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ABSTRACT 

Present throughout the vasculature, endothelial cells are essential for blood vessel function and play a 

central role in the pathogenesis of diverse cardiovascular diseases. Understanding the intricate 

molecular determinants governing endothelial function and dysfunction is essential to develop novel 

clinical breakthroughs and improve knowledge. An increasing body of evidence demonstrates that long 

non-coding RNAS (lncRNAs) are active regulators of the endothelial transcriptome and function, 

providing emerging insights into core questions surrounding endothelial cell contributions to pathology, 

and perhaps the emergence of novel therapeutic opportunities. In the present review, we discuss this 

class of non-coding transcripts and their role in endothelial biology during cardiovascular development, 

homeostasis, and disease, highlighting challenges during discovery and characterisation and how these 
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have been overcome to date. We further discuss the translational therapeutic implications and the 

challenges within the field, highlighting lncRNA that support endothelial phenotypes prevalent in 

cardiovascular disease. 

 

1. INTRODUCTION  

Lining the totality of the vascular system, the endothelium is a continuous barrier, the surface of which 

directly interacts with nearly every system in the body to regulate vascular development, homeostasis 

and pathogenesis. The single layer of endothelial cells (EC) that constitutes this barrier is in itself 

uniquely versatile, showing remarkable physiological and morphological heterogeneity across the 

vasculature1. These differences reflect the variety of functions they perform and the shifts in the priority 

of these roles across different anatomical locations in the cardiovascular system. For instance, the 

angiogenic capacity of endothelial cells plays a vital role during embryological growth, tissue 

development, and wound healing in damaged tissues2. Maintenance of vessel function, and therefore 

cardiovascular homeostasis, is highly dependent on the ability of the endothelium to react to external 

stimuli, mediating not only vasodilation and constriction but also thrombogenic, immune and 

inflammatory responses3,4. Dysregulated, these mechanisms can lead to, among others, the unrestrained 

vessel formation often seen in cancerous tumours5 and the pathological remodelling of mature vessels 

associated with the development of pervasive conditions such as hypertension6 and atherosclerosis7. 

Unsurprisingly, endothelial dysfunction is often an early pathophysiological feature in most forms of 

cardiovascular disease (CVD) and an independent predictor of future cardiovascular outcomes8,9. 

Understanding the finer molecular determinants governing endothelial function and dysfunction is 

therefore essential when addressing vascular disease. 

Apparent during both health and disease, the unique versatility of endothelial cells indicates complex 

control of the underlying transcriptional programmes and this is becoming more apparent with advances 

in our understanding of the human transcriptome. This is particularly true with the emergence of non-

coding RNAs (ncRNA) as regulators of gene expression both at the transcriptional and post-

transcriptional level. With only an estimated 1-2% of the human genome encoding for proteins10, there 

have been increased efforts in recent years to uncover novel regulatory mechanisms within the 

uncharacterised portion of the transcriptome. While the extent of their function is still debated11 ncRNA 

transcripts are believed to comprise approximately 70 to 90% of our genome and encompass thousands 

of operationally significant RNAs associated with all manner of biological processes12,13. Whilst 

examples of small non-coding RNA-mediated regulation are now well established, the concept of 

widespread control of cell function by long non-coding RNA (lncRNA) has only been advocated within 

the last decade14. This class of genes, initially thought to only contain non-functional transcriptional by-
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products, has sparked great interest as some have been found to be critical in development and 

dysregulated in disease15.  

Widespread transcription of lncRNA across the genome became more apparent with the increased use 

of RNAseq technologies revealing previously undetected transcriptional activity. Defined simply as 

non-coding transcripts longer than 200bp in length, these genes are generally less abundant and far less 

conserved compared to protein coding genes. Indeed, in a survey of 17 species, over 70% of all lncRNA 

in each species originated within the last 50 million years, indicating a high rate of evolutionary turnover 

within the class16. Recent estimates describe approximately 27,000 lncRNA transcripts produced in 

human, and ~1,000 lncRNA are conserved in other mammals16,17. 

LncRNAs collectively evade exact definition, with a variety of intersecting subclasses described based 

on traits such as their genomic proximity relative to surrounding genes (antisense, intergenic, 

bidirectional, intron-contained), the chromatin signatures of their transcriptional start sites (promoter, 

enhancer) and their mode of regulation (transcriptional vs post-transcriptional)18. Relatively few have 

been characterised compared to the tens of thousands of genes annotated, but those that have 

demonstrate a wide range of mechanisms with epigenetic, transcriptional and post-transcriptional 

effects, able to activate or suppress gene expression and translation19,20 (Fig. 1). Such diversity leads to 

challenges during the study of lncRNA, but their prevalence in the transcriptome provides an attractive 

opportunity for discovery of new mechanisms that control cell behaviour and the possibility of 

developing novel clinical targets.  

