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Abstract 

NASA’s GEDI (Global Ecosystem Dynamics Investigation) mission will collect waveform lidar 

data at a dense sample of ~25-m footprints along ground tracks paralleling the orbit of the 

International Space Station (ISS).  GEDI’s primary science deliverable will be a 1-km grid of 

estimated mean aboveground biomass density (Mg/ha), covering the latitudes overflown by ISS 

(51.6°S to 51.6°N).  One option for using the sample of waveforms contained within an 

individual grid cell to produce an estimate for that cell is hybrid inference, which explicitly 

incorporates both sampling design and model parameter covariance into estimates of variance 

around the population mean.  We explored statistical properties of hybrid estimators applied in 

the context of GEDI, using simulations calibrated with lidar and field data from six diverse sites 

across the United States.  We found hybrid estimators of mean biomass to be unbiased and the 

corresponding estimators of variance appeared to be asymptotically unbiased, with under-

estimation of variance by approximately 20% when data from only two clusters (footprint tracks) 

were available.  In our study areas, sampling error contributed more to overall estimates of 

variance than variability due to the model, and it was the design-based component of the 

variance that was the source of the variance estimator bias at small sample sizes.  These results 

highlight the importance of maximizing GEDI’s sample size in making precise biomass 

estimates.  Given a set of assumptions discussed here, hybrid inference provides a viable 

framework for estimating biomass at the scale of a 1-km grid cell while formally accounting for 

both variability due to the model and sampling error. 
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1. Introduction 

The NASA GEDI (Global Ecosystem Dynamics Investigation) mission mounted a full-waveform 

lidar instrument on the International Space Station (ISS) in late 2018.  GEDI is designed to 

measure forest structure, and one of its primary science deliverables will be a 1-km grid of mean 

aboveground biomass density (AGBD in Mg/ha) estimates over the forested areas between 51.6° 

N and S (the range of the ISS).  The basic lidar metric supporting these estimates will be 

waveforms related to the canopy height density profile for 25-m (diameter) footprints, spaced 60-

m apart along ground tracks paralleling the ISS orbit.  After two years of operation, GEDI will 

have covered the majority of 1-km cells with two or more ground tracks.  Performance of other 

lidar instruments suggests that canopy height and structure metrics derived from GEDI data will 

be strongly correlated with AGBD (Zolkos et al. 2013). 

This paper concerns the challenge of using spatially discontinuous lidar footprint data acquired 

along tracks to estimate mean AGBD within each 1-km grid cell.  One approach has been to 

“scale up” from field data to spatially coincident lidar footprints using one level of models, apply 

those models to all lidar footprints, and then use the lidar-based AGBD predictions to calibrate 

another level of models that predict AGBD using coarse-resolution optical or radar data 

(e.g.,(Baccini et al. 2017)). However, while diagnostics such as Root Mean Square Error from 

the latter model can be used to indicate confidence for predictions at the scale of each coarse-

resolution grid cell under such an approach, ignoring residual variance in the field-to-lidar model 

can hide substantial  uncertainty (Saarela et al. 2016), as can discounting the sampling 

uncertainty involved with associating fine-grain lidar measurements with coarser remote sensing 

data. 
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In this paper, we propose the use of hybrid inference ((Fattorini, 2012); (Ståhl et al. 2016)) to 

estimate mean AGBD , with associated uncertainty, at the level of the GEDI grid cell while 

explicitly accounting for both field-to-lidar model error as well as sampling uncertainty.  Hybrid 

methods have been used with both spaceborne (Healey et al. 2012; Margolis et al. 2015) and 

airborne (Corona et al. 2014; Ståhl et al. 2011) lidar instruments to estimate forest AGBD, 

though never for areas corresponding to grid cells.  The calibration/application approach we 

propose (Figure 1) relies upon lidar datasets contributed from around the world being converted 

to GEDI-like waveforms that realistically incorporate several types of uncertainty (Hancock et 

al. 2019).  Resulting simulated GEDI waveforms are being related to corresponding ground 

measurements to create parametric, footprint-level AGBD  models (Kellner et al. 2018). 

