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Abstract 16 

Spatial heterogeneity in parasite susceptibility and exposure is a common source of 17 

confounding variation in disease ecology studies. However, it is not known whether spatial 18 

autocorrelation acts on immunity at small scales, within wild animal populations, and whether 19 

this predicts spatial patterns in infection. Here we used a well-mixed wild population of 20 

individually recognised red deer (Cervus elaphus) inhabiting a heterogeneous landscape to 21 

investigate fine-scale spatial patterns of immunity and parasitism. We noninvasively collected 22 

842 faecal samples from 141 females with known ranging behaviour over two years. We 23 

quantified total and helminth-specific mucosal antibodies and counted propagules of three 24 

gastrointestinal helminth taxa. These data were analysed with linear mixed models using the 25 

Integrated Nested Laplace Approximation (INLA), using a Stochastic Partial Differentiation 26 

Equation approach (SPDE) to control for and quantify spatial autocorrelation. We also 27 

investigated whether spatial patterns of immunity and parasitism changed seasonally. We 28 

discovered substantial spatial heterogeneity in general and helminth-specific antibody levels 29 

and parasitism with two helminth taxa, all of which exhibited contrasting seasonal variation in 30 

their spatial patterns. Notably, Fasciola hepatica intensity appeared to be strongly influenced 31 

by the presence of wet grazing areas, and antibody hotspots did not correlate with distributions 32 

of any parasites. Our results suggest spatial heterogeneity may be an important factor 33 

affecting immunity and parasitism in a wide range of study systems. We discuss these findings 34 

with regards to the design of sampling regimes and public health interventions, and suggest 35 
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that disease ecology studies investigate spatial heterogeneity more regularly to enhance their 1 

results, even when examining small geographic areas. 2 

  3 
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Introduction 1 

Parasite infection in the wild is extremely spatially heterogeneous. The scale at which spatial 2 

variation acts depends on the host and parasite being studied, and even fine-scale 3 

environmental heterogeneity may influence the spatial epidemiology of human diseases 4 

(Murdock et al. 2017). However, the spatial ecology of disease is most often considered in 5 

terms of large-scale patterns (e.g. Murray et al., 2018) and using occurrence or prevalence 6 

data, which is less informative than intensity, particularly for macroparasites. In addition, due 7 

to practical considerations, many studies investigating spatial variation in wild animals 8 

compare several discrete populations rather than sampling across a continuous, mixing 9 

population (e.g. Downs et al. 2015; Cheynel et al. 2017). Alternatively, some studies rely on 10 

opportunistic convenience sampling, which can produce an inaccurate representation of 11 

disease processes and bias estimates of infection prevalence due to their non-random 12 

sampling in space (Nusser et al. 2008). As a result, little is known about fine-scale patterns of 13 

susceptibility and exposure, and how they influence spatial patterns of infection, in wild 14 

animals.  15 

Identifying the relevant spatial scale for disease processes such as susceptibility and exposure 16 

is important, as quantifying spatial trends at different scales can introduce uncertainty at best, 17 

and can profoundly affect the conclusions drawn at worst (Gilligan et al. 2007; Vidal-Martínez 18 

et al. 2010; Lachish and Murray 2018). For example, Lyme disease risk correlates positively 19 

with biodiversity at the within-forest level, but the reverse is true between forests (Wood and 20 

Lafferty 2013). An understanding of spatial processes is therefore crucial for designing public 21 

health interventions (Caprarelli and Fletcher 2014) and sampling regimes (Nusser et al. 2008; 22 

Vidal-Martínez et al. 2010; Lachish and Murray 2018). A deeper understanding of fine-scale 23 

spatial variation in disease processes could also inform patterns seen over wider distances 24 

(Murdock et al. 2017; Pawley and McArdle 2018). In addition, if immunity and parasitism vary 25 

over short distances, infection-oriented studies of wild populations could be affected by greater 26 

degrees of spatial dependence than previously considered, which can affect inference. When 27 

spatial autocorrelation is not considered, the type I error rate may be inflated due to inflated 28 

covariance of explanatory and/or response variables emerging from geographic proximity 29 

(Pawley and McArdle 2018). 30 

Spatial variation in immunity can originate from gradients in abiotic conditions such as 31 

temperature (Laughton et al. 2017) or in biotic factors such as prey availability (Becker et al. 32 