Discovery of new clinical targets is a current priority for pathologies where endothelial dysfunction 

plays a significant role and treatment options are limited. Aside from providing an opportunity to find 

novel regulatory mechanisms to manipulate therapeutically, lncRNAs often show restricted expression 

patterns that could be clinically advantageous21. Using in situ hybridisation data, leading studies by 

Mercer and colleagues found lncRNA to have expression patterns associated with particular anatomical 

regions, cell types and subcellular compartments22. Tissue-specificity is high for lncRNAs, often 

surpassing that of protein-coding genes23. Additionally, they often have stage-specific expression 

patterns during development and disease24,25. Whether such tendencies for localised expression could 

potentially explain some degree of endothelial heterogeneity through regulation of transcriptional 

programmes in certain vessel types or tissues is currently an open question. 

Herein, we will discuss the role of lncRNA in endothelial biology during cardiovascular development, 

homeostasis and disease and how this is yet to be fully defined. We will highlight challenges during 

lncRNA discovery and characterisation and how these have been overcome so far, using as examples 

those lncRNA that support endothelial phenotypes prevalent in cardiovascular disease (CVD). 

 

2. LNCRNA DISCOVERY IN ENDOTHELIAL CELLS: CURRENT STATE OF THE ART 
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As interest in lncRNA function grows, a wealth of established in vitro and in vivo models are being 

used as a basis to study their expression patterns. Such models are yet to be thoroughly examined from 

a lncRNA perspective and a full representation of endothelial lncRNA expression throughout the 

cardiovascular system is yet to be realised, although clearly a wealth of data will emerge in the next 

months and years. To date, a number of studies on EC function have identified lncRNAs with clear 

functional impact on the endothelial cell (Table 1). For instance, hypoxic conditions are commonly 

observed in myocardial infarction, peripheral ischemia and stroke, these often trigger a variety of 

distinct endothelial responses to prevent further tissue damage and restore blood supply. Several 

hundred genes with hypoxia-sensitive expression have already been identified and later validated in 

vitro using human umbilical vein endothelial cells (HUVECs), including MALAT1, H19, MIR503HG 

and LINC00323. Many of these have been shown to regulate hypoxia-induced EC functions such as 

proliferation, migration and angiogenesis after further in vitro and in vivo characterisation26–28. 

Additionally, lncRNAs previously characterised in other cell types, such as MEG3, MIAT and RNCR3, 

have been tied to EC-mediated angiogenesis via hyperglycaemic induction in retinal EC and are now 

associated with microvascular visual impairment29–31 (Fig. 2).  

LncRNA involved in EC inflammatory responses have also been explored. In vitro lipopolysaccharide-

stimulation of ECs can cause apoptosis, endothelial dysfunction and propagation of sepsis leading to 

elevated CVD risk. Hundreds of so far uncharacterised lncRNA have been found to be differentially 

expressed during the process, several with notably high fold changes32. A key feature of an innate EC 

response are the chemotactic intermediaries produced from the CXCL locus involved in neutrophil 

recruitment. These were recently found to be primed for activation in TNFα-stimulated HUVECs by 

UMLILO, a proximal enhancer-transcribed RNA33. Such innate-responsive lncRNAs are likely to 

directly impact on endothelial function through pro-apoptotic or pro-migratory effects on ECs.  

Models of endothelial development from human embryonic stem cells (hESCs) have also been used to 

identify lncRNA expressed at specific stages in cell fate determination. Such differentiation models 

have identified genes such as SENCR34  and PUNISHER (AGAP2-AS1)25, which are both upregulated 

during endothelial commitment. While differentiation models allow for identification of genes involved 

in determining cell fate, many may also be important in maintaining endothelial homeostasis. SENCR 

expression, for example, was shown to be altered in the vascular tissue of patients with critical limb 

ischemia and premature coronary artery disease34. Later studies have also found perturbations in mature 

EC membrane integrity induced upon SENCR knockdown35.  

