362 

  363 



4. Discussion 364 

Arginine metabolism and the urea cycle are major components of nitrogen metabolism, the 365 

inflammatory response and subsequent tissue repair. However, there is a lack of information 366 

available in salmonid fish regarding the genes regulating these metabolic pathways. Here we 367 

address this knowledge gap by characterising the key enzymes in the urea pathway and by 368 

documenting their transcriptional responses to a bacterial infection. 369 

In fish, arginine is often regarded as an essential amino acid required for efficient protein 370 

synthesis, in addition to other functional processes influencing health status [5, 36]. For 371 

arginine to be synthesised endogenously, carbamoylphosphate, an intermediate molecule in 372 

the urea cycle, is combined with ornithine to form citrulline through the action of OTC (Fig. 373 

1). In ureotelic mammals and amphibians, carbamoylphosphate synthetase (CPS) catalyses 374 

the formation of carbamoylphosphate, allowing its use in the urea cycle [37, 38]. In rainbow 375 

trout, CPS is expressed at early life stages but not in the liver of adults [37] with low levels in 376 

muscle [39]. This lack of hepatic CPS activity in salmonids could be the reason for an 377 

incomplete urea cycle and inability to synthesise arginine endogenously.  Some teleosts 378 

including the toadfish Opsanus beta [40], the catfish Clarias batrachus [41], and the lungfish 379 

Protopterus aethiopicus [42], have detectable CPS activity and a functional urea cycle. 380 

However, our gene expression data suggests that the urea cycle enzymes are functional in 381 

adult rainbow trout and the modulation we observed following AS infection indicates a role 382 

during the inflammatory response.  383 

Our phylogenetic analyses revealed that ODC, SAMdc and ARG have multiple paralogues 384 

retained from the salmonid-specific whole genome duplication (ssWGD), which occurred 88-385 

103 Mya [43, 44]. In the case of ARG, we observed four salmonid copies, with two 386 

paralogues retained for both ARG1 and ARG2, which was also recently shown for Atlantic 387 

salmon [20], which are conserved in all vertebrates and presumably the result of an early 388 

gene duplication event, perhaps past WGD events in the vertebrate ancestor [45]. However, 389 

we did not identify any duplicated paralogues of the key urea cycle genes retained from the 390 

teleost-specific WGD event [45]. The duplicated copies that are retained either specialise in 391 

function (subfunctionilization) or develop a novel function (neofunctionilization) [46, 47]. 392 

Following a WGD event, the resulting duplicated genome eventually only retains a small 393 

percentage of duplicated genes, as the redundant genes are inactivated by a process 394 

termed gene fractionation [26]. The ssWGD is relatively recent when compared to the teleost 395 

specific WGD (~100Mya compared to ~300Mya) and this is evident from the large number of 396 

duplicated genes still present in the genome (48% of genes with retained ohnologs) [26].  397 



The genes encoding OTC, ASS and ASL were found to be present as single copy genes 398 

suggesting one duplicated copy was lost in the ancestor of the trout and salmon lineage.   399 

The genes encoding the urea cycle molecules ARG, OTC, ASS and ASL were expressed in 400 

all tissues examined, with OTC showing negligible levels in liver; this latter observation may 401 

contribute to a low functioning urea cycle in salmonids, and other teleost’s [37]. However, 402 

genes encoding the other urea cycle enzymes (ARG, ASS and ASL) were transcribed in the 403 

liver, indicating components of the urea cycle may have other metabolic roles beyond 404 

nitrogenous waste excretion. The expression of ASS and ASL, may indicate an efficient 405 

conversion of citrulline to arginine in adult trout, but the lack of the carbamoyl substrate is a 406 

limiting factor. If the urea cycle is fully functioning, then citrulline could be used to bolster 407 

arginine levels, as is found in mammalian species [48, 49]. This idea is also supported by the 408 

functioning NOS cycle in salmonids as they are able to produce NO in the innate immune 409 

response against pathogens [50]. Citrulline is generated as a by-product of the iNOS 410 

reaction and could be recycled back into arginine by ASS and ASL. The arginase genes 411 

show an interesting expression profile, ARG 1a and 1b are expressed at high levels in the 412 

liver whereas ARG 2a and 2b are virtually absent in liver tissue. For genes encoding 413 

polyamine enzymes there is low level of expression in non-stimulated liver and small 414 

