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Abstract We study demand-side participation in an electricity market for an industrial consumer
of electricity, with some flexibility to reduce demand, and capable of offering interruptible load
reserve. Our consumer is a price maker, and the impact of its actions in the market is modelled
via a bi-level optimization problem. We have extended a standard model for optimal strategic
consumption, to the case where reserve offer curves need to be optimized simultaneously with
consumption curves; our models provide intuition into this interaction. Furthermore, we provide
tailor-made solution strategies for the resulting problems under uncertainty, and report numerical
results of our implementation on instances over the full New Zealand network yielding a realistic
and large problem set.

Keywords Demand response · Bi-level optimization · Decomposition methods · Integer
programming · Stochastic optimization

1 Introduction

Absence of demand response is considered a significant market failure in electricity markets [1].
This absence prevents curtailment of demand in response to supply scarcity which is a necessity for
any well functioning competitive market, particularly when power supply is unreliable. Electricity
markets have started to enable consumers to be active participants, who can provide elasticity,
and contribute to efficiency. In addition to improving reliability of the electricity sector, demand
response can enable deferral of expensive generation and transmission investments, and can also
result in better integration of renewable generation technologies. Since distributed electricity tech-
nologies have started to become cost-effective, (e.g. solar PVs and battery storage), there has been
a growing body of work on household demand response [2–7]. A number of authors have discussed
demand response in restricted formats, e.g. [8–10] and have examined its potential and limita-
tions [11–13]. However, there has been less research on full-scale models for large consumers of
electricity with strategic bidding schemes.
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Major industrial users of electricity form an important group that can provide substantial
demand response in any electricity market. In the US, approximately 30% of electricity is consumed
by industrial consumers [14], while this figure is roughly 35% in New Zealand [15]. In this paper,
we model a price-making consumer, who is capable of affecting the price of electricity through
reducing their consumption. Our focus is on developing an effective methodology for the solution
of the resulting models to provide decision making tools, under uncertainty, for a large consumer
of electricity in a realistic market setting. Our models and tools will shed light on the behaviour of
such large consumers. Our models also can be of use for the market regulators for understanding
the policy implications of enabling dispatchable demand.

In a number of electricity markets (Singapore, Mid-continent ISO, New Zealand, etc.), reserve
(in varying forms), and energy are co-optimized in the same market clearing auction. Such markets
accept the traditional supply offers (offer stacks) and demand bids for energy, and in addition they
accept reserve supply offers (reserve stacks) that can be offered by generators or large consumers
capable of providing reserves. The reserves are typically fast responding reserves in the form of
tail-water depressed (offered by hydro generators), or interruptible load reserves (ILR) that is
offered by major consumers. The ability of large consumers to submit ILR offer stacks gives rise
to an challenging optimization problem, which we tackle in this work. Here, the major consumer
not only decides on an optimal demand bid curve, but also simultaneously optimizes a reserve
offer stack, both of which are submitted to the market. The stack nature of these curves provides
some flexibility to cope with uncertainty, which is a cornerstone feature of our application given
the make up of any electricity market, and volatility in prices.

In order to address the strategic bidding and offering of the major consumer, we present a bi-
level optimization problem that maximizes the consumer’s profit (the upper level problem), given
the co-optimized optimal power flow problem (OPF) as the lower level problem. We later lay out
the mathematical model of the co-optimized OPF in subsection 2.1. While a basic formulation of
the stochastic bi-level program for optimal energy consumption of a large consumer in an electricity
market has been offered in [16], no efficient methodology to solve this problem has been discovered
prior to the current paper. Furthermore, we extend the model offered in [16], to include the optimal
construction of a reserve offer stack in conjunction with optimizing the demand bid curve. This co-
optimization makes the problem even more difficult to solve, and we develop tailor-made solutions
that take advantage of the problem structure. We also report on numerical results that demonstrate
the effectiveness of our methodology. We show that our model is important since the resulting
consumer behaviour can lead to significant efficiency increases.

Similar models to ours have been introduced, however, our work is new and fundamentally
different in several ways.

1. Our model allows for strategic interaction of the large consumer with the market in both demand
response and reserve offers. Most papers to date ( see e.g. [17–19]) either ignore the capability
of the consumer to offer reserves, or assume the consumer provides all reserves at price zero. We
illustrate the importance of this feature of our model and the effects it has on the consumer’s
consumption strategy in subsection 2.1.

2. All existing literature uses the standard reformulations of complementarity conditions to Mixed
Integer Programs (MIPs). In contrast, we develop and investigate tailor-made solution ap-
proaches for the resulting bi-level optimization problems that make it possible to solve these
problems on a real electricity network consisting of several hundred nodes.

3. We offer a sampling methodology, from historical information, to make the solution procedure
fully implementable for a large consumer in a real world electricity market and report on the
results.

Moreover, our paper extends the work of Cleland et al. [20] to deliver admissible optimal policies in
the form of a demand curve and corresponding reserve stack (whereas the policies defined in [20] do
not yield a bid curve for energy). Also, unlike Cleland et al. [20], we do not confine our solution to
a priori discretized set; we instead optimize over the continuum of quantity and price. An example
highlighting the differences of our work to the previous work is supplied in section 2.2.

We lay out the paper as follows. In section 2, we present our price-making consumer’s profit
maximizing bi-level optimization model. We discuss the impacts of strategic co-optimization and
the advantages of our proposed model in two illustrative examples. In subsection 2.2 we probe the
extent of our contribution to the literature, with comparing our method with the model presented
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in [20,21]. In order to be able to solve our model to global optimality, in section 3, we discuss the
standard reformulation methods that may be used to reformulate our bi-level model to a MIP. In
subsection 3.1 we present an innovative alternate method to reformulate our bi-level optimization
problem. To address decision making under uncertainty, in section 4, we proceed to the stochastic
version of our model where the major consumer submits monotone interruptible load reserve (ILR)
offer and demand bid curves. In section 5 we compare the solution times of our proposed decom-
position method with the standard MIP reformulation and present our computational results for
a large electricity consumer in the New Zealand Electricity Market (NZEM). Section 6 concludes
the paper.