However, publications often do not acknowledge endothelial phenotype heterogeneity and several EC-

dependent mechanisms have yet to receive similar attention as those supporting angiogenesis and 

homeostasis. For example, the well-established endothelial-mesenchymal transition (EndMT) has so 

far only been associated with a single lncRNA, GATA6-AS 36,37, with no published data of transcriptome-

wide shifts in lncRNA expression during this transition. 
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A bias towards HUVEC-based models is also apparent with only a single lncRNA-screening study 

including an EC subpopulation from outside the umbilical vein published so far38. This is of particular 

importance as studies highlight distinct LncRNA functions across vessel types; knockdown of the 

lncRNA MIR503HG for example, was shown to have anti-proliferative and migratory effects on venous 

EC but not on arterial EC27.  Further, given the wide variety of tissue microenvironments to which EC 

are exposed is pivotal to guiding their fundamental function39, it is important to acknowledge the 

extracellular cues that may dictate some of these differences in phenotype. In vitro, the use of 3D 

multicellular co-culture models allow for a physiologically relevant cellular arrangement and the 

exchange of intracellular components such as protein, RNA and DNA40. The release of extracellular 

vesicles (EVs) by neighbouring cells is one such cellular exchange system shown to be a key regulator 

of endothelial function and dysfunction41. Some emerging evidence now indicates that lncRNAs can be 

selective packaged into EVs to induce a variety of phenotypic changes under both physiological and 

pathological conditions42. For instance, exosomes released from tumour cells containing high quantities 

of the lncRNA H19 promote EC network formation, stimulating VEGF and VEGFR1 production43. 

Exosomal release of the atherosclerosis-associated lncRNA GAS5 by monocytes was also found to 

regulate apoptosis of vascular endothelial cells44. Conversely, communication between ECs and 

vascular smooth muscle cell (VSMC) has been shown to be facilitated by EVs carrying the lncRNA 

RNCR3, and that these EC-derived exosomes can induce VSMC proliferation and migration45. 

Ultimately, research addressing EC heterogeneity and the physiological relevant cues that surround 

these subpopulations has the potential to reveal an unexplored and therapeutically attractive subset of 

lncRNA. As novel sequencing data and protocols become available to tackle these cellular mechanisms 

and typically hard-to-culture cell populations, annotation of EC functional diversity in the literature is 

likely to improve over the next years. It is, therefore, important to acknowledge transcriptome-wide 

discovery as a prerequisite for understanding EC function and to consider the available emerging tools 

and techniques. 

 

3. STRATEGIES FOR DETECTION AND SELECTION OF FUNCTIONAL 

ENDOTHELIAL LNCRNA 

In the last decade the advent of relatively affordable sequencing technology has created a boom in 

transcriptomic techniques, resulting in sophisticated RNAseq-based methods becoming available to 

scientists and routinely utilised as a discovery tool46. In tandem, the methodology to quantify gene 

expression has been refined47, providing an ever-more accurate account of transcriptional fluctuations 

within models, including for endothelial pathology and differentiation. This work has helped to expand 

and validate lncRNA annotations where sequencing depth is effective, as well as increase our 

understanding of their origins, structure and expression. However, the specific spatiotemporal 

expression of lncRNAs poses a challenge, and the annotation of the human transcriptome is still 
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incomplete and likely missing transcripts, including lncRNAs, that are well-expressed in EC types and 

behaviours that have not been profiled yet. Detecting novel endothelial lncRNA is therefore a high 

priority. This is in addition to evaluation of the thousands of already annotated lncRNA for endothelial 

association. Here we provide an overview of the process of identifying lncRNA coupled to the 

subsequent selection of high priority candidates that might be functionally relevant in endothelial cells 

(Fig. 3). 

Microarrays, though now superseded in sensitivity and accuracy by RNAseq, have provided the basis 

of several important screens for endothelial lncRNAs32,48,49. However, the necessity to decide on which 

annotation set the probe population will be based on eliminates the chance to find novel transcripts, 

even if using arrays specifically designed for lncRNAs. This is coupled with increased background 

noise from non-specific probe binding, which limits sensitivity particularly in regard to those lncRNA 

that are expressed at low levels. However, arrays can provide a relatively cheap alternative to deeper 

RNAseq methods in studies with high sample number, such as those screening multiple vascular cell 

types38, or where many replicates are required to obtain a signal of co-expression with genes of 

interest50. 

The gold standard technique for lncRNA identification is RNAseq. It is sensitive, increasingly cost-

effective and presents a largely unbiased, whole-transcriptome view of shifts in gene expression. 