Using hybrid estimation, these models will be applied to all footprints acquired by GEDI, and the 

resulting predictions will form the basis of a sample-based estimate of mean AGBD within each 

grid cell; no wall-to-wall imagery will be used.  Our estimators of mean AGBD and the variance 

of that mean are similar to those used by Ståhl et al. (2011), treating GEDI tracks intersecting a 

1-km grid cell as a simple random sample of clustered observations.  Variance is estimated as a 

function of: 1) the number of clustered predicted footprint-level AGBD values and the variability 

among them, as well as 2) the uncertainty of the parameter estimates used in the footprint-level 

models. 

Key assumptions in this approach include the following: (1) the parameter covariance matrix 

generated during the footprint modeling process appropriately conveys the uncertainty of 

footprint-level AGBD predictions; (2) GEDI waveforms simulated from airborne data adequately 

represent signals received from the sensor, and; (3) the expected values of the proposed hybrid 
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estimators are unbiased.  This paper evaluates this third assumption. 

 

Figure 1.  Proposed pre-launch calibration approach, using simulated GEDI waveforms 

collected over closely geo-registered field plots to develop waveform-to-AGBD relationships 

that may be applied to all footprints.  Hybrid estimators access both properties of how GEDI 

samples the grid cell as well as the footprint model parameter covariance. 

The objectives of this study were to 1) propose a framework through which hybrid inference can 

be used with GEDI data to estimate mean AGBD and the variance of that mean; and 2) using 

GEDI waveforms simulated from airborne small-footprint lidar for 60 diverse grid cells, 

construct a simulation that tests the bias of the proposed estimators.   Documenting estimator 

performance is an important step in evaluating Figure 1’s approach to turning GEDI’s high-

quality, spatially discontinuous observations into directly interpretable gridded estimates of mean 

AGBD across the globe. 

2. Methods 

This section describes the proposed GEDI sample, estimators and a test of the proposed 
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estimators.  The first subsection describes the proposed sampling framework and our application 

of hybrid estimators to estimate both mean AGBD and variance of the mean. An empirical 

assessment of the properties of these estimators in the GEDI context is presented in the third 

subsection and in Appendix S2, while field and lidar data supporting this assessment are 

described in the second subsection and in Appendix S1.  Consideration of the role of spatial 

autocorrelation, specific to the case of the GEDI 1-km cell is given in Appendix S3, while 

footprint-level modeling details are in Appendix S4. 

2.1 Estimators 

The GEDI instrument will produce 25-m (diameter) footprint observations along tracks 

paralleling the ISS obit. The intersection of a track with a 1-km cell produces a collection of 

GEDI footprints, to be denoted here as a cluster. We propose to view each 1-km grid cell as 

tessellated into equal-area non-overlapping population elements, each representing a potential 

GEDI footprint. GEDI footprints are population elements sampled by the GEDI instrument.  

Figure 2 illustrates this conception, adapted to the spatial dimensions of lidar and field data 

available for this study.  Footprint (20m) and grid cell dimensions (approximately 800 m) used 

here (illustrated in Figure 2) were considered sufficiently similar to GEDI to support applied 

testing of the estimators described below. For simplicity, we consider tracks as having either a 

45° or 135° degree inclination for descending or ascending orbits, respectively, although ISS 

inclination patterns will vary across latitudes. In this idealization, we assert that there are two 

potential disjoint clusters for the intersection of a track with a grid cell – one starting on the 

border footprint, and one starting with the subsequent along-track footprint. The sample will be 

the set of clusters from the tracks that intersect the 1 km grid cell; due to variability of the ISS 
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orbit this sample can be considered a simple random sample of clusters of GEDI footprints.  In 

this exercise, we do not consider missing data issues that will arise because of clouds. 

