

Edinburgh Research Explorer

The Space-Efficient Core of Vadalog

Citation for published version:
Berger, G, Gottlob, G, Pieris, A & Sallinger, E 2019, The Space-Efficient Core of Vadalog. in PODS '19
Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
ACM, New York, pp. 270-284 , ACM SIGMOD/PODS International Conference on Management of Data
(SIGMOD 2019), Amsterdam, Netherlands, 30/06/19. https://doi.org/10.1145/3294052.3319688

Digital Object Identifier (DOI):
10.1145/3294052.3319688

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
PODS '19 Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322482933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3294052.3319688
https://doi.org/10.1145/3294052.3319688
https://www.research.ed.ac.uk/portal/en/publications/the-spaceefficient-core-of-vadalog(d9325cbf-61cf-477c-a3fe-006196fec513).html

The Space-Efficient Core of Vadalog
Gerald Berger

Institute of Logic and Computation

TU Wien

Georg Gottlob

Department of Computer Science

University of Oxford & TU Wien

Andreas Pieris

School of Informatics

University of Edinburgh

Emanuel Sallinger

Department of Computer Science

University of Oxford & TU Wien

ABSTRACT
Vadalog is a system for performing complex reasoning tasks

such as those required in advanced knowledge graphs. The

logical core of the underlying Vadalog language is thewarded

fragment of tuple-generating dependencies (TGDs). This for-

malism ensures tractable reasoning in data complexity, while

a recent analysis focusing on a practical implementation led

to the reasoning algorithm around which the Vadalog system

is built. A fundamental question that has emerged in the con-

text of Vadalog is the following: can we limit the recursion

allowed by wardedness in order to obtain a formalism that

provides a convenient syntax for expressing useful recursive

statements, and at the same time achieves space-efficiency?

After analyzing several real-life examples of warded sets of

TGDs provided by our industrial partners, as well as recent

benchmarks, we observed that recursion is often used in a

restricted way: the body of a TGD contains at most one atom

whose predicate is mutually recursive with a predicate in the

head. We show that this type of recursion, known as piece-

wise linear in the Datalog literature, is the answer to our

main question. We further show that piece-wise linear recur-

sion alone, without the wardedness condition, is not enough

as it leads to the undecidability of reasoning. We finally study

the relative expressiveness of the query languages based on

(piece-wise linear) warded sets of TGDs.

CCS CONCEPTS
• Information systems→ Query languages;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PODS’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6227-6/19/06. . . $15.00

https://doi.org/10.1145/3294052.3319688

KEYWORDS
reasoning, query answering, Datalog, tuple-generating de-

pendencies, complexity, expressive power

ACM Reference Format:
Gerald Berger, Georg Gottlob, Andreas Pieris, and Emanuel

Sallinger. 2019. The Space-Efficient Core of Vadalog. In 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems (PODS’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3294052.

3319688

1 INTRODUCTION
In recent times, thousands of companies world-wide wish

to manage their own knowledge graphs (KGs), and are look-

ing for adequate knowledge graph management systems

(KGMS). The term knowledge graph originally only referred

to Google’s KnowledgeGraph, i.e., “a knowledge base used by

Google and its services to enhance its search engine’s results

with information gathered from a variety of sources.
1
” In the

meantime, several other large companies have constructed

their own knowledge graphs, and many more companies

would like to maintain a private corporate knowledge graph

incorporating large amounts of data in form of database

facts, both from corporate and public sources, as well as

rule-based knowledge. Such a corporate knowledge graph

is expected to contain relevant business knowledge, for ex-

ample, knowledge about customers, products, prices, and

competitors, rather than general knowledge from Wikipedia

and similar sources. It should be managed by a KGMS, that

is, a knowledge base management system, which performs

complex rule-based reasoning tasks over very large amounts

of data and, in addition, provides methods and tools for data

analytics and machine learning [6].

1.1 The Vadalog System
Vadalog is a system for performing complex reasoning tasks

such as those required in advanced knowledge graphs [7].

It is Oxford’s contribution to the VADA research project,
2

1
https://en.wikipedia.org/wiki/Knowledge_Graph

2
http://vada.org.uk/

https://doi.org/10.1145/3294052.3319688
https://doi.org/10.1145/3294052.3319688
https://doi.org/10.1145/3294052.3319688

a joint effort of the universities of Oxford, Manchester, and

Edinburgh, as well as around 20 industrial partners such

as Facebook, BP, and the NHS (UK national health system).

One of the most fundamental reasoning tasks performed by

Vadalog is ontological query answering: given a database D,
an ontology Σ (which is essentially a set of logical assertions

that allow us to derive new intensional knowledge from D),
and a query q(x̄) (typically a conjunctive query), the goal

is to compute the certain answers to q w.r.t. the knowledge

base consisting of D and Σ, i.e., the tuples of constants c̄ such
that, for every relational instance I ⊇ D that satisfies Σ, I
satisfies the Boolean query q(c̄) obtained after instantiating

x̄ with c̄ . Due to Vadalog’s ability to perform ontological

query answering, it is currently used as the core deductive

database component of the overall Vadalog KGMS, as well as

at various industrial partners including the finance, security,

and media intelligence industries.

The logical core of the underlying Vadalog language is a

rule-based formalism known as warded Datalog∃ [17], which
is a member of the Datalog

±
family of knowledge represen-

tation languages [11]. Warded Datalog
∃
generalizes Datalog

with existential quantification in rule heads, and at the same

time applies a restriction on how certain “dangerous” vari-

ables can be used; details are given in Section 3. Such a re-

striction is needed as basic reasoning tasks, e.g., ontological

query answering, under arbitrary Datalog
∃
rules become un-

decidable; see, e.g., [5, 10]. Let us clarify that Datalog
∃
rules

are essentially tuple-generating dependencies (TGDs) of the
form ∀x̄∀ȳ(φ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)), where φ (the body) andψ
(the head) are conjunctions of atoms. Therefore, knowledge

representation and reasoning should be seen as a modern ap-

plication of TGDs, which have been introduced decades ago

as a unifying framework for database integrity constraints.

The key properties of warded Datalog
∃
, which led to its

adoption as the logical core on top of which the Vadalog

language is built, can be summarized as follows:

(1) Recursion over KGs. It is able to express full recursion

and joins, needed to express complex reasoning tasks

over KGs. Moreover, navigational capabilities, empow-

ered by recursion, are vital for graph-based structures.

(2) Ontological Reasoning over KGs. After adding a very

mild and easy to handle negation, the language is able

to express SPARQL reasoning under the OWL 2 QL

entailment regime. Recall that SPARQL is the standard

language for querying the Semantic Web,
3
while OWL

2 QL is a prominent profile of the OWL 2 Web Ontol-

ogy Language, the standard formalism for modeling

Semantic Web ontologies.
4

3
http://www.w3.org/TR/rdf-sparql-query

4
https://www.w3.org/TR/owl2-overview/

(3) Low Complexity. Reasoning, in particular, ontological

query answering, is tractable (in fact, polynomial time)

in data complexity, which is a minimal requirement

for allowing scalability over large volumes of data.

Warded Datalog
∃
turned out to be powerful enough for ex-

pressing all the tasks given by our industrial partners, while

a recent analysis of it focusing on a practical implementation

led to the reasoning algorithm around which the Vadalog

system is built [7].

1.2 Research Challenges
With the aim of isolatingmore refined formalisms, whichwill

lead to yet more efficient reasoning algorithms, the following

fundamental question has emerged in the context of Vadalog:

Can we limit the recursion allowed by wardedness in order
to obtain a formalism that provides a convenient syntax for
expressing useful statements, importantly, most of the scenarios
provided by our partners, and at the same time achieves space-
efficiency, in particular, NLogSpace data complexity?

Let us stress that NLogSpace data complexity is the best

that we can hope for, since navigational capabilities are vital

for graph-based structures, and already graph reachability is

NLogSpace-hard. It is known thatNLogSpace is contained in

the class NC2 of highly parallelizable problems. This means

that reasoning in the more refined formalism that we are

aiming is principally parallelizable, unlike warded Datalog
∃
,

which is PTime-complete and intrinsically sequential. Our

ultimate goal is to exploit this in the future for the parallel

execution of reasoning tasks in both multi-core settings and

in the map-reduce model. In fact, we are currently in the

process of implementing a multi-core implementation for

the refined formalism proposed by the present work.

Extensive benchmark results are available for the Vadalog

system, based on a variety of scenarios, both synthetic and

industrial scenarios, including: ChaseBench [8], a benchmark

that targets data exchange and query answering problems;

iBench, a data exchange benchmark developed at the Uni-

versity of Toronto [4]; iWarded, a benchmark specifically

targeted at warded sets of TGDs; a DBpedia based bench-

mark; and a number of other synthetic and industrial scenar-

ios [7]. Let us stress that all the above benchmarks contain

only warded sets of TGDs. In fact, a good part of them are

not warded by chance, i.e., they contain joins among “harm-

ful” variables, which is one of the distinctive features of

wardedness [7]. After analyzing the above benchmarks, we

observed that recursion is often used in a restricted way.

Approximately 70% of the TGD-sets use recursion in the

following way: the body of a TGD contains at most one atom

whose predicate is mutually recursive with a predicate in the

head. More specifically, approximately 55% of the TGD-sets

directly use the above type of recursion, while 15% can be

transformed into warded sets of TGDs that use recursion as

above. This transformation relies on a standard elimination

procedure of unnecessary non-linear recursion. For example,

∀x∀y(E(x ,y) → T (x ,y))

∀x∀y∀z(T (x ,y) ∧T (y, z) → T (x , z)),

which compute the transitive closure of the binary relation

E using non-linear recursion, can be rewritten as the set

∀x∀y(E(x ,y) → T (x ,y))

∀x∀y∀z(E(x ,y) ∧T (y, z) → T (x , z))

that uses linear recursion. Interestingly, the type of recursion

discussed above has been already studied in the context of

Datalog, and is known as piece-wise linear; see, e.g., [1]. It
is a refinement of the well-known linear recursion [24, 25],

already mentioned in the above example, which allows only

one intensional predicate to appear in the body, while all the

other predicates are extensional.