2 Price-making major consumer

Recent changes in many de-regulated electricity markets have allowed for demand-side bids to be
accepted into the spot market, enabling consumers to reflect their real-time elasticity to energy
prices. Major consumers have large enough loads that reducing their consumption could have a
noticeable impact on the market price. Due to the hockey stick nature of electricity offer stacks
(as we approach system capacity the prices rise sharply), responding to price in high price periods
not only reduces the consumption of high priced electricity, but also leads to a decrease in spot
prices. As an aside, demand response can potentially reduce generation from the least efficient
and oftentimes most polluting peaking plants. Our model considers a strategic consumer who
takes account of the influence of its actions on the prices of energy (and reserve). Due to the
prices for energy and reserve being interrelated, this model enables the price-making consumer
to alleviate any pressure on reserve and thereby reduce the price of electricity. In this section we
explore the characteristics of strategic behaviour for a major consumer. We first lay out our bi-level
formulation. In addition, using this model, we present an example over a small network, and report
on a sensitivity analysis of a strategic consumer’s bid in a deterministic setting. This example is
followed by the discussion of the impacts of strategic co-optimization on the consumer and the
market. The second part of this section compares the method introduced in this paper with the
most recent and relevant literature on large-scale co-optimized demand response in [21]. We will
illustrate the advantages of our methodology over this existing method.

2.1 Offering reserve matters

In co-optimized markets such as the NZEM, in addition to the frequency keeping reserve that is
partially co-optimized, the OPF problem also ensures that sufficient reserves are procured against
the event of the sudden shutdown of a large source of energy supply (referred to asN−1 contingency
reserve). In this paper we use the term reserve for the contingency reserve and not the frequency
keeping reserve (additional examples of different terminology throughout the world are presented
in [22] and [23]). First, we present the co-optimized OPF problem (called [D-LP]). For this section,
we use the following notation to formulate our model:

fij The flow between node i and j.
Kij The line capacity in arc ij.
re The reserve level required in zone e.
Vn The minimum amount of difference between ILR and consumption, at node n.

It denotes the level of consumption that can not be interrupted.
Bn The fraction of generation allowed to be offered at reserve, at node n.
Wn The maximum total amount of generation and reserve, offered by the generator,

at node n.
N The set of all nodes in the network. Note that in our model we have

one agent per node. This is not a restrictive assumption.
A The set of all arcs in the network.
Ne The set of all nodes in zone e.
L The loop constraint matrix, where Ll,ij corresponds to row l (associated with each loop)

and the column ij corresponds to arc ij.
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T ′nc The set of interruptible consumption tranches.
en indicates the zone that node n is located in.
E The set of zones.
Z The set for types of tranches, i.e. consumption, generation, ILR and reserve.

Z = {c, g, rc, rg}
Tz The set of all offered tranches of type z.
T nz The set of all tranches of type z at node n
xzt The variable associated with the dispatch quantity tranche type z.
pzt The price of tranche t of type z.
qzt The quantity of tranche t of type z.
[ ] Variables in [ ] indicate the duals of their associate constraints.

[D-LP] max
xc,xg

∑
tc∈Tc

pctcx
c
tc −

∑
tg∈Tg

pgtgx
g
tg −

∑
trg∈Trg

prgtrgx
rg
trg −

∑
trc∈Trc

prctrcx
rc
trc

s.t.
∑
tc∈T n

c

xctc +
∑
i|ni∈A

fni −
∑
i|in∈A

fin =
∑
tg∈T n

g

xgtg [πdn] (2.1)

−
∑
n∈Ne

∑
z∈{rc,rg}

∑
tz∈T n

z

xztz = −re [πren ] (2.2)

∑
ij∈A

Ll,ijfij = 0 [λl] (2.3)

−Kij ≤ fij ≤ Kij [η+ij , η
−
ij ] (2.4)

0 ≤ xztz ≤ q
z
tz [νz+tz , ν

z−
tz ] (2.5)∑

trc∈T n
rc

xrctrc −
∑

tc∈T ′n
c

xctc ≤ 0 [θn] (2.6)

∑
trg∈T n

rg

xrgtrg ≤ Bn
∑
tg∈T n

g

xgtg [φn] (2.7)

∑
trg∈T n

rg

xrgtrg +
∑
tg∈T n

g

xgtg ≤Wn [φ′n]. (2.8)

Here (2.1), and (2.6) to (2.8) hold ∀n ∈ N . (2.2) holds ∀e ∈ E . (2.3) holds for each loop,
indicating that sum of impedance adjusted flows across the loop must be zero. (2.4) holds ∀ij ∈ A.
(2.5) holds ∀tz ∈ Tz,∀z ∈ Z.

In order to capture the co-optimized strategic behaviour, we lay out a bi-level optimization
problem, which has the OPF problem as the lower level problem.We start with the deterministic
model, in which we assume that the strategic consumer maximizes its utility by consuming its
optimal demand level ydn (with the capacity of consumption Cdn), and offering optimal ILR level
yrn (with the capacity of ILR Crn), while taking into account the amount of un-interruptible load
(Vn). Note that in order to determine the strategic node, we set the Cdn and Crn to positive values
for the strategic node n, and at the rest of nodes Cdn and Crn are set to be zero.

In section 4, we will extend this model for a stochastic setting, in which the consumer submits
optimal bid and offer curves instead of optimal quantities of energy and ILR. Here, the electricity
market clearing problem [D-LP] is embedded within the price-making consumer’s profit optimiza-
tion problem, rendering a leader-follower type model captured as a bi-level program.

In addition, we denote the utility function for consuming electricity (for the strategic con-
sumer) as U(ydn). Without loss of generality, we use a constant marginal utility of consumption
(u), which yields U(ydn) = uydn, however, any concave utility function is applicable to our model.
The objective of our problem is to maximize the profit of the major consumer, which consists of
the utility of consuming electricity and revenues obtained through ILR, minus the cost of con-
sumption. Moreover, the cost of offering ILR can be embedded within the utility function; such
cost only occurs in the case that the major consumer is actually called upon to interrupt its
load. We define the probability of being called upon as ρr. Hence, the objective function will be:∑
n∈N (u− πdn)(ydn − ρryrn) + πreny

r
n, where in practice ρr ' 0. Therefore, for the sake of simplicity
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(and generally without any effect on the optimal solution1), we set ρr = 0 in the objective function
of our model in this section. We lay out the bi-level optimization problem for our single node
example that we call [B-L], as below:

[B-L] max
ydn,y

r
n

∑
n∈N

(
uydn − πdnydn + πreny

r
n

)
s.t. 0 ≤ ydn ≤ Cdn (2.9)

0 ≤ yrn ≤ Crn (2.10)

ydn − yrn ≥ Vn (2.11)

[D-LP2] max
xz|z∈Z

∑
tc∈Tc

pctcx
c
tc −

∑
tg∈Tg

pgtgx
g
tg −

∑
trg∈Trg

prgtrgx
rg
trg −

∑
trc∈Trc

prctrcx
rc
trc

s.t. (2.3)− (2.8)∑
tc∈T n

c

xctc +
∑
i|ni∈A

fni −
∑
i|in∈A

fin =
∑
tg∈T n

g

xgtg − y
d
n [πdn] (2.12)

−
∑
n∈Ne

∑
z∈{rc,rg}

∑
tz∈T n

z

xztz =
∑
n∈Ne

yrn − re [πre ]. (2.13)

Here (2.9) to (2.12) hold ∀n ∈ N , whereas (2.13) holds ∀e ∈ E (reserve needs are measured and
met on the zonal level). We call the market clearing problem in the bi-level model [D-LP2]. The
difference between this OPF problem and the previous version ([D-LP]) is adding the upper level
variables ydn and yrn in (2.12) and (2.13) as fixed demand and ILR for the lower level problem;
this is equivalent to bidding energy at infinite price and offering ILR at zero price, to insure full
dispatch. These two sets of variables are deemed to be constants in the primary dispatch model
[D-LP2]. Note that, our bi-level optimization model allows for the strategic consumer to be located
at several grid exit points. However, for the purpose of this paper (NZAS), the strategic consumer
is located at one node in the network. Therefore, without loss of generality we use yd and yr to
denote the strategic node’s energy consumption and ILR level, and use πd and πr to denote tha
corresponding energy and reserve price at the strategic node.