RNAseq of ECs has been used to identify lncRNAs responding to hypoxia26–28,37, pathological shear 

stress51  and those expressed in developmental models25. It has also allowed profiling of transcriptional 

activity at loci containing notable endothelial-expressed genes such as eNOS51 or SR1P52. However, 

only one of these studies capitalises on the ability to detect expression of completely novel transcripts 

outside of current annotation sets and this led to identification of PUNISHER25. Other such novel 

lncRNA are rare in the literature at present though the previously unannotated SENCR, has been 

characterised with an endothelial function34  despite being initially identified in SMCs53. Interestingly, 

both these functional lncRNA are expressed in unstimulated HUVECs, which have a high amount of 

sequencing data readily available, yet both were found without the use of publicly available annotation 

sets. This demonstrates that even well-studied cell types can yield previously unseen transcripts with 

high phenotypic impact.  

A key caveat for use of RNAseq is that sufficient read depth must be used to be able to reliably detect 

and annotate lowly expressed lncRNAs. This problem is even more acute when considering use of 

single cell RNA-seq to identify lncRNA expression on a cell-specific level. An important recent study 

showed how lncRNA expressed at a low level in a given tissue can actually be highly abundant within 

certain populations of the constituent cells54. This study used 200 million reads per sample – a 

prohibitively expensive amount of sequencing until recently, but increasingly affordable with the 

introduction of NovaSeq machines55. The use of single cell RNA-seq to examine lncRNAs directing 

endothelial heterogeneity, transitions or development remains an area of high interest and opportunity. 
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The use of RNAseq data for prediction of new lncRNAs is typically based on algorithmic reconstruction 

of transcript models from short RNAseq reads (these algorithms are usually ‘seeded’ with existing 

annotations), followed by filtering to determine which transcripts are noncoding with high confidence56. 

Several computational pipelines address these issues57–60. Typical filtering steps include the use of 

several algorithms to evaluate coding potential and combination of their scores, exclusion of short or 

very lowly expressed transcripts, and exclusion of transcripts found in close proximity to annotated 

genes, as these often correspond to unannotated extensions of UTRs.  

For example, transcripts containing long ORFs (i.e. possessing long stretches of uninterrupted sequence 

between in-frame start and stop codons) with characteristic codon frequencies and/or with high 

homology to existing proteins can be identified with the widely-used coding prediction calculator (CPC) 

scoring method61. Others exclude candidates with ORFs predicted to produce proteins with structural 

homology to known Pfam protein domains (HMMR)62, the detection of sequence composition 

characteristic of coding sequences58,63, or candidates containing ORFs with codons that are maintained 

(with the same or similar codons and without frameshifting mutations) over large evolutionary distances 

(RNAcode and PhyloCSF)57. The codon-conservation tools are particularly powerful for detecting short 

conserved ORFs, but also can have some false positives in regions of extremely high conservation and 

limited variation between species. Concepts relevant to all these tools are reviewed elsewhere64, there 

remains an opportunity for such approaches to expand the endothelial lncRNA repertoire and aid our 

understanding of endothelial cell function. 

Analysis of high-throughput data typically identifies tens to hundreds of potentially relevant lncRNAs 

and selection of candidates for functional follow-up can be challenging. There is no silver bullet 

available for homing in on a prospective lncRNA on which to focus wet-lab resources. There are, 

however, general trends emerging from the accumulated knowledge of lncRNA which provide good 

starting points11. LncRNAs with substantial transcript abundance and differential expression are most 

likely to be associated with the phenotype in question. Expression levels also correlate with 

evolutionary conservation65, indicating that more abundant genes are more likely to be maintained for 

functional importance across species. On the other hand, lncRNAs that have cis-acting scaffold 

functions do not necessarily need to be abundant for carrying out their function(s), as exemplified by 

the involvement of UMLILO in regulation of the CXCL locus in HUVECs33. 

Sequence conservation also offers a route to prioritize functional lncRNA66. LncRNAs are in many 

cases poorly conserved, but ~1,000 lncRNA genes are conserved among mammals, and ~100 between 

human and fish16. The regions conserved in sequence in these lncRNAs are typically short, in many 

cases restricted in just a single exon with some bias towards the 5’ of the RNA. These short patches of 

conservation may correspond to functional domains with autonomous functions such as a binding sites 

for other RNAs or proteins. BLAST or whole genome alignments can be used to find regions of 

significant sequence similarity between potentially orthologous transcripts. Some lncRNA are 
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conserved only through synteny, where only the relative position and the orientation of the transcribed 

locus of transcription is constrained whilst sequence diverges to a point where significant similarity is 

no longer detectable66. Such ‘positional’ orthologs are harder to call with confidence, as multiple 

transcripts can be present in the same locus in distantly related species. Discovery of all such 

relationships can be automated using a relatively easily implemented tool, slncky, which can be used to 

annotate lncRNA in sparsely-annotated cardiovascular animal models and then predict their 

orthologous relationships to human transcripts59. 