Based on this key observation, the following research

questions have immediately emerged:

(1) Does warded Datalog
∃
with piece-wise linear recur-

sion achieve space-efficiency for query answering?
5

(2) Is the combination of wardedness and piece-wise lin-

earity justified? In other words, can we achieve the

same with piece-wise linear Datalog
∃
without the

wardedness condition?

(3) What is the expressiveness of the query language based

on warded Datalog
∃
with piece-wise linear recursion

relative to prominent languages such as Datalog?

These are top-priority questions in the context of the Vadalog

system since they may provide useful insights towards more

efficient reasoning algorithms, in particular, towards paral-

lel execution of reasoning tasks. The ultimate goal of this

work is to analyze piece-wise linearity, and provide definite

answers to the above questions.

1.3 Summary of Contributions
Our main results can be summarized as follows:

(1) Ontological query answering under warded Datalog
∃

with piece-wise linear recursion is NLogSpace-complete

in data complexity, and PSpace-complete in combined

complexity, which provides a definite answer to our first

question. This is a rather involved result that heavily

relies on a novel notion of resolution-based proof tree,

which is of independent interest. In particular, we show

that ontological query answering under warded Datalog
∃

5
The idea of combining wardedness with piece-wise linearity has been

already mentioned in the invited paper [6], while the obtained formalism is

called strongly warded.

with piece-wise linear recursion boils down to the prob-

lem of checking whether a proof tree that enjoys cer-

tain properties exists, which in turn can be done via

a space-bounded non-deterministic algorithm. Interest-

ingly, our machinery allows us to re-establish the com-

plexity of ontological query answering under warded

Datalog
∃
via an algorithm that is significantly simpler

than the one employed in [17]. This algorithm is essen-

tially the non-determinisitc algorithm for piece-wise lin-

ear warded Datalog
∃
with the crucial difference that it

employs alternation.

(2) To our surprise, ontological query answering under piece-

wise linear Datalog
∃
, without the wardedness condition,

is undecidable. This result, which is shown via a reduc-

tion from the unbounded tiling problem, provides a defi-

nite answer to our second question: the combination of

wardedness and piece-wise linearity is indeed justified.

(3) We finally investigate the relative expressive power of

the query language based onwarded Datalog
∃
with piece-

wise linear recursion, which consists of all the queries of

the formQ = (Σ,q), where Σ is a warded set of TGDswith

piece-wise linear recursion, and q is a conjunctive query,

while the evaluation of Q over a database D is precisely

the certain answers to q w.r.t. D and Σ. By exploiting

our novel notion of proof tree, we show that it is equally

expressive to piece-wise linear Datalog. The same ap-

proach allows us to elucidate the relative expressiveness

of the query language based on warded Datalog
∃
(with

arbitrary recursion), showing that it is equally expressive

to Datalog. We also adopt the more refined notion of

program expressive power, introduced in [2], which aims

at the decoupling of the set of TGDs and the actual con-

junctive query, and show that the query language based

on warded Datalog
∃
(with piece-wise linear recursion) is

strictly more expressive than Datalog (with piece-wise

linear recursion). This exposes the advantage of value

invention that is available in Datalog
∃
-based languages.

2 PRELIMINARIES
Basics.We consider the disjoint countably infinite sets C, N,
and V of constants, (labeled) nulls, and variables, respectively.
The elements of (C ∪ N ∪ V) are called terms. An atom is an

expression of the form R(t̄), where R is an n-ary predicate,

and t̄ is an n-tuple of terms. We write var(α) for the set

of variables in an atom α ; this notation extends to sets of

atoms. A fact is an atom that contains only constants. A

substitution from a set of terms T to a set of terms T ′ is a
function h : T → T ′. The restriction of h to a subset S of

T , denoted h |S , is the substitution {t 7→ h(t) | t ∈ S}. A
homomorphism from a set of atoms A to a set of atoms B is a

substitution h from the set of terms in A to the set of terms

in B such that h is the identity on C, and R(t1, . . . , tn) ∈ A
implies h(R(t1, . . . , tn)) = R(h(t1), . . . ,h(tn)) ∈ B. We write

h(A) for the set of atoms {h(α) | α ∈ A}. For brevity, we may

write [n] for the set {1, . . . ,n}, where n ≥ 0.

Relational Databases. A schema S is a finite set of relation
symbols (or predicates), each having an associated arity. We

write R/n to denote that R has arity n ≥ 0. A position R[i] in
S, where R/n ∈ S and i ∈ [n], identifies the i-th argument of

R. An instance over S is a (possibly infinite) set of atoms over

S that contain constants and nulls, while a database over S is
a finite set of facts over S. The active domain of an instance

I , denoted dom(I), is the set of all terms occurring in I .

Conjunctive Queries. A conjunctive query (CQ) over S is a
first-order formula of the form

q(x̄) B ∃ȳ (
R1(z̄1) ∧ · · · ∧ Rn(z̄n)

)
,

where each Ri (z̄i), for i ∈ [n], is an atom without nulls over

S, each variable mentioned in the z̄i ’s appears either in x̄
or ȳ, and x̄ are the output variables of q. For convenience,
we adopt the rule-based syntax of CQs, i.e., a CQ as the one

above will be written as the rule

Q(x̄) ← R1(z̄1), . . . ,Rn(z̄n),

where Q is a predicate used only in the head of CQs. Let

atoms(q) = {R1(z̄1), . . . ,Rn(z̄n)}. The evaluation ofq(x̄) over
an instance I , denoted q(I), is the set of all tuples h(x̄) of
constants, where h is a homomorphism from atoms(q) to I .

Tuple-Generating Dependencies. A tuple-generating de-
pendency (TGD) σ is a first-order sentence

∀x̄∀ȳ (ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄)) ,
where x̄ , ȳ, z̄ are tuples of variables of V, and ϕ,ψ are con-

junctions of atoms without constants and nulls. For brevity,

we write σ as ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄), and use comma instead

of ∧ for joining atoms. We refer to ϕ andψ as the body and

head of σ , denoted body(σ) and head(σ), respectively. The
frontier of the TGD σ , denoted front(σ), is the set of variables
that appear both in the body and the head of σ . We also write

var∃(σ) for the existentially quantified variables of σ . The
schema of a set Σ of TGDs, denoted sch(Σ), is the set of pred-
icates in Σ. An instance I satisfies a TGD σ as the one above,

written I |= σ , if the following holds: whenever there exists a
homomorphism h such that h(ϕ(x̄ , ȳ)) ⊆ I , then there exists

h′ ⊇ h |x̄ such that h′(ψ (x̄ , z̄)) ⊆ I .6 The instance I satisfies a
set Σ of TGDs, written I |= Σ, if I |= σ for each σ ∈ Σ.

Query Answering under TGDs. The main reasoning task

under TGD-based languages is conjunctive query answering.
Given a database D and a set Σ of TGDs, a model of D and Σ
is an instance I such that I ⊇ D and I |= Σ. Let mods(D, Σ)
6
By abuse of notation, we sometimes treat a tuple of variables as a set of

variables, and a conjunction of atoms as a set of atoms.

be the set of all models of D and Σ. The certain answers to a

CQ q w.r.t. D and Σ is

cert(q,D, Σ) B
⋂
{q(I) | I ∈ mods(D, Σ)}.

Our main task is to compute the certain answers to a CQ

w.r.t. a database and a set of TGDs from a certain class C of

TGDs; concrete classes of TGDs are discussed below. As is

customary when studying the complexity of this problem,

we focus on its decision version:

PROBLEM : CQAns(C)
INPUT : A database D, a set Σ ∈ C of TGDs,

a CQ q(x̄), and a tuple c̄ ∈ dom(D) |x̄ | .
QUESTION : Is it the case that c̄ ∈ cert(q,D, Σ)?

We consider the standard complexity measures: combined
complexity and data complexity, where the latter measures

the complexity of the problem assuming that the set of TGDs

and the CQ are fixed.

A useful algorithmic tool for tackling the above problem

is the well-known chase procedure; see, e.g., [10, 15, 19, 23].
We start by defining a single chase step. Let I be an instance

and σ = ϕ(x̄ , ȳ) → ∃z̄ψ (x̄ , z̄) a TGD. We say that σ is ap-
plicable w.r.t. I if there exists a homomorphism h such that

h(ϕ(x̄ , ȳ)) ⊆ I . In this case, the result of applying σ over I with
h is the instance J = I ∪ {h′(ψ (x̄ , z̄))}, where h′(z) is a fresh
null not occurring in I , for every z ∈ z̄. Such a single chase

step is denoted I ⟨σ ,h⟩J . Consider now an instance I , and a

set Σ of TGDs. A chase sequence for I under Σ is a sequence

(Ii ⟨σi ,hi ⟩Ii+1)i≥0 of chase steps such that: (1) I = I0; (2) for
each i ≥ 0, σi ∈ Σ; and (3)

⋃
i≥0

Ii |= Σ. We call

⋃
i≥0

Ii the
result of this chase sequence, which always exists. Although

the result of a chase sequence is not necessarily unique (up

to isomorphism), each such result is equally useful for query

answering purposes, since it can be homomorphically embed-

ded into every other result. Hence, we denote by chase(I , Σ)
the result of an arbitrary chase sequence for I under Σ. The
following is a classical result:

Proposition 2.1. Given a database D, a set Σ of TGDs, and
a CQ q, cert(q,D, Σ) = q(chase(D, Σ)).

3 THE LOGICAL CORE OF VADALOG
A crucial component of the Vadalog system is its reasoning

engine, which in turn is built around the Vadalog language,

a general-purpose formalism for knowledge representation

and reasoning. The logical core of this language is the well-

behaved class of warded sets of TGDs [3, 17].