Strategic Consumer Generator

Inelastic Demand

yd

yr

d

xg

xrg

Fig. 1: The single-node network.

We proceed with a simple example based at a single node, depicted above. We demonstrate that
co-optimized reserve offering makes a significant difference to the optimal consumption strategy
and ought not be left out of the decision making process. In this example we have 3 agents: a
generator who submits an energy offer stack and a reserve offer stack; a consumer with inelastic
demand (d); and a major consumer capable of demand response and offering ILR, as depicted in
Fig. 1. Table 1 demonstrates the parameter values that we use in this example, as well as Table 2,
in which the generation and reserve offer stacks of the generator are shown. Note that given this
example is based on a single-node, for the sake of simplicity, we omit the node (n) subscripts from
parameters and variables notation.

1 In NZEM, the average number of times reserve is triggered is 2 times over a year [24]. Given the number of
trading periods in a year (48× 365 = 17520) the ρr value in our case study is approximately 0.0001%.
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Parameter u W B V r Cd Cr Tg Trg d
Value 190 255 1 0 97 100 100 {1,2,. . . ,8} {1,2,. . . ,8} 65–130

Table 1: Parameter Values of the Single Node Example

Tranche Energy Stack Reserve Stack
t pgt qgt prgt qrgt
1 17 25 13 15
2 29 15 39 30
3 51 18 57 28
4 76 16 67 25
5 90 22 98 24
6 119 20 110 12
7 126 25 129 22
8 200 90 200 100

Table 2: Energy and reserve offer stack data for the generator.

Below we report on the optimal consumption and ILR values for the major consumer who solves
[B-L], for different levels of d. In order to show the impact of strategic co-optimization of electricity
and reserve, we construct two versions of this example. First we assume that the major consumer is
only allowed to submit its consumption quantity, but does not offer ILR (by adding the constraint
yr = 0 to [B-L]); we call this V1. For comparison, in model V2, the major consumer is able to offer
any fixed quantity of ILR up to the level of consumption, (i.e. 0 ≤ yr ≤ yd), while simultaneously
determining the optimal consumption quantity. To present a comprehensive illustration of the
optimal behavior of the major consumer, we run a sensitivity analysis by changing the quantity of
inelastic demand; this entails solving V1 and V2 for varying levels of d (from 65 to 130 with an
increment of one), and plotting the rendered optimal values.

60 70 80 90 100 110 120 130
0

15

30

45

60

75

90

Profit ($100)

d

V2

V1

Fig. 2: Profit maximizing objective function

60 70 80 90 100 110 120 130
0

15

30

45

60

75

d

yd, yr (MWh)

V1 – yd
V2 – yd
V2 – yr

Fig. 3: Strategic consumer decision variables

Fig. 2 demonstrates the optimal utility of the large consumer from V1 and V2 experiments.
It shows that the consumer’s optimal profit decrease as the in-elastic demand increases. Also, as
anticipated, the results of this experiment show more profit in the co-optimized energy and reserve
version, V2.

Next, we report on the optimal values of yd and yr for the two experiments. Note that, as shown
in Fig. 3, in V2, the optimal ILR offer (dotted curve) is never above the electricity consumption,
demonstrating the requirement that the consumer can not offer any more ILR (yr) than the
quantity it consumes (yd). The flat areas of ILR offer curve show that, initially the consumer
withholds from offering the maximum available amount of ILR (yd = yr) to utilize getting paid
higher prices of reserve for its ILR offer. This pattern persists up to d = 122, where we observe a
sudden increase in both electricity consumption and ILR offer. Although more consumption results
in higher electricity prices, this cost is offset by being able to offer more ILR. On the other hand, in
the absence of the option to supply ILR (i.e. V1), optimal consumption yd decreases as a function
of the inelastic demand, in such a way that the total demand (that of the major consumer plus the
inelastic demand) remains constant. This illustrates the significant difference in the consumption
strategy, depending on the ability to offer ILR.
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60 80 100 120
120
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170

195

d

πd ($)
V1 V2

Fig. 4: Electricity prices

60 80 100 120
50

55

60

65

70

d

πr ($)
V1 V2

Fig. 5: Reserve prices

The last set of results pertains to the clearing prices for energy πd for the experiments (illus-
trated in Fig. 4) and reserve prices πr (illustrated in Fig. 5). We observe a jump in electricity price
in V2, which is a result of a sudden increase in electricity consumption2. For the major consumer,
this rise in electricity cost is compensated for by being paid more for ILR. On the other hand, the
electricity price remains constant in experiment V1. Here, the major consumer is able to keep the
price at $126, by decreasing its own demand to cancel out the increase in the inelastic demand (as
already observed in Fig. 3).

Reserve price is also affected by ILR offers of the strategic consumer. In V2, for each level of
inelastic demand, the reserve price is at most equal to that of the V1. Note that in V2, with the
participation of the major consumer in the reserve market, the resulting reserve prices become
lower. The above results show that major consumers who strategically co-optimize their energy
bids and reserve offers are able to improve their return.

2.2 Contrast to previous attempts

Strategic bidding problems that are addressed in several papers (see e.g., [17, 18, 20]) look similar
to our model at first glance. However [17,18] essentially ignore the reserve complexity, by assuming
that the consumer is a price taker in that aspect. Furthermore, the standard MPEC (Mathematical
Program with Equilibrium Constraints) to MIP reformulations used in [17,18] are unable to handle
our large-scale and more complex problems. In [20,21], Cleland et al. introduce a stochastic simu-
lation based model (BOOMER-consumer) to solve the co-optimization of demand and reserve over
a realistic network platform. They solve the problem of what fixed optimal quantity to consume
and what optimal reserve stack (coupled with this consumption quantity) to offer. In contrast, we
address the real problem of offering the optimal demand bid curve and reserve offer to the market.
To clarify these differences, we present an example (based on a large consumer in the South Island
of NZ), and compare our model to the BOOMER-consumer method. Our sample space consists of
6 different scenarios from historical data of winter 2017 (publicly available at [25]). The aim is to
produce optimal (in expectation) reserve stacks, while taking into account the co-optimization of
reserve and energy in the NZEM. In order to make the optimal reserve stack, BOOMER fixes the
consumption level and calculates the optimal reserve stack (in expectation) for a given consump-
tion level. (For the sake of simplicity, we limit our example to only 3 consumption levels.) Following
the BOOMER method ( [20, 21]), we construct these optimal reserve stacks. Table 3 presents the
details of optimal solution values of reserve stacks for each consumption level, and Figure 6 plots
these reserve stacks.