2018). Spatial variation in parasitism will arise in part as a result of this immune heterogeneity 33 

owing to variation in susceptibility, clearance, and tolerance (Jolles et al. 2015), as well as 34 

from abiotic factors affecting parasite transmission (e.g. sunlight; Parsons et al. 2015) or from 35 
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variation in abundance of secondary hosts or vectors (Sol et al. 2011; Olsen et al. 2015). In 1 

addition, conspecific density can influence resource availability, immune investment, and 2 

parasite exposure (Wilson et al. 2004; Downs et al. 2015; Ezenwa et al. 2016). We therefore 3 

expect to see considerable spatial variation in both immunity and parasitism in heterogeneous 4 

environments (Becker et al. 2019); where gradients are steep and mixing is minimal, this 5 

variation should occur over short distances. A recent study in wild mice (Mus musculus) 6 

demonstrated high between-site immune heterogeneity, but with extensive variation in the 7 

degree of within-site differentiation, suggesting short-range spatial dependence (Abolins et al. 8 

2018). However, few studies have examined how both immunity and parasitism vary 9 

continuously across space within wild animal populations, so it is unclear to what degree 10 

spatial variation in parasitism in the wild originates from immune-mediated processes rather 11 

than from environmental factors affecting exposure. Finally, spatial patterns are rarely static, 12 

and may change over time (Hawkins 2012), yet seasonal or annual changes in these spatial 13 

patterns are rarely examined. 14 

The red deer (Cervus elaphus) is a large land mammal closely related to the American wapiti 15 

(Cervus canadensis) whose distribution covers much of Europe. The relationship between red 16 

deer disease and their spatial behaviour is important to pathogen spillover, as this species 17 

carries a plethora of parasites that can infect humans and livestock (Bohm et al. 2007; Brites-18 

Neto et al. 2015) and which they can vector between farms and distribute through the 19 

landscape (Chintoan-Uta et al. 2014; Qviller et al. 2016). The wild red deer living in the North 20 

Block of the Isle of Rum in Scotland are individually recognised and regularly censused, 21 

providing detailed information on each individual’s life history and ranging behaviour (Clutton-22 

Brock et al. 1982). These censuses have previously been used to uncover important roles of 23 

the environment and spatial behaviour in influencing individuals’ phenotypes (Stopher et al. 24 

2012; Froy et al. 2018). Longitudinal noninvasive faecal sampling of the population has 25 

revealed a high prevalence of several gastrointestinal helminth parasites including strongyle 26 

nematodes, the liver fluke Fasciola hepatica, and the tissue nematode Elaphostrongylus cervi 27 

(Albery, Kenyon, et al. 2018). The life cycle of strongyle nematodes is direct, while F. hepatica 28 

must infect Galba truncatula water snails (Taylor et al. 2016), and E. cervi infects a range of 29 

land snails (Mason 1989). Their mucosal antibodies (IgA) have also been quantified by faecal 30 

ELISA, offering a measure of immune investment (Albery, Watt, et al. 2018). Both helminth 31 

intensity and IgA concentrations are affected by deer reproductive investment and fluctuate 32 

seasonally (Albery, Watt, et al. 2018). However, the spatial distributions of these immune and 33 

parasite measures have yet to be investigated. 34 

In this study, we used regular census data and noninvasive faecal samples from the deer 35 

population to investigate how individuals’ spatial behaviour was associated with immunity and 36 
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parasitism at fine spatial scales. We incorporated spatial autocorrelation structures in order to 1 

investigate how this affected model fit, to identify hotspots of immunity and infection, and to 2 

quantify the spatial scale at which our data were autocorrelated. We also allowed spatial 3 

autocorrelation structures to vary seasonally. We expected that accounting for spatial 4 

autocorrelation would improve model fit, and that this would be a more effective way of 5 

investigating spatial trends than separating the population into discrete arbitrary 6 

subpopulations as was previously done to control for spatial variation (Huisman et al. 2016). 7 

We also predicted that individuals living in different areas of the study system would exhibit 8 

notably different antibody levels and parasite intensities. Finally, we predicted that F. hepatica 9 

and E. cervi intensity would be influenced by the habitats of their secondary hosts – particularly 10 

that F. hepatica would be more common in wetter areas (Olsen et al. 2015).  11 

 12 

Methods 13 

Study system and sampling regime 14 

The study population is located in the north block of the Isle of Rum, Scotland (57°N, 6°20′W; 15 