The presence of deeply conserved orthologs can imply a significant contribution of a lncRNA to 

endothelial homeostasis or development. Such genes are therefore strong candidates for targeting in 

functional studies. Conversely, human- or mouse-specific transcripts may very well also be functional, 

and many of these could also potentially add to our understanding of differences between pre-clinical 

animal models and an eventual clinical context. Prioritization of such transcripts is typically based on 

their expression levels and/or proximity to functionally-relevant genes. 

The selection process will become better informed as the list of functionally characterised lncRNA 

grows; a greater number of validated genes will allow for clearer guidelines for effective selection to 

emerge. Until then potential key drivers of endothelial heterogeneity or pathology could be waiting to 

be unearthed. 

 

4. APPROACHES FOR CHARACTERISING THE MOLECULAR INTERACTIONS OF 

LNCRNAS 

Being highly diverse, lncRNAs carry out their functions through a wide range of mechanisms. At the 

transcriptional level, they have been shown to bind and guide chromatin-modifying complexes to 

specific DNA sequences, either activating or repressing their target gene expression67,68. Additionally, 

they can also act as decoys for DNA-binding proteins and prevent their association to a target gene69. 

At the post-transcriptional level, a growing number of studies have implicated lncRNAs at various 

stages of control, regulating mRNA stability70, enhancing mRNA translation71 and even acting as 

miRNA sponges72. Recent publications also point towards the existence of widespread cross-regulatory 

interactions between noncoding RNAs classes, adding a further functional role for lncRNAs73. Some of 

these regulatory networks are represented in large-scale databases, such as StarBase v2.0, a repository 

of thousands of experimentally validated RNA–RNA and protein-RNA interactions that offer 

supporting information for mechanistic studies74. Nevertheless, the use of appropriate RNA-focused 

tools to elucidate such complex interactions is essential given the variety of different interactions across 

not only between different tissues and cell types, but also within same-cell subpopulations. 
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CELLULAR LOCALISATION  

In line with their diverse functions, lncRNAs show a variety of subcellular distributions: accumulating 

predominantly either in the cytoplasm, nucleus or distributed between both compartments56. Our 

understanding of how the localization is encoded in lncRNA sequences is still relatively rudimentary, 

but several recent studies have identified specific sequence elements75,76 other features that are 

associated with enrichment in the nucleus in lncRNAs and mRNAs77. Understanding the localisation of 

a transcript may thus give an initial insight into putative functions and serve to guide future experiments.  

Isolation of nuclear and cytoplasmic extracts has proven to be a simple, yet effective strategy. For 

example, different subpopulations of EC express high levels of the nuclear enriched lncRNAs TUG1, 

MEG3, and MALAT126, whereas SENCR transcripts show both cytoplasmic and nuclear accumulation53. 

Unsurprisingly, all of these have now been found to regulate different aspects of EC function26,35,78,79. 

Such fractionation methods, however, give a crude resolution quantification of subcellular localization 

that should be accompanied by more detailed localization through the use of single-molecular FISH 

methodologies80. 

 

RNA:PROTEIN INTERACTION 

The past decade has seen a growing appreciation for the role of RNA:Protein interactions in regulating 

gene expression. These interactions can be studied either through protein-focused and RNA-focused 

perspectives. Well-established immunoprecipitation assays include RNA Immunoprecipitation (RIP), 

which purifies full RNA molecules associated with the precipitated protein, and Cross-Linking 

Immunoprecipitation (CLIP), which is typically used to identify higher-resolution footprints of RNA 

binding proteins81. Conversely, RNA-centric approaches such as RNA chromatography will require the 

in vitro generation of a labelled RNA of interest to identify binding partners82, other hybridization-based 

methods such as RNA antisense purification (RAP)83,84 will instead use labeled antisense oligos to 

purify the endogenous RNA instead. While these techniques have now expanded and become quite 

varied in their methodology, in general they allow for the purification a specific RNA complex to 

identify directly interacting proteins using quantitative mass spectrometry or western blot (Fig. 4). 

Nonetheless, while there has been progress in understanding the interactomes of individual lncRNAs, 

such as HOTAIR85, MALAT-186  and Xist87, the majority are still not well understood, particularly within 

an endothelial-specific context.  