For comparison, we solve the same problem using our stochastic bi-level optimization model
(See section 4 for the detailed description of this stochastic optimization problem). The output

2 Note that in this example we observe that only with d ≥ 126, the energy price becomes higher than u. But
although u = 190, and the price of energy is $197, since the price of reserve is $57, it is still in the interests of the
consumer to consume. However, if the marginal utility of consuming electricity for the strategic consumer was not
high enough, the optimal action would be to consume much less energy, or none at all to avoid a negative profit.
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Table 3: BOOMER optimal reserve stack details

Consumption 400 600 700
Scenario yr πr yr πr yr πr

a 0 0 0 0 0 0
b 2.362 0.5 5.049 0.5 37.997 0.5
c 2.362 6 5.049 6 67.652 0.5
d 22.643 43 28.642 74.1 67.652 15
e 2.362 42.1 24.365 15 67.652 0.5
f 2.362 15 5.049 15 67.652 0.5

Qr (MW)

P
ri

ce
($

/
M

W
h

)

Qd=400

Qd=600

Qd=700

Fig. 6: BOOMER optimal wait-and-see reserve offers.

of our model will be two stacks that maximize the expected profit. Table 4 presents the optimal
solution values obtained from the bi-level method. Also, the corresponding monotone stacks are
shown in Figures 7 and 8.

Table 4: co-optimized optimal stacks

Scenario yd πd yr πr

a 292.875 55 2.362 0
b 379.316 55 2.362 0.5
c 396.97 55 2.362 6
d 506.459 55 22.643 44
e 489.268 55 2.362 43.1
f 540.662 55 2.362 15

0 100 200 300 400 500 600 700
0

20

40

60

yd

πd

Fig. 7: Co-optimized demand bid

0 10 20 30
0

20

40

60

yr

πr

Fig. 8: Co-optimized reserve offer

The reserve stacks in the BOOMER-consumer method are better informed as they are tailored
for a particular consumption level. However, the reserve offer that is derived from our model is
optimized in expectation for various levels of consumption, which means it provides a here-and-now
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action rather than a wait-and-see approach. In order to complete this comparison, we report on
the difference in profit between the two methods in Table 5. Here, the bi-level method shows a
better performance on average, in comparison with each of the designated consumption levels.

Table 5: Expected profit comparison

Method BOOMER Bi-level
Consumption 400 600 700
Expected Profit 12931.98 3826.73 -11493.8 15390.52

Note that while it is possible to optimize for the ’best’ fixed quantity, the BOOMER-consumer
method simply does not provide the flexibility for the consumer to respond in real-time to to
market volatility. In what follows we will present our approach for constructing optimal bid and
offer curves over complex networks, with many scenarios.

3 Bi-level to MIP reformulation methods

A common approach to solve a bi-level problem is through reformulating it as an MPEC by
replacing the lower-level problem with its optimality conditions. However, most standard MPEC
solvers will not guarantee global optimality due to non-convexities arising from the optimality
conditions of the lower level problem. Therefore, to find a global optimum, we reformulate [B-L]
as a MIP. Following [26] and [27] we use the KKT conditions of the dispatch problem, and binary
variables with big-M right-hand sides to enforce the complementary constraints. This technique
is used in [28] and [29] to convert a profit maximizing bi-level optimization problem to a MIP
(to optimize generator offer strategies). In [30], binary expansion is used to reformulate the day-
ahead market MPEC problem to a MIP, but their approach did not scale for the examples over
a network with several generators. In addition to the complexity of solving the MIP over a large
network, our model must also capture the co-optimization of energy and reserve (note that reserve
and electricity prices are linked by the constraints (2.7) and (2.8)). Although, in theory, this
reformulation will enable us to find the global optimum, the nature of integer optimization impedes
efficient solution times; in fact, the problems become can intractable with the introduction of
uncertainty. In subsection 3.1 we introduce a novel reformulation method and further compare it
with the performance of the standard MIP reformulations in section 5.

3.1 Bi-parametric sensitivity analysis reformulation method

Here we present a reformulation method to solve [B-L] using a novel bi-parametric sensitivity anal-
ysis algorithm. The idea is to explicitly capture reserve and energy prices at a node n, as functions
of the actions of the strategic consumer who is located at that node, using the fundamentals of
the simplex method3. In practice, the bi-level problem is solved over a complex electricity market,
that operates over a large network. For instance, there are approximately 500 nodes (grid exit and
injection points) in the NZEM, however the only nodal prices that affect our decisions are those
corresponding to the strategic consumer’s node. If we can find the energy and reserve prices as
functions of the consumer’s actions, i.e (πd, πr) = f(yd, yr), each scenario could be reduced to a
point-to-set mapping for prices, instead of modelling all the details of the dispatch problem that
results in a large and complex MIP.

Here we use sensitivity analysis on the right-hand sides of the two constraints that determine
the nodal energy and reserve prices in the lower level problem for the major consumer. In [B-L],
these two constraints are (2.12) and (2.13). By employing an iterative algorithm, we define regions

3 This method, when applied to a multi-node network, permits the strategic consumer to be located at a single
node. Our algorithm is not immediately applicable for a strategic consumer who purchases electricity at multiple
nodes (i.e. the consumer that owns plants located at different nodes in the market).
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corresponding to optimal bases of the lower-level optimization problem [D-LP2]. For each basis,
there exists a pair of prices (πd, πr) which are constant with respect to the right-hand side terms
(yd, yr) while that basis is optimal. In Appendix A, we lay out a detailed algorithm for reducing
a generic LP into a point-to-set mapping using our bi-parametric sensitivity analysis method.

Fig. 9: Energy Price Regions Fig. 10: Reserve Price Regions

Figures 9 and 10 demonstrate the decomposed regions, defined by the vertices obtained through
our bi-parametric sensitivity analysis, for an example over a 4-node network. Here regions are shown
from a top-down perspective. These regions are divided by black lines, where each depicted region
has corresponding constant reserve and energy prices. In order to address the possible degeneracy
of solutions4, we have assigned “vertical regions” to the edges of the depicted regions (for further
detail on this see appendix A).