Figure 1). The sampling area measures ~4 km north-south and ~3 km west-east (total area 16 

~12.7km2). The most intensely sampled area consists of a river running from south to north 17 

along a valley, flanked by hills on either side, and an extended ranging area around the coast 18 

to the east, close to the sea. Peat bogs and Juncus marshland comprise much of the southern 19 

and central areas of the valley, while the hills are dominated by wet and dry heath and Molinia 20 

grassland. In the north, moving seaward, the landscape is dominated by Agrostis and Festuca 21 

grassland, followed by sandy dunes and beaches. The study population is wild and 22 

unmanaged, and is censused five times a month for eight months of the year (see Clutton-23 

Brock et al., 1982). During censusing, one of two predetermined routes is walked or driven 24 

through the study area and individuals’ locations (to the nearest 100 metres) are noted. The 25 

northern part of the study area hosts the highest population density, with most deer centred 26 

around the high-quality grazing near the mouth of the river and the land around the coast to 27 

the east (Figure 1). Annual home ranges are highly repeatable from year to year (Stopher et 28 

al. 2012). 29 

The deer reproductive cycle (“deer year”) spans from the start of the calving season, May 1st, 30 

until April 30th the following year. Samples were collected as previously described (Albery, 31 

Kenyon, et al. 2018), on a seasonal basis during 7 two-week trips in August (“summer”), 32 

November (“autumn”) and April (“spring”) between April 2016 and April 2018 inclusive. Note 33 

that our dataset included a sampling trip from April 2016, which was part of the deer year 34 

beginning in May 2015, with no accompanying summer and autumn trips from this 35 
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reproductive cycle. In the study period, 842 faecal samples were collected noninvasively from 1 

141 individually known adult females aged 3 and above. Parasite propagule counts and 2 

antibody ELISA quantification were carried out on these samples as previously described 3 

(Albery, Kenyon, et al. 2018; Albery, Watt, et al. 2018). Parasites included strongyle 4 

nematodes (order: Strongylida), the common liver fluke Fasciola hepatica and the red deer 5 

tissue nematode Elaphostrongylus cervi. Our two antibody measures were total mucosal IgA 6 

levels (“total IgA”) and anti-Teladorsagia circumcincta L3 larval antigen IgA (“anti-Tc IgA”). 7 

The former is taken as an indicator of general investment in mucosal immunity, while the latter 8 

gives a measure of specific anti-strongyle IgA response which is thought to be more indicative 9 

of protective immunity against strongyles (Watt et al. 2016; Albery, Watt, et al. 2018). There 10 

was not enough faecal matter in all samples to quantify all variables; final sample sizes are 11 

displayed in Table 1. Using the census data, each individual’s mean easting and northing over 12 

the deer year was taken as their average location. This was taken to be a better indication of 13 

an individual’s spatial behaviour than the location at which the faecal sample itself was 14 

collected. We subdivided the study area into six approximate subpopulations based on each 15 

individual’s average location (Huisman et al. 2016). These locations and subpopulations are 16 

displayed in Figure 1. 17 

Statistical analysis 18 

Statistical analysis was carried out using the Integrated Nested Laplace Approximation (INLA). 19 

INLA is a deterministic Bayesian approach which is increasingly being used for analysis of 20 

spatial data (Zuur et al. 2017). Models were fitted in R version 3.5 (R Core Team 2018) using 21 

the linear modelling package R-INLA (Rue and Martino 2009; Martins et al. 2013). We 22 

constructed five generalised linear mixed models (GLMMs) for each response variable, each 23 

featuring different combinations of fixed and spatial random effects. The distinguishing 24 

components of these model sets are outlined below and displayed in Table 1. 25 

Our five response variables included integer counts per gram of three parasite propagules 26 

following a negative binomial distribution (strongyles, F. hepatica and E. cervi) and Gaussian-27 

distributed optical densities of two mucosal antibodies (total IgA and anti-Tc IgA). Antibody 28 

levels were corrected for collection effects as previously described, by taking the residuals 29 

from a linear model including raw antibody OD as a response variable and including day of 30 

collection, time of collection and extraction session as explanatory variables (Albery, Watt, et 31 

al. 2018). In our main GLMMs, explanatory variables included: Deer year (categorical with 32 

three levels: 2015, 2016, and 2017); Season (categorical with three levels: Summer, Autumn, 33 

and Spring); Age (continuous, in years); Reproductive status (categorical variable with three 34 

levels: No Calf, Calf Died, and Calf Survived; see Albery, Watt, et al. (2018) for definitions); 35 