In endothelial cells, RNA chromatography-based approaches have been extensively used. For example, 

in order to uncover the interacting partners of the nuclear enriched endothelial lncRNA MANTIS 

Leisegang and colleagues exposed 3’end biotinylated transcripts to EC nuclear extracts, allowing for 

RNA:Protein complexes to be formed which were then be captured and isolated49. This study identified 

an interaction of MANTIS with Brahma-like gene 1 (BRG1), a subunit for the chromatin-remodelling 
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complex SWI/SNF. This interaction was shown to regulate SMAD6, SOX18, and COUP-TFII 

expression, leading to the increased angiogenic function associated with the lncRNA49. A Similar in 

vitro strategy was used to identify a direct interaction between SENCR and the cytoskeletal-associated 

protein 4 (CKAP4), via a noncanonical RNA-binding domain. This CKAP4:SENCR association was 

found to indirectly stabilize CDH5 at the adherens junction and thus maintain normal EC membrane 

homeostasis35. Nonetheless, despite its success, this system relies on the in vitro transcription of the 

lncRNA rather than targeting endogenously expressed transcripts present in the cell, which is prone to 

the formation of non-physiological interactions. 

More recently, biotin-labelled RNA antisense probes were used to investigate endogenous GATA6-

AS:protein complexes in HUVEC. The study demonstrated that this lncRNA exerted its effects on 

endothelial cell function by binding the nuclear enzyme LOXL2 and impairing its deamination activity 

on H3K4me3, which is accompanied by transcriptional silencing of a variety of endothelial genes37.  

 

RNA:RNA INTERACTION 

Much like miRNAs, snoRNAs, and tRNAs, lncRNAs can directly interact with other RNA transcripts 

though direct base pairing. Several strategies to uncover these RNA:RNA interactions have started to 

emerge, many of which have successfully been used to understand the mechanistic action of ribosomal 

RNA and small nuclear RNAs. 

Similarly to RNA:protein detection approaches, modified versions of RAP can be used to detect 

lncRNA:RNA interactions88. These techniques rely on RNA capture using one or several antisense 

oligonucleotides followed by RNA sequencing. Various cross-linking methods (i.e. 4’-

aminomethyltrioxalen, formaldehyde, disuccinimidyl glutarate or ultra-violet irradiation) can be used 

depending on the interactions of interest, be it only direct RNA:RNA interaction or indirectly via a 

protein intermediates88. Techniques such as CLASH (Cross-linking, ligation and sequencing of 

hybrids), for example, take advantage of UV cross-linking to induce the formation of covalent RNA 

bonds to identify RNA–RNA interactions occurring in close physical proximity. This method has led 

to the experimental identification of more than 18000 miRNA:RNA interactions89. 

Highly expressed lncRNAs can potentially act as competing endogenous RNAs (ceRNAs) or sponges 

to regulate the expression of other RNAs, be it non- or protein coding90. Large bioinformatic databases 

can assist in the discovery of such interactions. For example, based on StarBase v2.0 predictions, Shan 

and colleagues found that the EC-associated lncRNA RNCR3 could regulate the expression of the 

atheroprotective Kruppel-like factor 2 (KLF2) by binding to miR-185-5p, a post-transcriptional 

regulator of KLF231. 
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RNA:DNA INTERACTION  

LncRNAs are key regulators of chromatin states in a variety of biological processes, both in cis, via the 

regulation of neighbouring genes, or in trans to regulate distantly located genes. While lncRNA:DNA 

co-localisation can be validated using fluorescent probes, FISH-based strategies have limited ability to 

identify DNA regions bound by lncRNAs and higher resolution methods are needed. RNA-based 

methods for high-throughput identification of chromatin regions bound by lncRNAs have recently 

emerged. As with RNA:protein and RNA:RNA interactions, RNA capturing techniques can be modified 

to target chromatin interactions, these include chromatin isolation by RNA purification (ChIRP), 

capture hybridization analysis of RNA targets (CHART) and RAP-DNA. 

First introduced in 2011, ChIRP is now widely used to identify associations between a lncRNA of 

interest and chromatin. As with some of the previous methodologies described, the samples are 

crosslinked and biotin labelled oligonucleotides targeting a lncRNA of interest91. The lncRNA:DNA 

complexes can then be purified using biotin-binding, magnetic streptavidin beads and then sequenced 

to identify any associated genomic regions91. In its original study, ChIRP was used to isolate DNA 

regions associated with the lncRNA HOTAIR, showing that the lncRNA preferentially associates with 

GA-rich DNA motifs91. A similar approach was recently used to fine-map genome-wide MEG3 binding 

sites. Using 15 biotin-labelled antisense DNA oligonucleotides (oligos) spanning across lncRNA, the 

pulldown found that the genomic regions of 5,622 genes can be associated with MEG3, including 

several TGF-β pathway genes92. MEG3 expression has since been consistently linked to endothelial cell 

migration, proliferation and angiogenesis79,93,94. 