In Fig. 9 each shade corresponds to a set of actions by the consumer over which the price of
energy is constant. Similarly, Fig. 10 presents the set of actions over which the price of reserve is
constant (depicted by shades of red). Note that the regions are identical in both figures. Also note
that the price of energy and reserve increase as the level of consumption increases, and the energy
and reserve prices decrease as the consumer offers more ILR.

This reformulation method simplifies the lower level problem, while keeping the exact infor-
mation regarding the interactions of strategic consumer’s consumption and ILR with the market.
For instance, Figures 9 and 10 can show the effect of offering ILR, when the other generators in
the market are at their maximum capacity; where regions with tilted lines represent a state of the
market in which a generator has a binding inverse bathtub constraint.

4 Stochastic demand response

In section 3, we assumed full information about the electricity market, including information on
bids and offers of other market participants. While a deterministic model is a useful starting point,
in reality we are exposed to uncertainty and lack of information on the market data. To address
this, we develop a stochastic version of our model, where the consumer faces a set of scenarios Ω
with probability ρω for scenario ω ∈ Ω. These scenarios can capture different sources of uncertainty,
including, but not limited to, different levels of system demand, and different generation offers.
Therefore, in order to find the optimal consumption (yd

ω

) and ILR (yr
ω

) for each scenario ω, we lay
out a stochastic optimization problem by solving the standard [MIP] model (described in section
3), for each scenario over the set Ω, and obtain the optimal expected profit. We call this problem
[S-MIP].

In order to reduce complexity of this stochastic model, we employ the bi-parametric sensitivity
analysis reformulation and compute (pre-determine) the regions corresponding to the full NZEM
dispatch problem, for each scenario. Subsequently, we lay out a mixed integer program (presented

4 Degenerate solutions may occur at the edge of regions, where the price of energy or reserve could be a convex
combination of prices of the two adjacent regions.
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as [α-MIP]) that reads in the regions corresponding to each scenario ω (∀ω ∈ Ω) and outputs the
optimal expected reserve and energy stacks over Ω, that yield the maximum expected profit for
the major consumer.

Assume that Rω is the set of all regions retrieved from the algorithm described in section 3.1,
for scenario ω, and Rωi as the set of all the extreme points that form region i in Rω. In this model,
each extreme point j, within region i, in set Rω, is defined by the following four parameters: the
corresponding consumption level, reserve level, energy and reserve prices, that are denoted by ŷd

ω

i,j ,

ŷr
ω

i,j , π̂
dω

i,j and π̂d
ω

i,j , respectively.

In [α-MIP], yd
ω

, yrω, πd
ω

and πrω are the variables corresponding to strategic consumption,
ILR, and strategic node’s energy and reserve price, respectively, for each scenario ω. Also, we define
ψd

ω
and ψrω as the variables corresponding to cost of consumption (yd

ω
πd

ω
) and revenue of ILR

(yrωπrω) in scenario ω, respectively. In this formulation we use binary variable zωi to determine
which region to choose in scenario ω. We called this mathematical program [α-MIP] due to the use
of α variables that define the convex hull representing each region.

[α-MIP] max
yd,yr,z

∑
ω∈Ω

(
u× ydω − ψdω + ψrω

)
s.t. ψd

ω
=
∑
i∈Rω

∑
j∈Rω

i

αωi,j ŷ
dω

i,j π̂
dω

i,j ∀ω ∈ Ω

ψrω =
∑
i∈Rω

∑
j∈Rω

i

αωi,j ŷ
rω

i,j π̂
rω

i,j ∀ω ∈ Ω

yd
ω

=
∑
i∈Rω

∑
j∈Rω

i

αωi,j ŷ
dω

i,j ∀ω ∈ Ω

yrω =
∑
i∈Rω

∑
j∈Rω

i

αωi,j ŷ
rω

i,j ∀ω ∈ Ω

πd
ω

=
∑
i∈Rω

∑
j∈Rω

i

αωi,j π̂
dω

i,j ∀ω ∈ Ω

πrω =
∑
i∈Rω

∑
j∈Rω

i

αωi,j π̂
rω

i,j ∀ω ∈ Ω

∑
j∈Rω

i

αωi,j = zωi ∀i ∈ Rω,∀ω ∈ Ω

∑
i∈Rω

zωi = 1 ∀ω ∈ Ω

0 ≤ αωi,j ≤ 1 ∀j ∈ Rωi ,∀i ∈ Rω,∀ω ∈ Ω
zωi = {0, 1} ∀i ∈ Rω,∀ω ∈ Ω

When we solve [α-MIP], optimal values of yd
ω

, yrω, πd
ω

and πrω would form the optimal points
corresponding to scenario ω. However, our aim is to calculate two admissible optimal stacks (the
consumer’s demand-side bid and ILR offer), that are optimal in expectation over all scenarios. In
order for the optimal stacks to be admissible to the market, they must be monotone step functions.
In particular, the bid stack must be decreasing and the ILR stack increasing. In subsection 4.1 we
discuss the implementation of monotonicity constraints and its impact on solution time.

4.1 Monotone bids

In the single-scenario case, and in the absence of reserve and over a single-node market, the optimal
consumption level is effectively singled out by the quantity that determines the dispatch on the
(aggregate market) residual supply function. The seminal paper of Klemperer and Meyer [31] lays
out the premise for using supply functions as such offers adapt better to uncertain environments
faced with multiple scenarios.
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It is tempting to determine the optimal quantity of consumption for each scenario, in isolation.
The problem with this approach is that the sequence of these consumption decisions may not sup-
port a monotone curve. Fig. 11 demonstrates the optimal points obtained by solving [B-L] without
applying any monotonicity constraints for four sample scenarios (1 – 4). Here we demonstrate
each scenario’s residual supply stack (with lines), and the corresponding (anticipating) optimal
consumption value (with points). Note that there is no single monotone decreasing demand curve
that can pass through these 4 points.
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Fig. 11: Optimal wait-and-see bids.
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Fig. 12: Optimal monotone consumer bid.