An Intuitive Description. Wardedness applies a syntactic

restriction on how certain “dangerous” variables of a set of

TGDs are used. These are body variables that can be unified

with a null during the chase, and that are also propagated to

the head. For example, given

P(x) → ∃z R(x , z) and R(x ,y) → P(y)

the variable y in the body of the second TGD is dangerous.

Indeed, once the chase applies the first TGD, an atom of the

form R(_,⊥) is generated, where ⊥ is a null value, and then

the second TGD is triggered with the variabley being unified

with ⊥ that is propagated to the obtained atom P(⊥). It has
been observed that the liberal use of dangerous variables

leads to a prohibitively high computational complexity of

the main reasoning tasks, in particular of CQ answering [10].

The main goal of wardedness is to limit the use of dangerous

variables with the aim of taming the way that null values

are propagated during the execution of the chase procedure.

This is achieved by posing the following conditions:

(1) all the dangerous variables should appear together in

a single body atom α , called a ward, and

(2) α can share only harmless variables with the rest of

the body, i.e., variables that unify only with constants.

We proceed to formalize the above description.

The Formal Definition. We first need some auxiliary no-

tions. The set of positions of a schema S, denoted pos(S), is
defined as {R[i] | R/n ∈ S, with n ≥ 1, and i ∈ [n]}. Given
a set Σ of TGDs, we write pos(Σ) instead of pos(sch(Σ)). The
set of affected positions of sch(Σ), denoted aff(Σ), is induc-
tively defined as follows:

– if there exists σ ∈ Σ and a variable x ∈ var∃(σ) at
position π , then π ∈ aff(Σ), and

– if there exists σ ∈ Σ and a variable x ∈ front(σ) in the

body of σ only at positions of aff(Σ), and x appears in

the head of σ at position π , then π ∈ aff(Σ).

Let nonaff(Σ) = pos(Σ) \ aff(Σ). We can now classify the

variables in the body of a TGD into harmless, harmful, and

dangerous. Fix a TGD σ ∈ Σ and a variable x in body(σ):

– x is harmless if at least one occurrence of it appears in
body(σ) at a position of nonaff(Σ),

– x is harmful if it is not harmless, and

– x is dangerous if it is harmful and belongs to front(σ).

We are now ready to formally introduce wardedness.

Definition 3.1 (Wardedness). A set Σ of TGDs iswarded if,
for each σ ∈ Σ, there are no dangerous variables in body(σ),
or there is an atom α ∈ body(σ), called a ward, such that:

(i) all the dangerous variables in body(σ) occur in α , and (ii)

each variable of var(α) ∩ var(body(σ) \ {α }) is harmless. Let

WARD be the class of all (finite) warded sets of TGDs.

The problem of CQ answering under warded sets of TGDs

has been recently investigated in [3, 17]:

Proposition 3.2. CQAns(WARD) is ExpTime-complete in
combined complexity, and PTime-complete in data complexity.

Note that [3, 17] deals only with data complexity. However,

the same algorithm provides an ExpTime upper bound in

combined complexity. The lower bounds are inherited from

Datalog since a set of Datalog rules (seen as TGDs) is warded.

AKey Application. One of the distinctive features of ward-
edness, which is crucial for the purposes of the Vadalog

system, is the fact that it can express every SPARQL query

under the OWL 2 QL direct semantics entailment regime,

which is inherited from the OWL 2 direct semantics entail-

ment regime; for details, see [2, 17, 22]. Recall that SPARQL

is the standard language for querying the Semantic Web,
7

while OWL 2 QL is a prominent profile of OWL 2.
8

4 LIMITING RECURSION
We now focus on our main research question: can we limit

the recursion allowed by wardedness in order to obtain a for-

malism that provides a convenient syntax for expressing use-

ful recursive statements, and at the same time achieve space-

efficiency? The above question has been extensively studied

in the 1980s for Datalog programs, with linear Datalog being
a key fragment that achieves a good balance between expres-

sivity and complexity; see, e.g., [24, 25]. A Datalog program

Σ is linear if, for each rule in Σ, its body contains at most

one intensional predicate, i.e., a predicate that appears in the

head of at least one rule of Σ. In other words, linear Datalog

allows only for linear recursion, which is able to express

many real-life recursive queries. However, for our purposes,

linear recursion does not provide the convenient syntax that

we are aiming at. After analyzing several real-life examples

of warded sets of TGDs, provided by our industrial partners,

we observed that the employed recursion goes beyond linear

recursion. On the other hand, most of the examples coming

from our industrial partners use recursion in a restrictive

way: each TGD has at most one body atom whose predicate

is mutually recursive with a predicate occurring in the head

of the TGD. Interestingly, this more liberal version of linear

recursion has been already investigated in the context of Dat-

alog, and it is known as piece-wise linear; see, e.g., [1]. Does
this type of recursion lead to the space-efficient fragment of

warded sets of TGDs that we are looking for? The rest of this

section is devoted to showing this rather involved result.

Let us start by formally defining the class of piece-wise

linear sets of TGDs. To this end, we need to define when two

predicates are mutually recursive, which in turn relies on

the well-known notion of the predicate graph. The predicate
graph of a set Σ of TGDs, denoted pg(Σ), is a directed graph

7
http://www.w3.org/TR/rdf-sparql-query

8
https://www.w3.org/TR/owl2-overview/

(V ,E), where V = sch(Σ), and there exists an edge from a

predicate P to a predicate R, i.e., (P ,R) ∈ E, iff there exists a

TGD σ ∈ Σ such that P occurs in body(σ) and R occurs in

head(σ). Two predicates P ,R ∈ sch(Σ) aremutually recursive
(w.r.t. Σ) if there exists a cycle in pg(Σ) that contains both
P and R (i.e., R is reachable from P , and vice versa). We are

now ready to define piece-wise linearity for TGDs.

Definition 4.1 (Piece-wise Linearity). A set Σ of TGDs is

piece-wise linear if, for each TGD σ ∈ Σ, there exists at most

one atom in body(σ) whose predicate is mutually recursive

with a predicate in head(σ). We write PWL for the class of

(finite) piece-wise linear sets of TGDs.

The main result of this section follows:

Theorem 4.2. CQAns(WARD∩ PWL) is PSpace-complete
in combined, and NLogSpace-complete in data complexity.

The lower bounds are inherited from linear Datalog. The

difficult task is to establish the upper bounds. This relies on

a novel notion of proof tree, which is of independent interest.

As we shall see, our notion of proof tree leads to space-

bounded algorithms that allow us to show the upper bounds

in Theorem 4.2, and also re-establish in a transparent way

the upper bounds in Proposition 3.2. Moreover, in Section 6,

we are going to use proof trees for studying the relative

expressive power of (piece-wise linear) warded sets of TGDs.

4.1 Query Answering via Proof Trees
It is known that given a CQ q and a set Σ of TGDs, we can

unfold q using the TGDs of Σ into an infinite union of CQs

qΣ such that, for every database D, cert(q,D, Σ) = qΣ(D); see,
e.g., [16, 21]. Let us clarify that in our context, an unfolding,

which is essentially a resolution step, is more complex than

in the context of Datalog due to the existentially quantified

variables in the head of TGDs. The intention underlying our

notion of proof tree is to encode in a tree the sequence of CQs,

generated during the unfolding of q with Σ, that leads to a
certain CQ q′ of qΣ in such a way that each intermediate CQ,

as well as q′, is carefully decomposed into smaller subqueries

that form the nodes of the tree, while the root corresponds

to q and the leaves to q′. As we shall see, if we focus on well-

behaved classes of TGDs such as (piece-wise linear) warded

sets of TGDs, we can establish upper bounds on the size of

these subqueries, which in turn allow us to devise space-

bounded algorithms for query answering. In what follows,

we define the notion of proof tree (Definition 4.7), and estab-

lish its correspondence with query answering (Theorem 4.8).

To this end, we need to introduce the main building blocks of

a proof tree: chunk-based resolution (Definition 4.3), a query

decomposition technique (Definition 4.5), and the notion of

specialization for CQs (Definition 4.6).

Chunk-based Resolution. Let A and B be non-empty sets

of atoms that mention only constants and variables. The sets

A and B unify if there is a substitutionγ , which is the identity
on C, called unifier for A and B, such that γ (A) = γ (B). A
most general unifier (MGU) for A and B is a unifier for A and

B, denoted γA,B , such that, for each unifier γ for A and B,
γ = γ ′ ◦γA,B for some substitution γ ′. Notice that if two sets
of atoms unify, then there exists always a MGU, which is

unique (modulo variable renaming).

Given a CQ q(x̄) and a set of atoms S ⊆ atoms(q), we
say that a variable y ∈ var(S) is shared, if y ∈ x̄ or y ∈
var(atoms(q) \ S). A chunk unifier of q with a TGD σ (where

q and σ do not share variables) is a triple (S1, S2,γ), where
∅ ⊂ S1 ⊆ atoms(q), ∅ ⊂ S2 ⊆ head(σ), and γ is a unifier for

S1 and S2 such that, for each x ∈ var(S2) ∩ var∃(σ),
(1) γ (x) < C, i.e., γ (x) is not constant, and
(2) for every variable y different from x , γ (x) = γ (y) im-

plies y occurs in S1 and is not shared.

The chunk unifier (S1, S2,γ) ismost general (MGCU) if γ is an

MGU for S1 and S2. Notice that the variables of var∃(σ) oc-
curring in S2 unify (via γ) only with non-shared variables of

S1. This ensures that S1 is a “chunk” of q that can be resolved

as a whole via σ using γ .9 Without the additional conditions

on the substitution γ , we may get unsound resolution steps.

Consider, e.g., the CQ and TGD

Q(x) ← R(x ,y), S(y) and P(x ′) → ∃y ′ R(x ′,y ′).
Resolving the atom R(x ,y) in the query with the given TGD

using γ = {x 7→ x ′,y 7→ y ′} would be an unsound step since

the shared variabley is lost. This is becausey ′ is unified with
the shared variable y. On the other hand, R(x ,y), S(y) can
be resolved with the TGD σ = P(x ′) → ∃y ′ R(x ′,y ′), S(y ′)
using γ ; in fact, the chunk unifier is (atoms(q), head(σ),γ).