Subpopulation (categorical, six levels). All models included individual ID as a random effect. 36 
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INLA allows incorporation of a spatially distributed random effect to account for spatial 1 

autocorrelation (Lindgren et al. 2011). This uses a stochastic partial differentiation equation 2 

(SPDE) approach to approximate the continuous random field using a triangulated mesh of 3 

connected discrete locations (Lindgren and Rue 2015). The mesh we used for the spatial 4 

random effect is displayed in Figure 1. The random effect can be plotted in 2D (giving the 5 

“spatial field” of variation) to investigate hot- and coldspots of the response variable, and the 6 

kappa/range parameters can be extracted to investigate the distance at which autocorrelation 7 

fades in space. It is also possible to allow multiple spatial fields within a single model, by 8 

assigning separate fields to different categories or by linking fields with correlation structures 9 

to investigate spatiotemporal variation. The underlying mathematics of INLA and associated 10 

spatial/spatiotemporal models have been extensively discussed elsewhere, and such models 11 

are increasingly being used to examine spatiotemporal trends (e.g. fisheries ecology 12 

(Cosandey-Godin et al. 2015)); see http://www.r-inla.org for more examples. 13 

We constructed a set of competing models for each response variable. Each model set 14 

contained five models, resulting in 25 models total. Our base model set (model set 1) included 15 

year, season, age, and reproductive status as fixed effects, similar to models previously used 16 

to investigate associations between reproduction, immunity, and parasitism (Albery, Watt, et 17 

al. 2018). Model set 2 added subpopulation as a fixed effect to investigate whether this 18 

explained any variation and to examine the value of analysing continuous populations using 19 

discrete subdivisions (Figure 1). Model set 3 added a spatially distributed SPDE random effect, 20 

rather than the subpopulation fixed effect, to control for and quantify spatial autocorrelation. In 21 

model set 4, this spatial field was allowed to vary between seasons (summer, autumn, and 22 

spring), and model set 5 allowed correlation between these seasonal fields. To allow spatial 23 

fields to correlate, we used an “exchangeable” model, where all fields in the model were 24 

correlated by the same value (ρ) rather than e.g. following an autoregressive process through 25 

time. We elected not to fit different spatial fields across years as our number of replicates was 26 

small for detecting annual variation. We also had no a priori hypotheses concerning spatial 27 

differences between years; splitting up the spatial field into individual sampling trips 28 

(field:season:year) would cut down the sample size considerably for each field, reducing the 29 

likelihood of picking up spatial patterns; and we have only one season (Spring) from the first 30 

year of collection, so the years are unlikely to be comparable. 31 

For each response variable, the five fitted models were compared using Deviance Information 32 

Criterion (DIC). A change in 2 DIC was selected to distinguish between models and select the 33 

most parsimonious model. When the best-fitting models included spatial autocorrelation, we 34 

extracted the range parameters to estimate the range of autocorrelation and ρ parameters to 35 

estimate correlation between seasonal fields. For the range of autocorrelation, we report the 36 

http://www.r-inla.org/
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distance at which spatial autocorrelation decayed to 0.5 (henceforth “halving range”; (Brooker 1 

et al. 2006)). Finally, we compared effect sizes from each model to investigate whether 2 

incorporating spatial autocorrelation altered any conclusions about the fixed effects. We 3 

particularly focussed on whether accounting for spatial autocorrelation altered the estimates 4 

for reproductive status effects, which have previously been demonstrated to impact both 5 

immunity and parasitism, and vary spatially across the population. 6 

Results 7 

Our models revealed strong and contrasting spatial trends in all but one of our response 8 

variables. All models but E. cervi were incrementally improved by first incorporating a spatial 9 

random effect and then by allowing it to vary between seasons (DIC values in Table 1; all 10 

secondary models had ΔDIC≥3.44). In all cases, including spatially distributed random effects 11 

improved model fit compared to fitting a subpopulation fixed effect (Table 1; ΔDIC≥2.4). The 12 

spatial fields of the random effects, taken from model sets 3-5, are displayed in Figure 2. For 13 

each response variable, we report the spatial field and results from both model set 3 (spatial 14 

field constant across the study period) and model set 4 (spatial seasons varying seasonally, 15 

with no correlation between fields). The exception is F. hepatica, for which allowing the 16 