To construct admissible bids and offers, we add monotonicity constraints on the resulting bid
and offer curves. We define binary variables ζdij to construct a monotone decreasing energy bid
stack, where we ensure that the energy price in scenario i is higher than that of j, provided the
quantity consumed in scenario i is less than scenario j. Similarly for the ILR offer, we define
variables ζrij that ensure monotonicity of the ILR stack, however for the ILR offer, we ensure that
the stack is monotonically increasing. Once the problem is solved with the monotonicity constraints
included, we obtain a monotone solution as depicted in Fig. 12.

yd
i ≤ ydj +Mdζdi,j ∀i, j ∈ Ω, i 6= j (4.1)

yri ≤ yrj +Mrζri,j ∀i, j ∈ Ω, i 6= j (4.2)

πd
i ≥ πdj −Mπζdi,j ∀i, j ∈ Ω, i 6= j (4.3)

πri ≤ πrj +Mπζri,j ∀i, j ∈ Ω, i 6= j (4.4)

ζdi,j + ζdj,i = 1 ∀i, j ∈ Ω, i 6= j (4.5)

ζri,j + ζrj,i = 1 ∀i, j ∈ Ω, i 6= j (4.6)

ζdi,j , ζ
r
i,j ∈ {0, 1} ∀i, j ∈ Ω, i 6= j (4.7)

In order to implement the monotonicity constraints within our stochastic models, we add con-
straints (4.1)–(4.7) to [S-MIP] and [α-MIP]. When solving these models with multiple scenarios,
the number of constraints and variables increase proportionally with the square of the number
of scenarios. In addition, the monotonicity constraints link the scenarios together, meaning that
decisions in one scenario may affect the other scenarios’ optimal solutions. This yields a large MIP,
which can become computationally intractable with a large number of scenarios. Section 5 contains
numerical results of implementing our algorithm, and a comparison of the performances of [S-MIP]
and [α-MIP].

5 Numerical results

In this section we focus on implementing our optimization policies for a major consumer of elec-
tricity in New Zealand. The strategic consumer in our case study is the New Zealand Aluminium
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Smelter (NZAS), which is located in the South Island of New Zealand. Given that the NZAS’s con-
sumption is roughly 15% of the whole New Zealand demand, we assume that this major consumer
is a price-maker agent which submits bid and offers to the NZEM’s co-optimized OPF every half-
hour. Therefore, using the reformulation [α-MIP] from section 4, we solve the bi-level optimization
problem from section 2, which maximizes the profit for the major consumer. However, in this case
we embed the full-scale NZEM’s OPF (as the lower-level problem). Furthermore, to address uncer-
tainty, we introduce multiple scenarios and optimize the expected profit over a sample set as was
discussed in section 4.1. In order to construct the sample set of scenarios, we use historical data
which is publicly available online at the New Zealand Electricity Authority’s EMI repository [25].

First, we briefly compare the size and solution time of the two proposed reformulated stochastic
co-optimization models, [S-MIP] and [α-MIP], when implemented for the NZAS. Table 6 presents
the average optimality gap for [S-MIP] and [α-MIP], after one hour of solution time (the symbol
- in this table indicates that no gap is available as no incumbent was found in the time-frame).
Similarly, Table 7 compares the number of integer variables in each method, given the sample size.
The [S-MIP] model can only solve models with up to ten scenarios, in a reasonable time frame. On
the other hand, [α-MIP] solves the same ten-scenario models in (on-average) 3 minutes. Given the
[α-MIP] method’s computational advantage in allowing us to incorporate larger number of scenarios
in the model, we use the [α-MIP] optimization problem for our full-scale NZAS case-study.

Table 6: Average bound gaps (%) versus number of scenarios.

Number of scenarios
Method 4 6 8 10 12 14 16 18 20 22

S-MIP 0 12.01 33.61 86.32 - - - - - -
α-MIP 0 0 0 0 0 0 0 0 0.8 4.9

Table 7: Number of integers versus number of scenarios.

Number of scnearios
Method 4 6 8 10 12 14 16 18 20 22

S-MIP 10504 16961 21078 26388 31710 37048 42350 47648 52988 58360
α-MIP 1101 1838 2392 3342 3744 3991 4677 5237 5924 6332

In order to compute the optimal policies (stacks), we need to choose a sample of scenarios (Ω)
from the scenario space. Submitting optimal (in expectation) bid and offer stacks is a here-and-now
action which accounts for different types of time-periods, therefore finding the right combination of
scenarios significantly improves the performance of such decisions. If we build our scenario set from
many similar time-periods that are more likely to happen in the future, we miss the outlier scenarios
which could possibly be incorporated in the bid stack, without altering the optimal response to
the more frequent scenarios. Hence, we avoid picking very similar scenarios in our scenario set
(e.g. two consecutive time-periods in one day), and instead use a representative scenario. This,
not only enhances the solution time, by reducing the symmetry in the MIP (and the resulting
fractionality), but also enables the major consumer to optimize for various types of time periods,
through incorporating more tranches in the optimal stacks. In appendix B, we provide two examples
that develop intuition on the importance of diverse scenario sampling.

In what follows, we simulate our proposed algorithm for the winter peak time-periods. At each
iteration of our simulation, in order to define the set Ω, we randomly choose 20 scenarios, from
a scenario space consisting of 200 trading-periods from morning peaks, in July and August 2016
and 2017. We construct random sets of Ω, that represent different types of time periods. Note
that 2016 and 2017 were relatively different years in terms of energy prices, and when combined
would represent a wide range of scenarios. Hence, we have assigned scenarios to 4 different clusters,
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based on the average South Island energy prices in the morning-peak trading periods (6am–10am).
The sampling scheme is to pick scenarios from all the clusters, in order to capture the diversity of
scenarios.

After sampling a scenario set, we compute the optimal dispatchable demand and ILR stacks
by solving [α-MIP]. Figure 13 shows the optimal bid stacks for the NZAS for one of the sampled
scenario sets, when calculated for different marginal values of electricity consumption (u).
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Fig. 13: Optimal energy bid stack - winter peak

Subsequently, these optimal stacks need to be submitted to the co-optimized OPF, which
renders the dispatched quantities and prices for the upcoming realized scenario. Therefore, in the
following experiment we test the performance of the optimal stacks that are derived from historical
data through simulating them (i.e. submitting the stacks to the co-optimized OPF) for 100 out-of-
sample scenarios, and report on the average expected gained profit. Figure 14 presents the stages
of the algorithm in an illustrative diagram.

Sample scenarios Select sample set Ω Get regions ∀ω ∈ Ω

RegionsSolve [α-MIP]

Out-of-sample scenarios

Optimal stacks

Select scenario sOPF model for s

Solve OPF with optimal stacks

Dispatched quantities and prices Calculate profit Profit of our policy for s

Fig. 14: Optimal stack policy out-of-sample simulation algorithm.