 

Figure 2.  Near canopy top height (height from below which 96% of lidar energy returns) for 

GEDI footprints simulated from airborne data in one of six sites in the Pennsylvania/New Jersey 

study area.  A possible sample of three clusters is shown. 
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The population parameter of interest is the average of the true AGBD over the 𝑁 population 

elements (potential GEDI footprints), where 𝑁 is the total number of population elements in a 

grid cell.  For a 1-km grid cell, 𝑁 is equal to 2,500 20x20-meter population elements, where the 

footprints in this realization would have a 20-m diameter. There is a parametric model, 𝑔(𝒙, 𝜶), 

of AGBD in Mg/ha, where 𝒙 are characteristics of the GEDI waveform for the GEDI footprint, 

and 𝜶 is a vector of parameters.  The true AGBD for a footprint is assumed to deviate from the 

𝑔(𝒙, 𝜶) by a random quantity, 𝜀, with an expected sum of zero.  Under the assumption that the 

model is an unbiased predictor of the true AGBD, and ignoring model misspecification error, the 

modeled value 𝑔(𝒙, 𝜶) will be used in place of the true AGBD. The mean can be expressed in 

terms of GEDI ground clusters.  There are M non-overlapping clusters distributed across all 

possible tracks.  There are be 𝑇𝑖 footprints in the ith cluster. The reader may have noted that each 

population element is in one ascending cluster and one descending cluster. We can express the 

population attribute, the average expected predicted AGBD over the 𝑁 population elements, in 

terms of the clusters; that is: 

 𝜇𝑌 =
∑ ∑ 𝑔(𝒙𝑖𝑡, 𝜶)𝑇𝑖

𝑡=1
𝑀
𝑖=1

2𝑁
 [1]  

where the modeled AGBD for each population element occurs in the numerator twice. 

 

Equation 1 will be expressed in an equivalent form, for which there is an estimator and a method 

of calculating an approximate variance. Let 𝐺𝑖 = ∑ 𝑔(𝒙𝑖𝑡, 𝜶)𝑇𝑖
𝑡=1 , equal the cluster total of the 

predicted AGBD per hectare for the footprints in the ith cluster. Equation 1 can be expressed as 

the ratio of the mean (or sum of) AGBD per cluster and the mean (or sum of) number of 
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elements per cluster:  

 𝜇𝑌 =
∑ 𝐺𝑖

𝑀
𝑖

∑ 𝑇𝑖
𝑀
𝑖=1

=
𝑀−1 ∑ 𝐺𝑖

𝑀
𝑖

𝑀−1 ∑ 𝑇𝑖
𝑀
𝑖=1

 [2]  

Parameter estimates, �̂�, for the model 𝑔(𝒙, 𝜶) are based on a separate sample, 𝑆𝑚, that is 

independent of the1-km grid cell. In Equation [1] or [2] the parameters, 𝜶, are replaced by the 

parameter estimates, �̂�, and the population number of clusters, 𝑀, by the sample number of 

clusters, 𝑚, to get the estimator �̂�𝑌, i.e., 𝐺𝑖 with �̂�𝑖 = ∑ 𝑔(𝒙𝑖𝑡, �̂�)𝑇𝑖
𝑡=1  

 �̂�𝑌 =
∑ ∑ 𝑔(𝒙𝑖𝑡, �̂�)𝑇𝑖

𝑡=1
𝑚
𝑖

∑ 𝑇𝑖
𝑚
𝑖=1

=
∑ �̂�𝑖

𝑚
𝑖

∑ 𝑇𝑖
𝑚
𝑖=1

 [3]  

The second component of the equation expresses the estimator �̂�𝑌, the sample mean of all 

predicted AGBD (per sample element) which is an estimator of the population average expected 

AGBD (per element). The population true average AGBD differs randomly from the expected 

value 𝜇𝑌 by the population average 𝜀 ̅of the N deviations 𝜀𝑖𝑡. For large 𝑁 the contribution of  𝜀 ̅to 

the total random error can be assumed negligible compared to the other two sources of 

uncertainty (the sampling error and the variability due to the model, see below), even if spatial 

autocorrelation is present. Hence, it is sufficient to assume the size of the grid cell (and thus 𝑁) is 

large enough to imply that the average 𝜀 ̅will be close to zero. This assumption, along with the 

assumptions related to model fit will be covered in the discussion section. 