difference between paralogue expression. 415 

To gain information on the expression of the urea cycle genes/paralogues, we quantified 416 

their mRNA expression and transcriptional responses following bacterial infection in muscle 417 

and liver. We sampled liver as a key indicator of the acute phase response [51, 52] that 418 

shows a well-established response to bacterial infection, while also acting as the main site 419 

for amino acid metabolism and the urea cycle. Skeletal muscle was also selected for 420 

analysis, due to high transcript levels identified in many of the genes in the tissue 421 

distributions (see Results section 3.2.1). Fish were sampled 48h after infection to represent 422 

the early immune response before physiological changes due to disease could occur [51]. 423 

There were significant increases in liver expression for the polyamine genes ODC1, 2 and 424 

SAMdc1 and 2 suggesting upregulation of the polyamine pathway and subsequent 425 

production of putrescine. This could be related to cellular repair and also potential increased 426 

availability of ornithine from increased ARG2 activity following infection.   427 

Both the ARG2 paralogues increased in expression following infection, whist ARG1a was 428 

significantly decreased showing potential subfunctionalisation of the duplicated genes. 429 

Recent research has suggested that ARG1 is involved as a major metaboliser of hepatic 430 

arginine whereas ARG2 may be more involved with the immune response in the form of 431 

healing M2 macrophages [19]. During an immune response M2 macrophages demonstrate 432 



elevated levels of arginase activity and also play an important role in the innate immune 433 

defence against various pathogens in both a bactericidal and healing sense [18]. The two 434 

major types of macrophages, M1 and M2, both depend on the same substrate (arginine) for 435 

either healing (M2) or bactericidal activity (M1). The enzymes iNOS and arginase have been 436 

described as useful markers for M1 and M2 macrophages (respectively) in both mammals 437 

[53] and some fish species [54]. As both iNOS and arginase compete for arginine they can 438 

regulate each other’s expression either driving an inflammatory response via the nitric oxide 439 

cycle or wound healing from polyamine synthesis by ODC [53]. The increased expression of 440 

ARG2 along with ODC and SAMdc following infection shown in this study suggests that the 441 

conversion of arginine into polyamines is taking place for tissue repair. This is in agreement 442 

with studies in humans where arginine derived from ornithine also plays a role in tissue 443 

remodelling as high levels of arginase can be observed in fibroblasts of patients suffering 444 

from pulmonary fibrosis [55]. Further evidence showing the regulatory effect ARG and iNOS 445 

have on each other can be seen in mice when infected with Helicobacter pylori, arginase 2 446 

knockout lead to increased M1 macrophage activation [56].  447 

The transcriptional changes seen in the liver from ARG2 and the polyamine synthesis genes 448 

ODC and SAMdc suggests a signature activation of wound healing M2 macrophages [21].   449 

Although macrophages are virtually present in all tissues [20], we find in muscle, that during 450 

inflammation there is a less dramatic response compared to liver. There were no significant 451 

changes in the muscle for genes involved in polyamine synthesis suggesting liver is a major 452 

source for these molecules.  For ARG genes there was a similar pattern in muscle and liver 453 

indicating conserved regulation between tissues and a conserved inflammatory response. 454 

The urea cycle enzymes (OTC, ASS and ASL) displayed some variation between tissue 455 

where OTC and ASL were significantly upregulated in muscle but unchanged in liver while 456 

ASS was significantly increased in liver but unchanged in muscle.  457 

 458 

5. Conclusion 459 

In summary, the genes encoding the enzymes of the urea cycle and the two rate limiting 460 

enzymes in polyamine synthesis have been characterised and their response to infection 461 

investigated. Our findings demonstrate that ARG 1 and 2, SAMdc and ODC genes have 462 

retained functional paralogues from the salmonid-specific WGD, with several of the 463 

duplicated copies showing different regulation across tissues. The nutritional requirement of 464 

arginine in the diet in salmonids is likely to be due to a lack of activity from CPS and OTC 465 

enzymes in adult liver. It is likely that half of the urea cycle is functional and the enzymes 466 

responsible for the conversion of citrulline to arginine are active, especially due to the 467 



functioning NO cycle. We also observed significant changes in the urea/polyamine pathways 468 

following bacterial challenge, suggesting enhanced recycling and metabolism of arginine for 469 

both inflammatory and tissue healing roles following infection. 470 
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