Definition 4.3 (Chunk-based Resolution). Let q(x̄) be
a CQ and σ a TGD. A σ -resolvent of q is a CQ q′(γ (x̄))
with body(q′) = γ ((atoms(q) \ S1) ∪ body(σ)) for a MGCU

(S1, S2,γ) of q with σ .

Query Decomposition. As discussed above, the purpose

of a proof tree is to encode a finite branch of the unfolding

of a CQ q with a set Σ of TGDs, which is obtained by ap-

plying chunk-based resolution. Such a branch is a sequence

q0, . . . ,qn of CQs, where q = q0, while, for each i ∈ [n], qi
is a σ -resolvent of qi−1 for some σ ∈ Σ. Here is a simple

example, which will serve as a running example in the rest

of the section, that illustrates the notion of unfolding.

Example 4.4. Consider the set Σ of TGDs consisting of

R(x) → ∃yT (y,x)
9
A similar notion known as piece unifier has been defined in [21].

T (x ,y), S(y, z) → T (x , z)

T (x ,y), P(y) → G()

and the CQ that simply asks whetherG() is entailed, i.e., the
CQ Q ← G(). Since the unfolding of q with Σ should give

the correct answer for every input database, and thus for

databases of the form

{R(cn−1), S(cn−1, cn−2), . . . , S(c2, c1), P(c1)} for some n > 1,

one of its branches should be q = q0,q1, . . . ,qn , where

q1 = Q ← T (x ,y1), P(y1)

obtained by resolving q0 using the third TGD,

qi = Q ← T (x ,yi), S(yi ,yi−1), . . . , S(y2,y1), P(y1),

for i ∈ {2, . . . ,n − 1}, obtained by resolving qi−1 using the

second TGD, and finally

qn = Q ← R(yn−1), S(yn−1,yn−2), . . . , S(y2,y1), P(y1)

obtained by resolving qn−1 using the first TGD.

At this point, one may think that the proof tree that en-

codes the branch q0, . . . ,qn of the unfolding of q with Σ is

the finite labeled pathv0, . . . ,vn , where eachvi is labeled by
qi . However, another crucial goal of such a proof tree, which

is not achieved via the naive path encoding, is to split each

resolvent qi , for i > 0, into smaller subqueries q1

i , . . . ,q
ni
i ,

which are essentially the children of qi , in such a way that

they can be processed independently by resolution. The crux

of this encoding is that it provides us with a mechanism for

keeping the CQs that must be processed by resolution small.

It should be clear from Example 4.4 that by following the

naive path encoding, without splitting the resolvents into

smaller subqueries, we may get CQs of unbounded size.

The key question here is how a CQ q can be decomposed

into subqueries that can be processed independently. The

subtlety is that, after splitting q, occurrences of the same

variable may be separated into different subqueries. Thus,

we need a way to ensure that a variable in q, which appears

in different subqueries after the splitting, is indeed treated as

the same variable, i.e., it has the same meaning. We deal with

this issue by restricting the set of variables in q of which

occurrences can be separated during the splitting step. In

particular, we can only separate occurrences of an output

variable. This relies on the convention that output variables

correspond to fixed constant values ofC, and thus their name

is “frozen” and never renamed by subsequent resolution steps.

Hence, we can separate occurrences of an output variable

into different subqueries, i.e., different branches of the proof

tree, without losing the connection between them.

Summing up, the idea underlying query decomposition is

to split the CQ at hand into smaller queries that keep together

all the occurrences of a non-output variable, but with the

freedom of separating occurrences of an output variable.

Definition 4.5 (Query Decomposition). Given a CQ q(x̄),
a decomposition of q is a set of CQs {q1(ȳ1), . . . ,qn(ȳn)},
where n ≥ 1 and

⋃
i ∈[n] atoms(qi) = atoms(q), such that,

for each i ∈ [n]: (1) ȳi is the restriction of x̄ on the variables

in qi , and (2) for every α , β ∈ atoms(q), if α ∈ atoms(qi) and
var(α) ∩ var(β) * x̄ , then β ∈ atoms(qi).

Query Specialization. From the above discussion, one ex-

pects that a proof tree of a CQ q w.r.t. a set Σ of TGDs can be

constructed by starting from q, which is the root, and apply-

ing two steps: resolution and decomposition. Unfortunately,

this is not enough for our purposes as we may run into the

following problem: some of the subqueries will mistakenly

remain large since we have no way to realize that a non-

output variable corresponds to a fixed constant value, which

in turn allows us to “freeze” its name and separate different

occurrences of it during the decomposition step. This is il-

lustrated by Example 4.4. Observe that the size of the CQs

{qi }i>0 grows arbitrarily, while our query decomposition has

no effect on them since they are Boolean queries, i.e., queries

without output variables, and thus, we cannot split them into

smaller subqueries. The above issue can be solved by having

an intermediate step between resolution and decomposition,

the so-called specialization step. A specialization of a CQ is

obtained by converting some non-output variables of it into

output variables, while keeping their name, or taking the

name of an existing output variable.

Definition 4.6 (Query Specialization). Let q(x̄) be a CQ
with atoms(q) = {α1, . . . ,αn}. A specialization of q is a CQ

Q(x̄ , ȳ) ← ρz̄ (α1, . . . ,αn)

where ȳ, z̄ are (possibly empty) disjoint tuples of non-output

variables of q, and ρz̄ is a substitution from z̄ to x̄ ∪ ȳ.

Consider, for example, the CQ q1 from Example 4.4

Q ← T (x ,y1), P(y1)

obtained by resolving q = q0 using the third TGD. The query

decomposition cannot split it onto smaller subqueries since

the variable y1
is a non-output variable, and thus, all its

occurrences should be kept together. We can consider the

following specialization of q1

Q(y1) ← T (x ,y1), P(y1),

which simply convertsy1
into an output variable, and now by

query decomposition we can split it into the atomic queries

Q(y1) ← T (x ,y1) Q(y1) ← P(y1),

which represent the original query q1.

Proof Trees. We are now ready to introduce our new no-

tion of proof tree. We first explain the high-level idea by

exploiting our running example. Consider the set Σ of TGDs

and the CQ q from Example 4.4. The branch q0, . . . ,qn of the

Figure 1: Partial trees of the proof tree that encodes the branch q = q0, . . . ,qn of the unfolding of q with Σ from
Example 4.4.

unfolding of q with Σ given in Example 4.4 is encoded via a

proof tree of the form

where each Ti , for i ∈ [n − 1], is a rooted tree with only two

leaf nodes. The actual trees are depicted in Figure 1; the left

one is T1, the middle one is Ti for i ∈ {2, . . . ,n − 2}, while

the right one is Tn−1. For each i ∈ [n − 1], the child of the

root of Ti is obtained via resolution, then we specialize it by

converting the variable yi into an output variable, and then

we decompose the specialized CQ into two subqueries. In

Tn−1, we also apply an additional resolution step in order to

obtain the leaf nodeQ(yn−1) ← R(yn−1). The underlined CQs

are actually the subqueries that represent the CQ qn of the

unfolding. Indeed, the conjunction of the atoms occurring

in the underlined CQs is precisely the CQ qn .
We proceed to give the formal definition. Given a partition

π = {S1, . . . , Sm} of a set of variables, we write eqπ for the

substitution that maps the variables of Si to the same variable

xi , where xi is a distinguished element of Si . We should

not forget the convention that output variables cannot be

renamed, and thus, a resolution step should use a MGCU

that preserves the output variables. In particular, given a

CQ q and a TGD σ , a σ -resolvent of q is called IDO if the

underlying MGCU uses a substitution that is the identity on

the output variables of q (hence the name IDO). Finally, given

a TGD σ and some arbitrary object o (e.g., o can be the node

of a tree, or an integer number), we write σo for the TGD

obtained by renaming each variable x in σ into xo . This is a
simple mechanism for uniformly renaming the variables of

a TGD in order to avoid undesirable clatter among variables

during a resolution step.

Definition 4.7 (Proof Tree). Let q(x̄) be a CQ with

atoms(q) = {α1, . . . ,αn}, and Σ a set of TGDs. A proof tree

of q w.r.t. Σ is a triple P = (T , λ,π), where T = (V ,E) is a
finite rooted tree, λ a labeling function that assigns a CQ to

each node of T , and π a partition of x̄ , such that, for v ∈ V :

(1) If v is the root node of T , then λ(v) is the CQ

Q(eqπ (x̄)) ← eqπ (α1, . . . ,αm).
(2) If v has only one child u, λ(u) is an IDO σv -resolvent

of λ(v) for some σ ∈ Σ, or a specialization of λ(v).
(3) If v has the children u1, . . . ,uk for k > 1, then

{λ(u1), . . . , λ(uk)} is a decomposition of λ(v).

Assuming that v1, . . . ,vm are the leaf nodes of T , the CQ
induced by P is defined as

Q(eqπ (x̄)) ← α1, . . . ,αℓ,

where {α1, . . . ,αℓ} =
⋃

i ∈[m] atoms(λ(vi)).

The purpose of the partition π is to indicate that some

output variables correspond to the same constant value –

this is why variables in the same set of π are unified via the

substitution eqπ . This unification step is crucial in order to

safely use, in subsequent resolution steps, substitutions that

are the identity on the output variables. If we omit this initial

unification step, we may lose important resolution steps, and

thus being incomplete for query answering purposes. The

main result of this section, which exposes the connection

between proof trees and CQ answering, follows. By abuse of

notation, we write P for the CQ induced by P.

Theorem 4.8. Consider a database D, a set Σ of TGDs, a
CQ q(x̄), and c̄ ∈ dom(D) |x̄ | . The following are equivalent:
(1) c̄ ∈ cert(q,D, Σ).
(2) There is a proof tree P of q w.r.t. Σ such that c̄ ∈ P(D).