As noted in the Introduction, the GEDI sample will be treated a simple random sample of 

clusters of GEDI footprints.  The estimator in Equation [3] can be viewed as estimating the mean 

of cluster totals and mean number of footprints separately, and then combining as a ratio 

estimator: 
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 �̂�𝑌

∑ �̂�𝑖
𝑚
𝑖

∑ 𝑇𝑖
𝑚
𝑖=1

=
𝑚−1 ∑ �̂�𝑖

𝑚
𝑖

𝑚−1 ∑ 𝑇𝑖
𝑚
𝑖=1

=
�̅̂�

�̅�
= [4]  

This estimation strategy combines a probability sample of auxiliary information (as opposed to 

wall-to-wall auxiliary information) with a prediction for the population element value, AGBD, 

instead of directing observing AGBD. Ståhl et al. (2011) proposed an estimator of the form of 

Equation 4 and derived an estimator of the approximate variance. Due to the small sample size 

used in that study in relation to the population size, Ståhl et al. (2011) did not include a finite 

population correction. A finite population correction may need to be taken into account in 

GEDI’s case. Expression 5 below is the variance estimator proposed in Ståhl et al (2011), with 

the addition of the finite population correction: 

 

�̂�(�̂�𝑌) =
1

�̅�2
(1 −

𝑚

𝑀
)

∑ (�̂�𝑖 − �̂�𝑌𝑇𝑖)
2𝑚

𝑖=1

𝑚(𝑚 − 1)

+
1

�̅�2
∑ ∑ 𝐶𝑜�̂�𝑆𝑚

(�̂�𝑗 , �̂�𝑘)

𝑝

𝑘=1

𝑝

𝑗=1

�̂̅�𝑗
′�̂̅�𝑘

′  

[5]  

The first term is due to the sampling error and the second term is due to effects of uncertainty of 

the �̂� estimates (Ståhl et al. 2011). The 𝐶𝑜�̂�(�̂�) is the estimated covariance matrix of the p-

parameter estimates, where the estimate is based on the separate set of data, 𝑆𝑚, that is 

independent of the1-km grid cell. For simplicity the first term is referred as the sample 

component and second term the model component. . If we assume a linear model, that is 

𝑔(𝒙𝑖𝑡, �̂�) = �̂�1 + ∑ 𝑥𝑖𝑡𝑗�̂�𝑗
𝑝
𝑗=2 , where 𝑥𝑖𝑡𝑗 is the jth component of 𝒙𝑖𝑡, then, �̂̅�𝑗

′ =

1

𝑚
∑ ∑ 𝑥𝑖𝑡𝑗

𝑇𝑖
𝑡=1

𝑚
𝑖=1  . Let �̂̅� be the vector of the means of the cluster totals of the predictor variables, 

i.e., �̂̅�𝑗 =
1

𝑚
∑ ∑ 𝑥𝑖𝑡𝑗

𝑇𝑖
𝑡=1

𝑚
𝑖=1 , for 𝑗 = 1, … , 𝑝. Then the second component on the right side of 
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Equation 5 can be expressed in matrix notation:  

 ∑ ∑ 𝐶𝑜�̂�𝑆𝑚
(�̂�𝑗 , �̂�𝑘)

𝑝

𝑘=1

𝑝

𝑗=1

�̂̅�𝑗
′�̂̅�𝑘

′ = �̂̅�𝑇𝐶𝑜�̂�(�̂�)�̂̅�  [6]  

Note that �̂̅�1 is equal to �̅�. In the construction of Equation [5], a Taylor linearization process is 

used twice; first with regards to the model parameters of 𝑔(𝒙, �̂�) (Ståhl et al. (2011) and second 

to estimate variance of a ratio estimator (Sändal et al. 1992) 

The empirical data described in Section 2.2 were used to calibrate the simulation study described 

in Section 2.3 to evaluate the statistical properties of these estimators in the GEDI setting. 

2.2 Supporting datasets 

Lidar and field data collected over six diverse areas in the United States supported this study.  