Finally, we compare our proposed policy with the clairvoyant optimization5 (which is an abso-
lute upper bound on profit) and the fixed quantity that is consumed by NZAS in practice. Table
8 outlines the average results of 200 simulations. The experiment is done over different levels of

5 The clairvoyant policy is calculated by solving the deterministic MIP model with the realized scenario’s param-
eter values.
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electricity consumption’s marginal value (u) to compare the performance of our proposed policy
over a broader range of parameters6. The first column of this table shows the different marginal
value levels. The second column demonstrates the average profit over out-of-sample scenarios with
our strategic policy’s optimal stack. The third column presents the average profit results for the
fixed policy in which the consumer targets a given quantity of consumption. We have adjusted this
experiment for the different levels of u, thereby the fixed consumption level is set to be higher in
the experiments with greater u values, and lower for smaller u values. The fourth column presents
the average profit of the clairvoyant policy when solved for each out-of-sample scenario. The fifth
column shows the increase in the profit when using our proposed policy, versus the fixed policy (the
policy that is used in practice by NZAS). The last column presents the percentage of clairvoyant
policy’s profit that is recovered by our proposed stochastic out-of-sample policy. Moreover, Fig. 15
lays out the standard box-and-whisker plots corresponding to winter peak profit values for different
levels of u.

Table 8: Policy performance – winter peak.

Average profit ($) Profit increase % of clairvoyant
u Optimal Stack Fixed Quantity Clairvoyant
30 3405 3245 4313 4.9% 78.9%
50 10209 7283 11004 40.1% 92.7%
70 18474 13438 19783 37.4% 93.3%
90 27238 20006 29655 36.1% 91.8%
110 35993 27529 40895 30.7% 88.0%

Average 19064 14300 21130 29.8% 88.9%

In addition to peak trading periods, we also simulated policies for off-peak trading periods in
winters 2016 and 2017. Table 9 outlines the average results of 300 simulations that implemented
the optimal policies for peak and off-peak prices.

Table 9: Winter policy performance.

Average profit ($) Profit increase % of clairvoyant
TP Type Optimal Stack Fixed Clairvoyant

Winter peak 27238 20006 29655 36.1% 91.8%
Winter off-peak 32395 25343 35301 27.8% 91.7 %

In order to extend the simulation to a broader range of trading periods we have run experiments
on 2018/2019 summer, which had a series of high prices due to lake levels running low towards the
end of summer. We have sampled scenarios from weekdays in December 2017 and January 2018,
separately for summer afternoon peak (1pm–6pm) and early morning off-peak (3am–6am) trading
periods.

Table 10: Summer policy performance

Average profit ($) profit increase clairvoyant cover
TP Type Optimal Stack Fixed Clairvoyant

Summer peak 15735 4807 19484 227.3% 80.7%
Summer off-peak 28111 18147 36471 54.9% 77.0 %

6 The marginal value of electricity for NZAS may change over time as it is affected by exogenous parameters such
as the global price of aluminum, government policies, etc.
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Fig. 15: Winter peak profit for different values of electricity (u).

Table 10: Summer policy performance

Average profit ($) profit increase clairvoyant cover
TP Type Optimal Stack Fixed Clairvoyant

Summer peak 15735 4807 19484 227.3% 80.7%
Summer off-peak 28111 18147 36471 54.9% 77.0 %

given the dry summer and low reservoir levels. Hence such signals could have been used by the major
consumers to change their consumption plans in order to prevent high prices. In this experiment we
have used a mid-February week’s trading periods to represent our out-of-sample scenarios, in order
to show the effect of incorporating our proposed policy while taking into account the anticipation
of low lake levels. In Table 10 we compare the performance of our optimal stacks with the current
policy employed by NZAS (which disregards the price signals). According to the simulation results,
our proposed policy can lead to more than twice as much profit on average, when compared with
the fixed policy, in peak trading periods.

6 Conclusions

We addressed the opportunity enjoyed by major consumers whose demand for energy and ability
to provide ILR, affect the market. Explicitly modelling this impact leads to higher profits, and
also makes the model more realistic, especially in markets where bids and offers are not highly
regulated. Our model, given the offers and demand of other market participants, can determine
the optimal energy bids and ILR offers for a major consumer. One of the attributes of this model
is to capture the link between electricity consumption and ILR offer yielding insights such as
that a major consumer may choose to consume more electricity, in order to benefit from further
participation in reserve market.

In order to address uncertainty, we laid out a stochastic model that optimizes over a set of
scenarios, delivering admissible optimal ILR offer and consumption bid curves for a large consumer
of electricity. Using the standard approach requires solving large MIPs due to stochasticity and the
resulting monotonicity constraints. In order to reduce the complexity and solve time, we introduced

Fig. 15: Winter peak profit for different values of electricity (u).

In this experiment, the sampled trading periods (from summer 2017/2018) have a higher average
price than that of the time periods from same time of year in the previous years. The reason we
picked this particular set of trading periods is that there had been an anticipation of high prices
given the dry summer and low reservoir levels. Hence such signals could have been used by the major
consumers to change their consumption plans in order to prevent high prices. In this experiment we
have used a mid-February week’s trading periods to represent our out-of-sample scenarios, in order
to show the effect of incorporating our proposed policy while taking into account the anticipation
of low lake levels. In Table 10 we compare the performance of our optimal stacks with the current
policy employed by NZAS (which disregards the price signals). According to the simulation results,
our proposed policy can lead to more than twice as much profit on average, when compared with
the fixed policy, in peak trading periods.

6 Conclusions

In this paper we have considered major consumers whose demand for energy and ability to provide
ILR affect the market. By explicitly modelling a consumer’s impact on prices, they can anticipate
how their actions can lead to lower costs and therefore higher profit. In order to determine the
optimal energy bids and ILR offers for such strategic major consumers, we lay out a bi-level
optimization model that has the co-optimized OPF problem embedded inside. One of the key
attributes of this model is its capturing of the link between electricity consumption and ILR; this
yields insights such as that a major consumer may choose to consume more electricity, in order to
benefit from further participation in reserve market.

In order to address uncertainty, we presented a stochastic model that optimizes over a set of
scenarios, delivering optimal admissible ILR offer and consumption bid curves for a large consumer
of electricity. This is a bi-level optimization problem, however, due to stochasticity and the resulting
monotonicity constraints, using the standard MIP reformulation using big-M constraints quickly
becomes intractable. In order to reduce the complexity and solution time, we introduced a novel
decomposition method to enhance our formulation. The decomposition has enabled us to apply our
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method for a major consumer in the NZEM, and solve it over a set of 20 scenarios, which resulted
in an approximately 30% increase in expected profit, over a fixed consumption approach.

Our model has provided significant intuition for a major consumer’s consumption and reserve
offer strategy for one trading period. However, a large consumer also can shift consumption of
electricity by utilizing flexibility in its production schedule. The consumer’s problem, over a sensible
time horizon, is the subject of future work.

Appendix

A Bi-parametric sensitivity analysis reformulation algorithm

Suppose that we have a linear program [LP] in standard computational form:

[LP] min cT x

s.t. Ax = b [π]

x ≥ 0,

where we denote bi as the ith component of the right-hand side vector b, and π as the optimal dual vector.
We aim to find (π1, π2) as a function of the right-hand sides (b1, b2). In order to define this function, we use the
following algorithm:

Step 1: Set Initial Values

Set feasible initial values of b1 and b2 in [LP]. Without loss of generality, we set b1 = b2 = 0. Define set R = {} as
the set of all regions. Define Rr = {} a subset of R, as the set of all extreme points in region r. Set r = 1.