 

5. LNCRNA DISCOVERY, FUNCTION AND TRANSLATION: CHALLENGES AND 

FUTURE DIRECTIONS 

Whilst the therapeutic potential of lncRNAs is mentioned in most studies, real-world examples of 

tissue-specific clinical applications based on lncRNAs remain limited, with many emerging pre-clinical 

studies focusing on their utility as markers of disease. This is particularly true in cancer research, where 

MALAT1 overexpression has been linked to tumour development and progression in a variety of 

tissues95. A recent meta-analysis of 14 independent studies comprising data from 1373 patients found a 

significant association between MALAT1 expression and survival rates, independent of cancer type or 

country of residence96, making it not only a powerful prognostic marker for cancer patients and an 

attractive target for anti-metastatic therapy. Similarly, the lncRNA HOTAIR has also been put forward 

by multiple studies as a potential biomarker for various cancers involving breast, liver, gastric, lung, 

and oesophagus97.  

Throughout the various aetiologies of cardiovascular disease, some lncRNAs markers, whilst not 

endothelial-specific, have been reported. A study comparing the expression of lncRNAs in peripheral 
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blood cells of healthy volunteers and myocardial infarction patients, demonstrated that the lncRNA 

HIF1αAS2, KCNQ1OT1, MALAT1 were significantly upregulated in myocardial infarction patients98.  

In a recent clinical study of coronary artery disease (CAD), the lncRNA CoroMarker was used to 

successfully identify 78% of CAD patients out of 221 CAD patients and 187 control individuals99. 

Importantly, CoroMarker is mainly present in circulating extracellular vesicles, which are stable in 

plasma and easy to use as a biomarkers99. The lncRNA LIPCAR is consistently upregulated in the 

plasma of ischemic and non-ischemic heart failure patients and has been consistently reported to be an 

independent predictor of cardiovascular-related death100,101.  

Expressed in vascular endothelial cells, macrophages and coronary smooth muscle cells, higher plasma 

levels of the lncRNA ANRIL have been found to be associated with the incidence of in-stent restenosis 

(ISR)102. Considering the importance of inhibiting neointimal proliferation while promoting re-

endothelialisation after vascular stenting103, along with the lncRNAs reported regulation vascular 

endothelial growth factor (VEGF) expression and function in primary EC104, ANRIL may ultimately be 

an optimal prognostic factor for ISR.  Additionally, a meta-analysis of 14 genome-wide association 

studies highlighted ANRIL as a crucial locus of genetic sensitivity for coronary artery disease (CAD). 

Several single nucleotide polymorphisms (SNPs) in this locus, influencing ANRIL function and levels 

of expression, have since been found to be associated with increased susceptibility to CAD and 

diabetes105,106. Lastly, ANRIL has also been consistently found to be upregulated in plaque and plasma 

of atherosclerosis patients, making it a potential biomarker for atherosclerosis107,108.  

The introduction of lncRNA targeting strategies into the clinical setting comes with many challenges. 

Due to the pleiotropic nature of some lncRNAs, tissue-specific delivery is imperative to guarantee 

treatment efficiency and minimal off-target effects. While certain transcripts may be involved in 

particular pathologies, their desired function may be tissue-specific and even cell-type–specific. For 

example, while ANRIL expression may be a prognostic factor for ISR and atherosclerosis, systemic 

modulation of this lncRNA may prove to be harmful as it is one of the most commonly altered lncRNAs 

during cancer development and progression, including ovarian cancer, breast cancer and lymphoblastic 

leukemia109. Additionally, with studies showing an average of ≃4 different isoforms per lncRNA, the 

transcriptional complexity of a particular lncRNA locus must be thoroughly characterised before 

treatment strategies can translated into the clinical setting110. As such, effective therapies targeting or 

using lncRNAs in the clinical setting must take into account not only possible off-target effects, the 

route of delivery used, drug immunogenicity, treatment dosage and duration but also sub-cellular 

transcript location, transcript size and sequence.  

Further, the lack of sequence conservation across different species makes the translation of pre-clinical 

animal studies extremely challenging. Take for example the lncRNAs myocardial infarction-associated 

transcript 1 (MIRT1) and 2 (MIRT2) which, while found to be associated with left ventricular 

remodelling after myocardial infarction, have no corresponding human homologs111. Conversely, 
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smooth muscle enriched lncRNA (SMILR) seems to be conserved only in humans, significantly limiting 

future preclinical studies using animal models and possible clinical translation112. However, promoter 

regions of lncRNAs, have in fact been shown to harbour substantial conservation throughout different 

organisms, comparable to that of protein-coding genes113. Further, it is possible that in some cases, 

despite divergent sequences, lncRNA sub-structures may be conserved between human and model 

organisms114,115 and so small molecules targeting these structures might have similar effects across 

species.  