These areas were defined by the non-overlapping window (Thiessen Scene Area) of a local 

Landsat scene.  The six scenes (given by numeric WRS-2 Path/Row) included one each in: 

northern Maine (“ME”: 12/28, excluding the Canadian portion); eastern Pennsylvania and central 

New Jersey (“PA/NJ”: 14/32); coastal South Carolina (“SC”: 16/37); northern Minnesota 

(“MN”: 27/27); northwestern Colorado (“CO”: 35/32); and western Oregon (“OR”: 45/30) 

(Figure 3). The selected areas represented a wide range of forest ecosystems and disturbance 

processes, as described by Cohen et al. (2017) and Healey et al. (2018).  Small-footprint lidar 

was collected at each site in the pattern displayed in Figure 3, and a waveform simulator 

developed by the GEDI Science Definition Team was used to simulate GEDI waveforms from 

the airborne data.  Data collection and waveform simulation is described in Appendix S1. 
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Figure 3.  Location of the study’s six focal areas, with detail for the SC site (24/34) showing 

airborne lidar flight lines.  The width of each line was variable: ~300-900 m. Adapted from 

Healey et al., 2018. 

2.3 Evaluating estimator performance 

Simulations were conducted to examine the properties of the above estimators of mean AGBD 

and variance of the estimated mean.  Modeled AGBD values treated as truth for each population 

element were developed for sixty square grid cells (ten randomly chosen grid cells at each of the 

six test areas in Figure 3) of dimensions approximately similar to GEDI’s product specifications.  

These populations were created by applying a linear model to the GEDI metrics simulated from 

actual small-footprint lidar acquisitions (Figure 2).  Appendix S2 details the process of both 
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establishing the true population and simulating different potential cluster patterns and model 

parameter combinations to test the proposed estimators under a range of conditions.  The 

advantage of using real data to develop the “true” population, as opposed to simulating arbitrary 

AGBD surfaces, was that it ensured realistic covariance among lidar metrics.   To the degree that 

lidar metrics are correlated with AGBD (see Appendix S3), this approach also created a realistic 

spatial representation of biomass and of residual prediction error when different realizations of 

model parameters were applied to the lidar metrics. The swath width of the available lidar data 

limited the size of these test cells to between 680x680 m and 800x800 m (instead of 1-km); as 

mentioned earlier, this was considered adequate for the tests described below.   

3. Results 

The mean true AGBD of the 60 simulated grid cell-scale populations ranged from 1 to 183 

Mg/ha.  There was little difference between the true and expected estimated values across 

simulated grid cells (Figure 4).  Divergence between these quantities centered around zero, and 

decreased with more clusters (Figure 5). 
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Figure 4: Expected estimate of AGBD (Mg/ha) versus true AGBD  (on the X axis) for both two 

and six tracks.  The line represents y=x. 

  

Figure 5: Boxplot of percent bias for ABGD estimates (Equation 4) at the grid cell level.  

Outliers are divided into categories defined by the mean AGBD for the simulated cell (0-25, 25-

90, and 90+ Mg/ha).  

The empirical percent bias of the variance estimator (Equation 5) as a function of number of 
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clusters is shown in Figure 6.  The estimator appears to be only asymptotically unbiased, with 

mean underestimation of variance at approximately 21% with two clusters and 2% with six 

clusters.  Outliers in Figures 5 and 6, which measure bias as a percent of the mean AGBD, 

tended to be low-biomass locations. 

   

Figure 6: Boxplot of the empirical percent bias in the variance estimator for each grid cell 

(Equation 5). Outliers are divided into categories defined by the mean AGBD for the simulated 

cell (0-25, 25-90, and 90+ Mg/ha).   

The variance under-prediction at low numbers of clusters may be traced to the sample 

component of Equation 5, not the model component (Figure 7). 
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Figure 7.  Decomposition of bias in overall grid cell-level variance estimates (Figure 6) into 

sample and model contributions. 

 

In most cases, the sampling component of the variance was larger than the model component 

(Figure 8).  With more tracks, overall variance of the estimate went down, and model variance 

accounted for a larger percentage of that variance. 
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Figure 8: Sample variance as a percentage of the total variance versus the percent standard 

error (square root of the variance) for 2 clusters and 6 clusters. More clusters reduced both 

overall variance and the importance of the sample component of the variance. 