The proof of the above result relies on the soundness

and completeness of chunk-based resolution. Given a set Σ
of TGDs and a CQ q(x̄), by exhaustively applying chunk-

based resolution, we can construct a (possibly infinite) union

of CQs qΣ such that, for every database D, cert(q,D, Σ) =
qΣ(D); implicit in [16, 21]. In other words, given a tuple

c̄ ∈ dom(D) |x̄ | , c̄ ∈ cert(q,D, Σ) iff there exists a CQ q′(x̄) in
qΣ such that c̄ ∈ q′(D). It is now not difficult to show that the

latter statement is equivalent to the existence of a proof tree

P of q w.r.t. Σ such that c̄ ∈ P(D), and the claim follows.

4.2 Well-behaved Proof Trees
Theorem 4.8 states that checking whether a tuple c̄ is a cer-
tain answer boils down to deciding whether there exists a

proof tree P such that c̄ is an answer to the CQ induced

by P over the given database. Of course, the latter is an

undecidable problem in general. However, if we focus on

(piece-wise linear) warded sets of TGDs, it suffices to check

for the existence of a well-behaved proof tree with certain

syntactic properties, which in turn allows us to devise a

decision procedure. We proceed to make this more precise.

For technical clarity, we assume, w.l.o.g., TGDs with only

one atom in the head since we can always convert a warded

set of TGDs into one with single-atom heads, while certain

answers are preserved; for the transformation see, e.g., [12].

Piece-wise Linear Warded Sets of TGDs. For piece-wise
linear warded sets of TGDs, we can strengthen Theorem 4.8

by focussing on a certain class of proof trees that enjoy two

syntactic properties: (i) they have a path-like structure, and

(ii) the size of the CQs that label their nodes is bounded

by a polynomial. The first property is formalized via linear

proof trees. Let P = (T , λ,π), where T = (V ,E), be a proof
tree of a CQ q w.r.t. a set Σ of TGDs. We call P linear if,
for each node v ∈ V , there exists at most one node u ∈ V
such that (v,u) ∈ E and u is not a leaf in T , i.e., v has at

most one child that is not a leaf. For example, the proof tree

given above, which consists of the partial trees depicted in

Figure 1, is linear. The second property relies on the notion

of node-width of a proof tree. The node-width of P is

nwd(P) B max

v ∈V
{|λ(v)|},

i.e., the size of the largest CQ that labels a node of T .
Before we strengthen Theorem 4.8, let us define the poly-

nomial that will allow us to bound the node-width of the

linear proof trees that we need to consider. This polynomial

relies on the notion of predicate level. Consider a set Σ of

TGDs. For a predicate P ∈ sch(Σ), we write rec(P) for the
set of predicates of sch(Σ) that are mutually recursive to

P according to pg(Σ) = (V ,E). Let ℓΣ : sch(Σ) → N be the

unique function that satisfies

ℓΣ(P) = max{ℓΣ(R) | (R, P) ∈ E,R < rec(P)} + 1,

with ℓΣ(P) being the level (w.r.t. Σ) of P , for each P ∈ sch(Σ).
We define the polynomial

fWARD∩PWL(q, Σ) B (|q |+1) ·max

P ∈sch(Σ)
{ℓΣ(P)} ·max

σ ∈Σ
{|body(σ)|}.

We can now strengthen Theorem 4.8. Let us first clarify

that, in the case of piece-wise linear warded sets of TGDs,

apart from only one atom in the head, we also assume, w.l.o.g.,

that the level of a predicate in the body of TGD σ is k or

k − 1, where k is the level of the predicate in the head of σ .

Theorem 4.9. Consider a database D, a set Σ ∈ WARD ∩
PWL of TGDs, a CQ q(x̄), and c̄ ∈ dom(D) |x̄ | . The following
are equivalent:
(1) c̄ ∈ cert(q,D, Σ).
(2) There is a linear proof treeP ofq w.r.t. Σwith nwd(P) ≤

fWARD∩PWL(q, Σ) such that c̄ ∈ P(D).

Warded sets of TGDs. Now, in the case of arbitrary warded

sets of TGDs, we cannot focus only on linear proof trees.

Nevertheless, we can still bound the node-width of the proof

trees that we need to consider by the following polynomial,

which, unsurprisingly, does not rely anymore on the notion

of predicate level:

fWARD(q, Σ) B 2 ·max

{
|q |,max

σ ∈Σ
{|body(σ)|}

}
.

Theorem 4.8 can be strengthened as follows:

Theorem 4.10. Consider a database D, a set Σ ∈ WARD
of TGDs, a CQ q(x̄), and c̄ ∈ dom(D) |x̄ | . The following are
equivalent:
(1) c̄ ∈ cert(q,D, Σ).
(2) There exists a proof tree P of q w.r.t. Σ with nwd(P) ≤

fWARD(q, Σ) such that c̄ ∈ P(D).

A Proof Sketch. Let us now provide some details on how

Theorems 4.9 and 4.10 are shown. For both theorems, (2)

implies (1) readily follows from Theorem 4.8. We thus focus

on the other direction. The main ingredients of the proof can

be described as follows:

• We introduce the auxiliary notion of chase tree, which

can be seen as a concrete instantiation of a proof tree.

It serves as an intermediate structure between proof

trees and chase derivations, which allows us to use the

chase as our underlying technical tool. Note that the

notions of linearity and node-width can be naturally

defined for chase trees.

• We then show that, if the given tuple of constants c̄ is a
certain answer to the given CQ q w.r.t. the given data-

base D and (piece-wise linear) warded set Σ of TGDs,

then there exists a (linear) chase tree for the image of

q to chase(D, Σ) such that its node-width respects the

bounds given in the above theorems (Lemma 4.12).

• We finally show that the existence of a (linear) chase

tree for the image of q to chase(D, Σ) with node-width

at mostm implies the existence of a (linear) proof tree

P of q w.r.t. Σ with node-width at mostm such that

c̄ ∈ P(D) (Lemma 4.13).

Let us make the above description more formal. In order

to introduce the notion of chase tree, we first need to re-

call the notion of chase graph, then introduce the notion

of unraveling of the chase graph, and finally introduce the

notions of unfolding and decomposition for sets of atoms in

the unraveling of the chase graph.

Fix a chase sequence δ = (Ii ⟨σi ,hi ⟩Ii+1)i≥0 for a database

D under a set Σ of TGDs. The chase graph forD and Σ (w.r.t. δ)
is a directed edge-labeled graph GD,Σ = (V ,E, λ), where
V = chase(D, Σ), and an edge (α , β) labeled with (σk ,hk)
belongs to E iff α ∈ hk (body(σk)) and β ∈ Ik+1 \ Ik , for
some k ≥ 0. In other words, α has an edge to β if β is

derived using α , and if β is new in the sense that it has

not been derived before. Notice that GD,Σ
has no directed

cycles. Notice also that GD,Σ
depends on δ – however, we can

assume a fixed sequence δ since, as discussed in Section 2,

every chase sequence is equally useful for our purposes.

We now discuss the notion of unraveling of the chase

graph; due to space reasons, we keep this discussion infor-

mal. Given a set Θ ⊆ chase(D, Σ), the unraveling of GD,Σ

around Θ is a directed node- and edge-labeled forest G
D,Σ
Θ

that has a tree for each α ∈ Θ whose branches are backward-

paths in G from α to a database atom. Intuitively, G
D,Σ
Θ is a

forest-like reorganization of the atoms of chase(D, Σ) that
are needed to derive Θ. Due to its forest-like shape, it may

contain multiple copies of atoms of chase(D, Σ). The edges
between nodes are labeled by pairs (σ ,h) just like in GD,Σ

,

while the nodes are labeled by atoms and, importantly, the

atoms along the paths in GD,Σ
may be duplicated and labeled

nulls are given new names. We writeU (GD,Σ,Θ) for the set

of all atoms that appear as labels in G
D,Σ
Θ , and succσ ,h(v) for

the set of children of a node v of GD,Σ
whose incoming edge

is labeled with (σ ,h). It is important to say that there exists

a homomorphism hΘ that maps Θ toU (GD,Σ,Θ).
Let us now introduce the notions of unfolding and decom-

position. For sets Γ, Γ′ ⊆ U (GD,Σ,Θ), Γ′ is an unfolding of Γ,
if there are α ∈ Γ and β1, . . . , βk ∈ U (G

D,Σ,Θ) such that

(1) succσ ,h(v) = {β1, . . . , βk }, for some σ ∈ Σ and h, and

some node v of G
D,Σ
Θ labeled with α ,

(2) for every null that occurs in α , either it does not appear
in Γ \ {α }, or it appears in {β1, . . . , βk }, and

(3) Γ′ = (Γ \ {α }) ∪ {β1, . . . , βk }.

Let Γ ⊆ U (GD,Σ,Θ) be a non-empty set. A decomposition of

Γ is a set {Γ1, . . . , Γn}, where n ≥ 1, of non-empty subsets of

Γ such that (i) Γ =
⋃

i ∈[n] Γi , and (ii) i , j implies that Γi and
Γj do not share a labeled null. We can now define the key

notion of chase tree:

Definition 4.11 (Chase Tree). Consider a database D, a
set Σ of TGDs, and a set Θ ⊆ chase(D, Σ). A chase tree for
Γ ⊆ U (GD,Σ,Θ) (w.r.t. GD,Σ

Θ) is a pair C = (T , λ), where
T = (V ,E) is a finite rooted tree, and λ a labeling function

that assigns a subset ofU (GD,Σ,Θ) to each node of T , such
that, for each v ∈ V :

(1) If v is the root node of T , then λ(v) = Γ.
(2) If v has only one child u, λ(u) is an unfolding of λ(v).
(3) If v has children u1, . . . ,uk for k > 1, then

{λ(u1), . . . , λ(uk)} is a decomposition of λ(v).
(4) If v is a leaf node, then λ(v) ⊆ D.