Finally, given their high spatiotemporal expression specificity, certain lncRNA may allow to 

circumvent the need for endothelial-targeting tools with minimal off target effects. Take for example 

the Wisp2 super-enhancer–associated lncRNA (WISPER), whose expression and function are highly 

specific to cardiac fibroblasts, making it an attractive candidate for targeted antifibrotic therapies116. 

With continued implementation, novel RNA discovery and characterisation techniques have the 

potential to reveal previously unknown subsets of EC-specific lncRNAs. 

 

6. CONCLUSIONS 

An increasing body of evidence demonstrates that lncRNAs are active regulators of endothelial 

function. It is necessary to further define both the key lncRNA candidates and the molecular partners 

involved at a mechanistic level. Greater variety in lncRNA profiling in diverse ECs is clearly required. 

Increased lncRNA annotation in animal EC models is possibly an even greater challenge and it is crucial 

to expand in vivo evidence of causality. The continued emergence of high-throughput datasets has 

identified several attractive candidates, yet these are often far from fully characterised mechanistically.  

Meeting these challenges is only possible with continued screening efforts using cutting-edge RNAseq 

techniques paired with robust RNA capturing tools, this is particularly important with the emergence 

of single-cell RNA sequencing offering further insights into cell transcriptome heterogeneity in ECs. 

As more individual lncRNA are characterised, and as the class as a whole is further investigated, their 

general categorisation, characteristics and quirks become ever more clear. The field is now poised to 

answer whether lncRNA are intrinsically linked to broad questions surrounding endothelial 

heterogeneity and fate. For instance, the spatiotemporal expression of lncRNA could fit well with 

fundamental differences between endothelial cells derived from various vessel types or other vascular 

cell types. With the potential to contribute answers to such pertinent questions, alongside their potential 

as precise modulators of ECs via gene therapy, it is only a matter of time until a more fully-fledged and 

representative landscape of EC lncRNA emerges.   117118  
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LEGENDS  

Table 1 - LncRNAs Associated with Endothelial Function in Cardiovascular Disease. List of  

lncRNAs reported to have endothelial regulatory functions in cardiovascular disease. LncRNAs are  

presented together with their type and evolutionary conservation, followed by details regarding their  

identification and characterisation in endothelial cells.  

Figure 1 - LncRNA Classification and Function. LncRNA can be categorised based on their  

transcription start site, surrounding coding genes and regulatory function. Promoter-derived transcripts  

are more likely to be spliced, poly-adenylated, lengthy and stable as compared to enhancer-derived  

which, though separately categorised as eRNAs, are included in lncRNA studies if >200bp. The position  

of a lncRNA relative to surrounding coding genes as a categorisation method provides indication of  

potential lncRNA function e.g. bidirectional transcripts likely impact their partner gene. LncRNAs  

whose function has been characterised fall into distinct groups based on the its molecular interactions  

and the mechanism of action used to impact gene transcription or translation. As part of RNP  

component, lncRNAs can regulate the activity or localization of a particular protein, or play a structural  

role within a larger protein complex.  LncRNAs can also control gene transcription by acting as  

enhancer RNAs, by modulating the activity of transcription factors, or through the recruitment of  

chromatin modifying complexes. In addition to acting as miRNA host genes, lncRNA can function as  

miRNA sponges, titrating specific miRNAs away from their mRNA targets. Post-transcriptionally,  

lncRNAs have been shown to modulate both mRNA translation and degradation.  

  

Figure 2 - Known Function of Endothelial LncRNA. List of lncRNA reported to have endothelial  

regulatory functions with impact on cell differentiation, EndMT, angiogenesis, inflammation, EHT and  

vessel homeostasis. EndMT = Endothelial-to-mesenchymal transition, EHT = Endothelial-to- 

haematopoietic transition.  

  

Figure 3 - Considerations for LncRNA Discovery. Common concepts to consider at the design stage  

for studies identifying lncRNA within sequencing data. These are generally tailored depending on the  

aims of the study, for instance it is often not necessary to profile for previously unannotated lncRNA  

across the whole transcriptome to find candidates of interest though studies with such scope can have  

greater power.   

  

Figure 4 - RNA-focused Pulldown strategies. Workflow for the identification of lncRNA interactions  

using exogenous (left) or endogenous RNA pull-down strategies.  
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