4. Discussion  

4.1 Advantages and assumptions 

Earlier work with NASA’s GLAS (Geoscience Laser Altimeter System) instrument pioneered 

the use of spaceborne lidar to make forest AGBD maps, often employing models that related 

field biomass to lidar and then, in a separate stage, related lidar-modeled biomass to synoptic 

data from sources like the MODIS satellites.  While some work has attempted to impose a 

statistical framework on the use of such maps (e.g., (Nelson et al. 2017)), most have employed 

ad hoc approaches to uncertainty.  Mitchard et al. (2014) pointed out two such ad hoc error 

budgeting approaches that yielded estimates across the Amazon that did not overlap with each 
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other’s relatively narrow confidence intervals, suggesting unacknowledged uncertainty in one or 

both estimates. 

Saarela et al. (2016) concluded that ignoring error occurring in the field-to-lidar step, as is often 

done, can lead to underestimation of variance by a factor of three.  The spatial mismatch inherent 

in modeling AGBD in large pixels from constituent smaller-footprint measurements can also 

introduce uncertainties not clearly addressed in variance estimates (Réjou-Méchain et al. 2014).  

The proposed hybrid approach does explicitly account for field-to-lidar model error, and it also 

accounts for sample error as footprints are combined to infer mean 1-km AGBD. 

However, the hybrid approach summarized in Figure 1 is subject to at least three important 

assumptions.  The first is that the GEDI waveform simulator (Hancock et al., 2019; described in 

Appendix S2) correctly translates pulse counts to waveform data while representing the 

important sources of error.  The benefit of using simulated GEDI data at precisely known 

locations to build footprint-level models is that it obviates potential error related to the positional 

uncertainty of GEDI footprints (currently estimated to be on the order of 10 m, post-processed).  

The risk is that any systematic simulator error may be propagated through footprint-level models 

to bias the 1-km mean AGBD estimates. However, the simulator is based on well-validated work 

by Hofton and Blair (1999) and it is unlikely violations of this assumption are substantial. 

A second assumption is that one square kilometer is a large enough domain, given spatial 

autocorrelation of the population, that residual model error may be considered negligible.  Mean 

residual error in the footprint AGBD model is presumed to tend toward zero over a large number 

of predictions.  In an area that is small, particularly if spatial autocorrelation of residual error is 

high, residual errors may not sum to zero, introducing additional error.  While GEDI’s 1-km 
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spatial domain is smaller than other applications of hybrid inference (e.g. Ståhl et al., 2011), 

initial exploration using the data from this study suggests that spatial autocorrelation at GEDI’s 

25-m grain size is relatively low, as is the effect of omitting residual error (also called individual 

error in Appendix 3) from the proposed hybrid variance estimator (Appendix 3).  In some cases, 

however, the impact of residual error may reach 15% or more of the variance, so further work is 

needed to develop ways to include it in the hybrid approach.  

Finally, it is assumed that the footprint-level AGBD model is correctly specified and “applies” to 

the population in the cell.  This notion implies that the number and order of terms are correctly 

specified, and that the parameter covariance matrix used in the variance calculation (Equations 5 

and 6) adequately reflects uncertainty in the relationship between lidar and AGBD within the 

cell.  Since even small model difference can generate strongly divergent population estimates 

when multiplied over large areas, this is a critical assumption.  Although the GEDI team is 

collating a comprehensive global database of training data, the reality is that ground data are 

sparse in some areas.  In such areas, model misspecification is an important risk.  In this respect, 

hybrid inference is no different from any other remote sensing approach that relies upon field 

data to calibrate remotely sensed observations. 