The node-width of C is nwd(C) B maxv ∈V {|λ(v)|}. More-

over, we say that C is linear if, for each v ∈ V , there exists
at most one u ∈ V such that (v,u) ∈ E and u is not a leaf.

We can now state our auxiliary technical lemmas. In what

follows, fix a database D, and a set Σ of TGDs.

Lemma 4.12. Let Θ ⊆ chase(D, Σ) and Γ ⊆ U (GD,Σ,Θ):
(1) If Σ ∈ WARD ∩ PWL, then there exists a linear chase

tree C for Γ such that nwd(C) ≤ fWARD∩PWL(Γ, Σ).
(2) If Σ ∈ WARD, then there exists a chase tree C for Γ such

that nwd(C) ≤ fWARD(Γ, Σ).

The next technical lemma exposes the connection between

chase trees and proof trees:

Lemma 4.13. Consider a set Θ ⊆ chase(D, Σ), and let q′(x̄)
be a CQ and c̄ a tuple of constants such that h′(atoms(q′)) ⊆
U (GD,Σ,Θ) andh′(x̄) = c̄ , for some homomorphismh′. If there
is a (linear) chase tree C for h′(atoms(q′)) with nwd(C) ≤ m,
then there is a (linear) proof tree P for q′ w.r.t. Σ such that
nwd(P) ≤ m and c̄ ∈ P(D).

We can now show Theorem 4.9, while Theorem 4.10 can

be shown analogously. Consider a CQ q(x̄) and a tuple

c̄ ∈ dom(D) |x̄ | such that c̄ ∈ cert(q,D, Σ). We need to show

that if Σ ∈ WARD ∩ PWL, then there exists a linear proof

tree P of q w.r.t. Σ with nwd(P) ≤ fWARD∩PWL(q, Σ) such
that c̄ ∈ P(D). By hypothesis, there is a homomorphism h
such that h(atoms(q)) ⊆ chase(D, Σ) and h(x̄) = c̄ . Let Θq be

the set of atoms h(atoms(q)). Recall that there is a homomor-

phismhΘq that mapsΘq toU (G
D,Σ,Θq). Thus, the homomor-

phism h′ = hΘq ◦h is such that h′(atoms(q)) ⊆ U (GD,Σ,Θq)

and h′(x̄) = c̄ . By Lemma 4.12, there exists a chase tree C for

h′(atoms(q)) with nwd(C) ≤ fWARD∩PWL(h
′(atoms(q)), Σ).

By Lemma 4.13, there exists a linear proof tree P of q
w.r.t Σ with nwd(P) ≤ fWARD∩PWL(h

′(atoms(q)), Σ) ≤
fWARD∩PWL(q, Σ) such that c̄ ∈ P(D), and the claim follows.

4.3 Complexity Analysis
We now have all the tools for showing that CQ answering

under piece-wise linear warded sets of TGDs is in PSpace in

combined complexity, and in NLogSpace in data complexity,

and also for re-establishing the complexity of warded sets of

TGDs (see Proposition 3.2) in a more transparent way than

the approach of [3, 17].

The Case of CQAns(WARD ∩ PWL). Given a database D,
a set Σ ∈ WARD ∩ PWL of TGDs, a CQ q(x̄), and a tuple

Input: D, Σ ∈ WARD ∩ PWL, q(x̄), c̄ ∈ dom(D) |x̄ |

Output: Accept if c̄ ∈ cert(q,D, Σ); otherwise, Reject

p := Q ← α1, . . . ,αn with atoms(q(c̄)) = {α1, . . . ,αn}
repeat

guess op ∈ {r, d, s}
if op = r then

guess a TGD σ ∈ Σ
if mgcu(p,σ) = ∅ then

Reject
else

guessU ∈ mgcu(p,σ)
if |p[σ ,U]| > fWARD∩PWL(q, Σ) then

Reject
else

p ′ := p[σ ,U]

if op = d then
p ′ := p[−D]

if op = s then
guess V ⊆ var(p) and γ : V → dom(D)
p ′ := γ (p)

p := p ′

until atoms(p) ⊆ D;
return Accept

c̄ ∈ dom(D) |x̄ | , by Theorem 4.9, our problem boils down

to checking whether there exists a linear proof tree P of q
w.r.t. Σ with nwd(P) ≤ fWARD∩PWL(q, Σ) such that c̄ ∈ P(D).
This can be easily checked via a space-bounded algorithm

that is trying to build such a proof tree in a level-by-level

fashion. Essentially, the algorithm builds the i-th level from

the (i − 1)-th level of the proof tree by non-deterministically

applying the operations introduced above, i.e., resolution,

decomposition and specialization.

The algorithm is depicted in the box above. Here is a semi-

formal description of it. The first step is to store in p the

Boolean CQ obtained after instantiating the output variables

of q with c̄ . The rest of the algorithm is an iterative procedure

that non-deterministically constructs p ′ (the i-th level) from

p (the (i − 1)-th level) until it reaches a level that is a subset

of the database D. Notice that p and p ′ always hold one CQ

since at each level of a linear proof tree only one node has a

child, while all the other nodes are leaves, which essentially

means that their atoms appear in the database D. At each
iteration, the algorithm constructs p ′ from p by applying

resolution (r), decomposition (d), or specialization (s):
Resolution. It guesses a TGD σ ∈ Σ. If the set mgcu(p,σ),

i.e., the set of all MGCUs of p with σ , is empty, then re-

jects; otherwise, it guesses U ∈ mgcu(p,σ). If the size
of the σ -resolvent of p obtained viaU , denoted p[σ ,U],
does not exceed the bound given by Theorem 4.9, then

it assigns p[σ ,U] to p ′; otherwise, it rejects. Recall that
during a resolution step we need to rename variables in

order to avoid undesirable clutter. However, we cannot

blindly use new variables at each step since this will

explode the space used by the algorithm. Instead, we

should reuse variables that have been lost due to their

unification with an existentially quantified variable.

We only need polynomially many variables, while this

polynomial depends only on q and Σ.

Decomposition. It deletes fromp the atoms that occur inD,
and it assigns the obtained CQ p[−D] to p ′. Notice that
p[−D]may be empty in case atoms(p) ⊆ D. Essentially,
the algorithm decomposes p in such a way that the

subquery of p consisting of atoms(p)∩D forms a child

of p that is a leaf, while the subquery consisting of

atoms(p) \ D is the non-leaf child.

Specialization. It assigns to p ′ a specialized version of p,
where some variables are instantiated by constants of

dom(D). The convention that output variables corre-

spond to constants is implemented by directly instan-

tiating them with actual constants from dom(D).
After constructing p ′, the algorithm assigns it to p, and this

ends one iteration. If atoms(p) ⊆ D, then a linear proof tree

P such that c̄ ∈ P(D) has been found, and the algorithm

accepts; otherwise, it proceeds with the next iteration.

It is easy to see that the algorithm uses polynomial space

in general. Moreover, in case the set of TGDs and the CQ

are fixed, the algorithm uses logarithmic space, which is the

space needed for representing constantly many elements of

dom(D); each element of dom(D) can be represented using

logaritmically many bits. The desired upper bounds claimed

in Theorem 4.2 follow.

The Case of CQAns(WARD). The non-deterministic algo-

rithm discussed above cannot be directly used for warded

sets of TGDs since it is not enough to search for a linear

proof tree as in the case of piece-wise linear warded sets of

TGDs. However, by Theorem 4.10, we can search for a proof

tree that has bounded node-width. This allows us to devise

a space-bounded algorithm, which is similar in spirit as the

one presented above, with the crucial difference that it con-

structs in a level-by-level fashion the branches of the proof

tree in parallel universal computations using alternation.

Since this alternating algorithm uses polynomial space in

general, and logarithmic space when the set of TGDs and the

CQ are fixed, we immediately get an ExpTime upper bound

in combined, and a PTime upper bound in data complexity.

This confirms Proposition 3.2 established in [3, 17]. How-

ever, our new algorithm is significantly simpler than the one

employed in [3, 17], while Theorem 4.10 reveals the main

property of warded sets of TGDs that leads to the desirable

complexity upper bounds.

5 A JUSTIFIED COMBINATION
It is interesting to observe that the class of piece-wise linear

warded sets of TGDs generalizes the class of intensionally
linear sets of TGDs, denoted IL, where each TGD has at most

one body atom whose predicate is intensional. Therefore,

Theorem 4.2 immediately implies that CQAns(IL) is PSpace-
complete in combined complexity, and NLogSpace-complete

in data complexity. Notice that IL generalizes linear Data-

log, which is also PSpace-complete in combined complexity,

and NLogSpace-complete in data complexity. Thus, we can

extend linear Datalog by allowing existentially quantified

variables in rule heads, which essentially leads to IL, without
affecting the complexity of query answering.

At this point, one maybe tempted to think that the same

holds for piece-wise linear Datalog, i.e., we can extend it with

existentially quantified variables in rule heads, which leads

to PWL, without affecting the complexity of query answer-

ing, that is, PSpace-complete in combined, and NLogSpace-

complete in data complexity. However, if this is the case,

then wardedness becomes redundant since the formalism

that we are looking for is the class of piece-wise linear sets

of TGDs, without the wardedness condition. It turned out

that this is not the case. To our surprise, the following holds:

Theorem 5.1. CQAns(PWL) is undecidable in data com-
plexity.

To show the above result we exploit an undecidable tiling

problem [9]. A tiling system is a tuple T = (T ,L,R,H ,V ,a,b),
where T is a finite set of tiles, L,R ⊆ T are special sets

of left and right border tiles, respectively, with L ∩ R =
∅, H ,V ⊆ T 2

are the horizontal and vertical constraints,

and a,b are distinguished tiles of T called the start and the

finish tile, respectively. A tiling for T is a function f : [n] ×
[m] → T , for some n,m > 0, such that f (1, 1) = a, f (1,m) =
b, f (1, i) ∈ L and f (n, i) ∈ R, for every i ∈ [m], and f
respects the horizontal and vertical constraints. In other

words, the first and the last rows of a tiling for T start with a
andb, respectively, while the leftmost and rightmost columns

contain only tiles from L and R, respectively. We reduce from

the UnboundedTiling problem, that is, given a tiling system

T, decide whether there is a tiling for T. Given a tiling system
T = (T ,L,R,H ,V ,a,b), the goal is to construct in polynomial

time a database DT, a set of TGDs Σ ∈ PWL, and a Boolean

CQ q, such that T has a tiling iff () ∈ cert(q,DT, Σ); () is the
empty tuple. Note that Σ and q should not depend on T.