Step 2: Set Initial Optimal Basis

Retrieve the optimal basis for [LP] given the values of b1 and b2. We store the basis data for the vector of basic
variables xB . Note that:

Given BxB = b =⇒ xB = B−1b Since xB ≥ 0 =⇒ B−1b ≥ 0.

Step 3: Define [S-LP]

[S-LP] max
b1,b2

c1b1 + c2b2

s.t. B−1
i,1 b1 +B−1

i,2 b2 ≥ 0 ∀i ∈ I

Here B−1
i,1 is the first column of the ith row of B matrix, and I is the set of all rows in B matrix.

Step 4: Set initial c values

At the first iteration we set c1 = 1 and c2 = −∞.

Step 5: Solve [S-LP]

Solve [S-LP] and add the pair of optimal solution values (b∗1,b∗2) to the set Ri.

Step 6: Get objective coefficient sensitivity information

Using sensitivity analysis find largest objective coefficient value (c2) at which the current optimal basis would remain
optimal. Store it as c′2.

Step 7: Change c2 coefficient

– If c′2 ≤ ∞, set c2 = c′2 + ε in [S-LP] and go to step 5.
– If c′2 =∞ and c1 = 1, go to step 8.
– If c′2 =∞ and c1 = −1, go to step 9.
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Step 8: Change c1 coefficient

Set c1 = −1, and go to step 5.

Step 9: Make seed points

– Define seed set S = {}.
– Find the convex hall formed by the pairs in Ri.
– Find an exterior point for each edge, and add the pairs to S as (bs1, b

s
2).

– Set i = i+ 1.

Step 10: Use seed points

– If S 6= ∅, choose a pair (bs1, b
s
2) from S. Set b1 = bs1 and b2 = bs2. Remove (bs1, b

s
2) from S, and go to step 2.

– if S = ∅, go to step 11.

Step 11: Make vertical regions

In order to allow for the optimal solution to lie on the vertical tranches of the residual stack, we add vertical regions
to the set of regions R at this step.

1. Set i = 1, and V = {}.
2. For each edge in Ri take the corresponding pairs of (yd, πd

i ) and (yr, πr
i ) for the two extreme points on the

edge. Store them as point 1 and 2, (e.g. yd
1
, yd

2
).

3. Find the adjacent region j to the chosen edge, and store πd
j and πr

j .

4. Set Q = {{(yd1, πd
i ), (yr1, πr

i )}, {(yd2, πd
i ), (yr2, πr

i )}, {(yd1, πd
j ), (yr1, πr

j )}, {(yd2, πd
j ),

(yr2, πr
j )}}.

5. If Q /∈ V, add Q to V.
6. Set i = i+ 1
7. If i ≤ |R|, go back to line 2.
8. If i = |R|, set R = R∪ V.

B Scenario selection examples

In this appendix we present examples to illustrate our choice of a scenario set regarding the similarity of scenarios.
First, we lay out an example, in which we use the full-scale network’s historical data. Suppose Ω1 and Ω2 are two
scenario sets, and |Ω1| = |Ω2| = 6. Here Ω1 consists of similar scenarios, all picked from a morning peak on a single
day, in winter 2016. On the other hand, Ω2 consists of semi-similar scenarios, chosen from morning peaks of two
days in winter 2016 and 2017. We solve [α-MIP] for both sets and obtain the optimal expected actions for each
scenario set. Figure 16 shows the optimal stacks for the two sample sets, here S1 and S2 correspond to the optimal
bid stacks from optimizing against Ω1 and Ω2 respectively.
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Fig. 17: Similar scenarios

As shown in figure 16, S2 consists of three steps, that enable it to respond to different types of time periods.
The three mutual scenarios in the two scenarios sets, have the same optimal consumption - price pairs in the two
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stacks (the overlapped points), and results in equal in-sample profit for the mutual points. However, the diversity of
scenarios in Ω2, enhances the performance of S2 for out-of-sample scenarios. Table 11 reports on each stack’s profit
when simulated over 100 out-of-sample scenarios.

Table 11: Out-of-sample performance comparison

Profit ($)
Stack Average Min. Max.

S1 15707 10109 21571
S2 17841 12238 21637

In the second part of this appendix, we use a generic example to parametrically calculate the impacts of scenario
selection. Suppose we have scenario ω, with the residual supply stack shown with black line in Figure 17, and with
the optimal consumption-price pair (q, π). We introduce new scenarios (a–d), whose residual stack deviates from
that of ω with distance δ in each dimension. For the sake of simplicity we only show 2 out of 4 stacks (a and c) in
Fig. 17. Here scenario a’s residual stack is shown in red, and its optimal consumption-price pair is (q− δ, π− δ), and
that of scenario c is (q+ δ, π+ δ). Similarly, scenario b and d have the optimal consumption-price pairs (q− δ, π+ δ)
and (q + δ, π − δ), respectively. If we solve [α-MIP] for Ω = {ω}, the optimal stack will have one step with the
point (q, π). However, in order to cover the optimal consumption for the scenarios whose prices are higher with $δ
divergence from π, we draw the optimal stack based on the quantity-price pair (q, π + δ), which is presented with
the dashed gray line in Figure 17. We call this stack ω-stack.

In table 12 we compare using the clairvoyant policy versus the optimal stack generated with Ω, for all scenarios
ω and a–d. Here the difference between the clairvoyant policy and ω-stack, depends on δ. Note that when we set
δ << q, the difference in profit becomes very small. This implies that adding similar scenarios to the scenario set,
has little contribution to the performance of the actions, but makes the problem much harder to solve. Therefore,
it would be beneficial to pick a representative scenario in Ω, instead of including all similar scenarios.

Table 12: Profit vs policy

Scenario Clairvoyant ω-stack Difference
ω (u− π)q (u− π − δ)q δq
a (u− π + δ)(q − δ) (u− π − δ)(q − δ) 2δ(q − δ)
b (u− π − δ)(q − δ) (u− π − δ)(q − δ) 0
c (u− π − δ)(q + δ) (u− π − δ)q δ(u− π − δ)
d (u− π + δ)(q + δ) (u− π + δ)q δ(u− π + δ)

In this example we showed that the more a scenario is similar to the existing scenarios in the sample set, the less
adding that scenario (to the sample set) will improve the performance of the optimal action. Hence, we construct
our random sets Ω, while ensuring two similar scenarios are not picked. However, the information on the number of
occurrences of similar scenarios will be incorporated in the probability of their representative scenario.
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