4.2 Performance of hybrid estimators in the context of GEDI’s sample 

Properties of the hybrid estimators proposed for the GEDI mission were evaluated here using 

simulations in which thousands of potential GEDI cluster patterns were tested in the context of 

model covariance across forests in 60 diverse grid cells.  Bearing in mind the above assumptions 

associated with the approach outlined in Figure 1, Figures 4 and 5 suggest that the proposed 

estimator for mean AGBD exhibits negligible bias across cells.  Our tests and the results in 
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Figures 4 and 5 presumed proper model specification, an assumption of model-based inference, 

although residual plots (Figure S4-1) suggested that trends in model residual error may exist in at 

least one study region.  In such cases, corrective measures such as variable transformations may 

be required. 

The variance estimator, on the other hand, appeared to be only asymptotically unbiased (Figure 

6); that is, bias approached zero as larger numbers of cluster samples were acquired.  The Taylor 

linearization used to compute the sample component of the variance (as opposed to the model 

component) likely contributed to this underestimation.  While Taylor linearization simplifies 

calculation of the variance, it is known to lead to variance underestimation for small sample sizes 

((Särndal et al. 1992), p. 176).  One area of future work may center around methods proposed to 

adjust for under-estimation ((Cochran 1977), p 156).  Linearization was also used in deriving the 

model component of the variance estimator (Equation 5), but the linear model used in this study 

for footprint-level prediction likely eliminated the impact of linearization in the model 

component. 

Negative bias in the variance estimates at low numbers of clusters should be considered when 

hybrid methods are used with GEDI data, and information about the number of clusters will 

accompany GEDI hybrid estimates for each cell.  Low sample numbers will occur both at the 

beginning of the mission and in equatorial regions where the ISS orbit provides fewer “looks” 

and where persistent cloud cover may frequently obscure the surface.  An advantage of hybrid 

estimation is that the same methodology applied at the 1-km scale may also be applied to much 

larger, irregularly shaped areas such as entire countries; instead of having to combine grid cell 

estimates, all clusters intersecting a given country may be used in the context of a single hybrid 
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estimate.  GEDI country-scale sample size will be very large, leading to greatly diminished 

design-based contribution to variance estimates.  The apparent dominance of the sample 

component in the variance estimator (Figure 8) may be relevant to GEDI operational planning.  

There are signal-to-noise parameters that may allow GEDI to consider a larger sample of noisier 

footprints (and models) or a smaller sample of footprints collected under ideal atmospheric 

conditions.   It should be recognized that the relative contribution of the sampling and model 

components of the variance estimator may differ in different settings as properties of the model 

change due, for example, to the size of Sm or complexity of the underlying lidar/forest structure 

relationship.    Across the diverse ecosystems we studied, though, results suggest that including a 

larger sample will have a bigger impact on the magnitude and unbiasedness of estimated 

variance than a marginal improvement in model fit.   

5. Conclusions 

The GEDI mission was conceived to support estimation of forest biomass at greater accuracy and 

resolution than has previously been possible by greatly increasing the number of available 

observations of forest structure. The sampling pattern employed by GEDI is largely constrained 

by its technology: its deployment platform on the ISS, the number and strength of its lasers, and 

its mission duration. Central to the GEDI approach has been the creation of a framework within 

these observational constraints for properly estimating both mean AGBD and the variance 

around that estimated mean. 

Our research suggests that a hybrid approach that accounts for uncertainty due both to the model 

and the sampling design is appropriate and effective.  Analysis here focused on 1-km cells, but 

hybrid inference using GEDI data could likewise be applied over any political or ecological units 
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of interest, subject to minimum size and model applicability assumptions cited above. Our results 

confirm the importance of having abundant field plot estimates of biomass and associated 

airborne lidar, from which representative models that relate lidar metrics to AGBD may be 

created. The creation of a global database of such field and lidar data has been a priority of the 

GEDI mission before launch, and its continued expansion should both reduce the model 

uncertainty carried into 1-km variance estimates and support the local applicability assumptions 

that underlie model-based inference. 

Lastly, our research also suggests that maximizing the number of clusters within a cell is key 

towards providing approximately unbiased variance estimates. While observational strategies to 

increase cluster density are limited, options such as purposefully targeting important areas, 

lengthening mission duration, or increasing the size of grid cells to encompass more clusters are 

worth exploring. 
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