The Database DT. It simply stores the tiling system T:

{Tile(t) | t ∈ T } ∪ {Left(t) | t ∈ L} ∪ {Right(t) | t ∈ R}

∪ {H (t , t ′) | (t , t ′) ∈ H } ∪ {V (t , t ′) | (t , t ′) ∈ V }

∪ {Start(a), Finish(b)}.

The Set of TGDs Σ. It is responsible for generating all the
candidate tilings for T, i.e., tilings without the condition

f (1,m) = b, of arbitrary width and depth. Whether there

exists a candidate tiling for T that satisfies the condition

f (1,m) = b will be checked by the CQ q. The set Σ essen-

tially implements the following idea: construct rows of size ℓ
from rows of size ℓ − 1, for ℓ > 1, that respect the horizontal

constraints, and then construct all the candidate tilings by

combining compatible rows, i.e., rows that respect the verti-

cal constraints. A row r is encoded as an atom Row(p, c, s, e),
where p is the id of the row from which r has been obtained,

i.e., the previous one, c is the id of r , i.e., the current one, s is
the starting tile of r , and e is the ending tile of r . We write

Row(c, c, s, s) for rows consisting of a single tile, which do

not have a previous row (hence the id of the previous row

coincides with the id of the current row), and the starting

tile is the same as the ending tile. The following two TGDs

construct all the rows that respect the horizontal constraints:

Tile(x) → ∃z Row(z, z,x ,x),

Row(_,x ,y, z),H (z,w) → ∃u Row(x ,u,y,w).

Analogously to Prolog, we write “_” for a “don’t-care” vari-

able that occurs only once in the TGD. The next set of TGDs

constructs all the pairs of compatible rows, i.e., pairs of rows

(r1, r2) such that we can place r2 below r1 without violating

the vertical constraints. This is done inductively as follows:

Row(x ,x ,y,y),Row(x ′,x ′,y ′,y ′),V (y,y ′) → Comp(x ,x ′),

Row(x ,y, _, z),Row(x ′,y ′, _, z ′),

Comp(x ,x ′),V (z, z ′) → Comp(y,y ′).

We finally compute all the candidate tilings, together with

their bottom-left tile, using the following two TGDs:

Row(_,x ,y, z), Start(y),Right(z) → CTiling(x ,y),

CTiling(x , _),Row(_,y, z,w),Comp(x ,y),

Left(z),Right(w) → CTiling(y, z).

This concludes the definition of Σ.

The Boolean CQ q. Recall that q is responsible for checking

whether there exists a candidate tiling such that its bottom-

left tile is b. This can be easily done via the query

Q ← CTiling(x ,y), Finish(y).

By construction, Σ ∈ PWL. Moreover, there is a tiling for

T iff () ∈ cert(q,DT, Σ), and Theorem 5.1 follows.

6 EXPRESSIVE POWER
A class of TGDs naturally gives rise to a declarative database

query language. More precisely, we consider queries of the

form (Σ,q), where Σ is a set of TGDs, and q a CQ over sch(Σ).
The extensional (database) schema of Σ, denoted edb(Σ), is
the set of extensional predicates of sch(Σ), i.e., the predicates

that do not occur in the head of a TGD of Σ. Given a query

Q = (Σ,q) and a database D over edb(Σ), the evaluation
of Q over D, denoted Q(D), is defined as cert(q,D, Σ). We

write (C,CQ) for the query language consisting of all the

queries (Σ,q), where Σ ∈ C, and q is a CQ. The evaluation

problem for such a query language, dubbed Eval(C,CQ),
is defined in the usual way. By definition, c̄ ∈ Q(D) iff c̄ ∈
cert(q,D, Σ). Therefore, the complexity of Eval(C,CQ)when
C =WARD∩PWL and C =WARD is immediately inherited

from Theorem 4.2 and Proposition 3.2, respectively:

Theorem 6.1. The following statements hold:
(1) Eval(WARD ∩ PWL,CQ) is PSpace-complete in com-

bined, and NLogSpace-complete in data complexity.
(2) Eval(WARD,CQ) is ExpTime-complete in combined,

and PTime-complete in data complexity.

The main goal of this section is to understand the relative

expressive power of (WARD ∩ PWL,CQ) and (WARD,CQ).
To this end, we are going to adopt two different notions

of expressive power namely the classical one, which we

call combined expressive power since it considers the set of

TGDs and the CQ as one composite query, and the program

expressive power, which aims at the decoupling of the set

of TGDs from the actual CQ. We proceed with the details

starting with the combined expressive power.

6.1 Combined Expressive Power
Consider a query Q = (Σ,q), where Σ is a set of TGDs and

q(x̄) a CQ over sch(Σ). The expressive power of Q , denoted
ep(Q), is the set of pairs (D, c̄), where D is a database over

edb(Σ), and c̄ ∈ dom(D) |x̄ | , such that c̄ ∈ Q(D). The com-
bined expressive power of a query language (C,CQ), where
C is a class of TGDs, is defined as the set

cep(C,CQ) = {ep(Q) | Q ∈ (C,CQ)}.

Given two query languages Q1,Q2, we say that Q2 is more
expressive (w.r.t. the combined expressive power) thanQ1, writ-

tenQ1 ≤cep Q2, if cep(Q1) ⊆ cep(Q2). We say thatQ1 andQ2

are equally expressive (w.r.t. the combined expressive power),
written Q1 =cep Q2, if Q1 ≤cep Q2 and Q2 ≤cep Q1.

The next easy lemma states that Q1 =cep Q2 is equivalent

to say that every query of Q1 can be equivalently rewritten

as a query of Q2, and vice versa. Given two query languages

Q1 and Q2, we write Q1 ≼ Q2 if, for every Q = (Σ,q) ∈ Q1,

there exists Q ′ = (Σ′,q′) ∈ Q2 such that, for every D over

edb(Σ), Q(D) = Q ′(D).

Lemma 6.2. Consider two query languages Q1 and Q2. It
holds that Q1 ≤cep Q2 iff Q1 ≼ Q2.

We are now ready to state the main result of this section,

which reveals the expressiveness of (WARD ∩ PWL,CQ)
and (WARD,CQ) relative to Datalog. Let us clarify that a

Datalog query is essentially a pair (Σ,q), where Σ is a Datalog

program, or a set of fullTGDs, i.e., TGDswithout existentially
quantified variables, that have only one head atom, and q a

CQ. We write FULL1 for the above class of TGDs. In other

words, piece-wise linear Datalog, denoted PWL-DATALOG,
is the language (FULL1 ∩PWL,CQ), while Datalog, denoted
DATALOG, is the language (FULL1,CQ), and thus we can

refer to their combined expressive power.

Theorem 6.3. The following statements hold:
(1) PWL-DATALOG =cep (WARD ∩ PWL,CQ).
(2) DATALOG =cep (WARD,CQ).

Let us explain how (1) is shown; the proof for (2) is

similar. We need to show that: (a) PWL-DATALOG ≤cep
(WARD ∩ PWL,CQ), and (b) (WARD ∩ PWL,CQ) ≤cep
PWL-DATALOG. By definition, FULL1 ∩ PWL ⊆ WARD ∩
PWL. Thus, (FULL1 ∩ PWL,CQ) ≼ (WARD ∩ PWL,CQ),
which, together with Lemma 6.2, implies (a). For showing

(b), by Lemma 6.2, it suffices to show that:

Lemma 6.4. (WARD ∩ PWL,CQ) ≼ PWL-DATALOG.

The key idea underlying the above lemma is to con-

vert a linear proof tree P of a CQ q(x̄) w.r.t. a set Σ ∈
WARD ∩ PWL of TGDs into a piece-wise linear Datalog

query Q = (Σ′,q′(x̄)) such that, for every database D over

edb(Σ), P(D) = Q(D). Roughly, each node of P together

with its children, is converted into a full TGD that is added

to Σ′. Assume that the node v has the children u1, . . . ,uk in

P, where v is labeled by p0(x̄0) and, for i ∈ [k], ui is labeled
by the CQ pi (x̄i) with x̄0 ⊆ x̄i . We then add to Σ′

C[p1](x̄1), . . . ,C[pk](x̄k) → C[p0](x̄0),

where C[pi] is a predicate that corresponds to the CQ pi ,
while [pi] refers to a canonical renaming of pi . The intention
underlying such a canonical renaming is the following: if pi
and pj are the same up to variable renaming, then [pi] = [pj].
We also add to Σ′ a full TGD

R(x1, . . . ,xn) → C[pR](x1, . . . ,xn)

for each n-ary predicate R ∈ edb(Σ), where pR (x1, . . . ,xn) is
the atomic query consisting of the atom R(x1, . . . ,xn). Since
in P we may have several CQs that are the same up to vari-

ables renaming, the set Σ′ is recursive, but due to the lin-

earity of P, the employed recursion is piece-wise linear,

i.e., Σ′ ∈ FULL1 ∩ PWL. The CQ q′(x̄) is simply the atomic

query C[q](x̄). It should not be difficult to see that indeed

P(D) = Q(D), for every database D over edb(D).
Having the above transformation of a linear proof tree

into a piece-wise linear Datalog query in place, we can eas-

ily rewrite every query Q = (Σ,q) ∈ (WARD ∩ PWL,CQ)
into an equivalent query that falls in PWL-DATALOG. We

exhaustively convert each linear proof tree P of q w.r.t. Σ

such that nwd(P) ≤ fWARD∩PWL(q, Σ) into a piece-wise lin-

ear Datalog query QP , and then we take the union of all

those queries. Since we consider the canonical renaming

of the CQs occurring in a proof tree, and since the size of

those CQs is bounded by fWARD∩PWL(q, Σ), we immediately

conclude that we need to explore finitely many CQs. Thus,

the above iterative procedure will eventually terminate and

construct a finite piece-wise linear Datalog query that is

equivalent to Q , as needed.

6.2 Program Expressive Power
The expressive power of a set Σ of TGDs, denoted ep(Σ), is the
set of triples (D,q(x̄), c̄), where D is a database over edb(Σ),
q(x̄) is a CQ over sch(Σ), and c̄ ∈ dom(D) |x̄ | , such that

c̄ ∈ cert(q,D, Σ). The program expressive power of a query
language (C,CQ), where C is a class of TGDs, is defined as

pep(C,CQ) = {ep(Σ) | Σ ∈ C}.

Given two query languages Q1,Q2, we say that Q2 is more
expressive (w.r.t. program expressive power) than Q1, written

Q1 ≤pep Q2, if pep(Q1) ⊆ pep(Q2). Moreover, we say thatQ2

is strictly more expressive (w.r.t. the program expressive power)
that Q2, written Q1 <pep Q2, if Q1 ≤pep Q2 and Q2 �pep Q1.

Let us now establish a useful lemma, analogous to

Lemma 6.2, which reveals the essence of the program ex-

pressive power. For brevity, given two classes of TGDs C1

and C2, we write C1 ≼ C2 if, for every Σ ∈ C1, there exists

Σ′ ∈ C2 such that, for every D over edb(Σ), and CQ q over

sch(Σ), Q(D) = Q ′(D), where Q = (Σ,q) and Q ′ = (Σ′,q).

Lemma 6.5. Consider two query languages Q1 = (C1,CQ)
and Q2 = (C2,CQ). Then, Q1 ≤pep Q2 iff C1 ≼ C2.

We are now ready to study the expressiveness (w.r.t. the

program expressive power) of (WARD ∩ PWL,CQ) and
(WARD,CQ) relative to Datalog. In particular, we show that:

Theorem 6.6. The following statements hold:
(1) PWL-DATALOG <pep (WARD ∩ PWL,CQ).
(2) DATALOG <pep (WARD,CQ).

Let us explain how (1) is shown; the proof for (2) is

similar. We need to show that: (a) PWL-DATALOG ≤pep
(WARD ∩ PWL,CQ), and (b) (WARD ∩ PWL,CQ) �pep
PWL-DATALOG. Since, by definition, FULL1 ∩ PWL ⊆
WARD ∩ PWL, we immediately get that FULL1 ∩ PWL ≼
WARD∩PWL, and thus, by Lemma 6.5, (a) follows. For show-

ing (b), by Lemma 6.5, it suffices to show that:

Lemma 6.7. WARD ∩ PWL � FULL1 ∩ PWL.

By contradiction, assume the opposite. We define the set

of TGDs Σ = {P(x) → ∃y R(x ,y)}, the database D = {P(c)},
and the CQs q1 = Q ← R(x ,y) and q2 = Q ← R(x ,y), P(y).
By hypothesis, there exists Σ′ ∈ FULL1 ∩ PWL such that

Q1(D) = Q ′
1
(D) and Q2(D) = Q ′

2
(D), where Qi = (Σ,qi)

and Q ′i = (Σ
′,qi), for i ∈ {1, 2}. Clearly, Q1(D) , ∅ and

Q2(D) = ∅, which implies that Q ′
1
(D) , ∅ and Q ′

2
(D) = ∅.

However, it is easy to see that Q ′
1
(D) , ∅ implies Q ′

2
(D) , ∅,

which is a contradiction, and the claim follows.

7 IMPLEMENTATION AND FUTURE
WORK

The Vadalog system is currently optimized for piece-wise

linear warded sets of TGDs in three ways: (i) the first one is

related to the way that existential quantifiers interact with

recursion; (ii) the second one is related to the optimizer,

which detects and uses piece-wise linearity for the purpose of

join ordering; (iii) the third way is related to the architecture

of the system. Here are some directions for future research:

(1) As said in Section 1, NLogSpace is contained in the class

NC2 of highly parallelizable problems. This means that

reasoning under piece-wise linear warded sets of TGDs is

principally parallelizable, unlikewarded sets of TGDs.We

plan to exploit this for the parallel execution of reasoning

tasks in multi-core settings and in the map-reduce model.

(2) Reasoning with piece-wise linear warded sets of TGDs is

LogSpace-equivalent to reachability in directed graphs.

Reachability in very large graphs has been well-studied

and many algorithms and heuristics have been designed

that work well in practice; see, e.g., [13, 18, 20]. We are

confident that several of these algorithms can be adapted

for our purposes.

(3) Reachability in directed graphs is known to be in the

dynamic parallel complexity class Dyn-FO [14, 26]. This

means that by maintaining suitable auxiliary data struc-

tures when updating a graph, reachability testing can ac-

tually be done in FO, and thus in SQL. We plan to analyze

whether reasoning under piece-wise linear warded sets

of TGDs, or relevant subclasses thereof, can be shown to

be in Dyn-FO or some other dynamic complexity classes.

Acknowledgements. We thank the anonymous referees

for their useful feedback. This work was supported by the

EPSRC Programme Grant EP/M025268/ VADA, the EPSRC

grant EP/S003800/1 EQUID, theWWTF grant VRG18-013, the

EU Horizon 2020 grant 809965, the FWF grant W1255-N23,

and a DOC fellowship of the Austrian Academy of Sciences.

REFERENCES
[1] Foto N. Afrati, Manolis Gergatsoulis, and Francesca Toni. 2003. Lin-

earisability on datalog programs. Theor. Comput. Sci. 308, 1-3 (2003),
199–226.

[2] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2014. Expressive

languages for querying the semantic web. In PODS. 14–26.
[3] Marcelo Arenas, Georg Gottlob, and Andreas Pieris. 2018. Expressive

Languages for Querying the Semantic Web. ACM Trans. Database Syst.
43, 3 (2018), 13:1–13:45.

[4] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller.

2015. The iBench Integration Metadata Generator. PVLDB 9, 3 (2015),

108–119.

[5] Catriel Beeri and Moshe Y. Vardi. 1981. The Implication Problem for

Data Dependencies. In ICALP. 73–85.
[6] Luigi Bellomarini, Georg Gottlob, Andreas Pieris, and Emanuel

Sallinger. 2017. Swift Logic for Big Data and Knowledge Graphs.

In IJCAI. 2–10.
[7] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The

Vadalog System: Datalog-based Reasoning for Knowledge Graphs.

PVLDB 11, 9 (2018), 975–987.

[8] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris

Motik, Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017.

Benchmarking the Chase. In PODS. 37–52.
[9] Peter Van Emde Boas. 1997. The Convenience of Tilings. In Complexity,

Logic, and Recursion Theory. 331–363.
[10] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infi-

nite Chase: Query Answering under Expressive Relational Constraints.

J. Artif. Intell. Res. 48 (2013), 115–174.
[11] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette,

and Andreas Pieris. 2010. Datalog+/-: A Family of Logical Knowledge

Representation and Query Languages for New Applications. In LICS.
228–242.

[12] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Towards more

expressive ontology languages: The query answering problem. Artif.
Intell. 193 (2012), 87–128.

[13] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reach-

ability and Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5
(2003), 1338–1355.

[14] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick,

and Thomas Zeume. 2015. Reachability is in DynFO. In ICALP. 159–
170.

[15] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.

2005. Data exchange: semantics and query answering. Theor. Comput.
Sci. 336, 1 (2005), 89–124.

[16] GeorgGottlob, Giorgio Orsi, andAndreas Pieris. 2014. Query Rewriting

and Optimization for Ontological Databases. ACM Trans. Database
Syst. 39, 3 (2014), 25:1–25:46.

[17] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL

2 QL Entailment Regime: Rules to the Rescue. In IJCAI. 2999–3007.
[18] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Effi-

ciently answering reachability queries on very large directed graphs.

In SIGMOD. 595–608.
[19] David S. Johnson and Anthony C. Klug. 1984. Testing Containment of

Conjunctive Queries under Functional and Inclusion Dependencies. J.
Comput. Syst. Sci. 28, 1 (1984), 167–189.

[20] Valerie King. 1999. Fully Dynamic Algorithms for Maintaining All-

Pairs Shortest Paths and Transitive Closure in Digraphs. In FOCS.
81–91.

[21] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël

Thomazo. 2015. Sound, complete and minimal UCQ-rewriting for

existential rules. Semantic Web 6, 5 (2015), 451–475.
[22] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui

Xiao, and Michael Zakharyaschev. 2014. Answering SPARQL Queries

over Databases under OWL 2 QL Entailment Regime. In ISWC. 552–
567.

[23] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing

Implications of Data Dependencies. ACM Trans. Database Syst. 4, 4
(1979), 455–469.

[24] Jeffrey F. Naughton. 1986. Data Independent Recursion in Deductive

Databases. In PODS. 267–279.
[25] Jeffrey F. Naughton and Yehoshua Sagiv. 1987. A Decidable Class of

Bounded Recursions. In PODS. 227–236.
[26] Sushant Patnaik and Neil Immerman. 1997. Dyn-FO: A Parallel, Dy-

namic Complexity Class. J. Comput. Syst. Sci. 55, 2 (1997), 199–209.

	Abstract
	1 Introduction
	1.1 The Vadalog System
	1.2 Research Challenges
	1.3 Summary of Contributions

	2 Preliminaries
	3 The Logical Core of VADALOG
	4 Limiting Recursion
	4.1 Query Answering via Proof Trees
	4.2 Well-behaved Proof Trees
	4.3 Complexity Analysis

	5 A Justified Combination
	6 Expressive Power
	6.1 Combined Expressive Power
	6.2 Program Expressive Power

	7 Implementation and Future Work
	References