seasonal fields to correlate in model set 5 improved model fit (ΔDIC=2.29, Table 1); therefore, 17 

for F. hepatica, we display the fields and results from model sets 3 and 5. Response variables 18 

differed considerably in terms of both their spatial fields (Figure 2) and the range at which they 19 

varied (Figure 3). Table 1 also displays the distance at which spatial autocorrelation reduced 20 

to 0.5 (“halving ranges”) and ρ values; as E. cervi models were never improved by the inclusion 21 

of the subpopulation fixed effect or by SPDE random effects (ΔDIC>1.36), we do not report 22 

these results further.  23 

Strongyle nematode intensity exhibited weak spatial patterns, with a very short range of 24 

autocorrelation; this did not increase when spatial fields were allowed to vary seasonally 25 

(Figure 2-3, halving range<59.62M). Allowing the spatial field to vary between seasons 26 

resulted in similar patchy distributions which are hard to distinguish (Figure 2) but nevertheless 27 

improved model fit compared to all other models (Table 1, ΔDIC=4.25). F. hepatica 28 

demonstrated a strong spatial pattern, with high intensities in the mid- and south-valley 29 

decreasing to the north and northeast (Figure 2). This gradual, unidirectional trend was 30 

reflected in the long range of autocorrelation (Figure 3, halving range=1323M). Allowing the 31 

spatial field to vary between seasons improved F. hepatica model fit, but resulted in similar 32 

seasonal fields (Figure 2). This was reflected in the positive ρ parameter (ρ=0.67) derived from 33 

model 5, which was the best-fitting model for F. hepatica, demonstrating that seasonal spatial 34 

fields were substantially positively correlated.  35 
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When the spatial field was kept constant across the study period, total IgA and anti-Tc IgA 1 

both demonstrated a very short range of spatial autocorrelation (Figure 3, halving 2 

range<150.06M). Both antibody distributions were similar and negatively correlated with that 3 

of strongyles, being lower in the central north and higher in the south and edges of the study 4 

area (Figure 2). However, allowing both antibodies’ spatial fields to vary between seasons 5 

improved model fit substantially compared to all other models (Table 1, ΔDIC<18.58), 6 

increased the range of autocorrelation (Figure 3, halving range>415.82M), and resulted in very 7 

different seasonal patterns (Figure 2). These patterns were similar between total IgA and anti-8 

Tc IgA, although total IgA had a slightly larger range of autocorrelation (Figure 3, halving 9 

range=640.07M and 415.82M for total IgA and anti-Tc IgA respectively). The best-fitting model 10 

for total IgA and anti-Tc IgA was either model 4 or 5 for total IgA (Table 1, ΔDIC<2), while 11 

model 5 fit slightly better for anti-Tc IgA (ΔDIC=2.02). Hence model 4 is presented for total IgA 12 

as the model with fewer degrees of freedom, and model 5 is presented for anti-Tc IgA. 13 

The subpopulation fixed effects broadly followed the spatial fields of the SPDE random effects 14 

(Figure SI1). Briefly, strongyles showed little difference across different regions, although 15 

estimates for the two northern regions (regions 3 and 5) did not overlap with zero when 16 

compared to the southern region 1. For F. hepatica intensities decreased moving northeast 17 

from region 1 to region 6, and all regions exhibited significantly decreased levels below the far 18 

south region 1. The reverse was true for E. cervi intensities. Patterns for total IgA and anti-Tc 19 

IgA are harder to interpret and less significant, but broadly the far south region 1 subpopulation 20 

featured higher antibody levels than northern regions (regions 2, 3, and 5 for total IgA and 21 

region 5 for anti-Tc IgA). 22 

Most fixed effect estimates were only slightly modified by incorporating spatial autocorrelation 23 

structures in our models (Figure SI1). No estimates were reduced in significance except the 24 

seasonal effects in models 4 and 5 for F. hepatica and E. cervi (Figure SI1). Examining the 25 

spatial fields (Figure 2), this reduction in seasonal effect probably originated from competition 26 

between the seasonally varying spatial random effect and the season variable itself. 27 

Otherwise, effect estimates remained unchanged when spatial autocorrelation was included. 28 

This was particularly true for reproductive status effects, many of which actually increased 29 

slightly in magnitude when we accounted for spatial autocorrelation (Figure SI1). The models 30 

therefore replicated our previous study by demonstrating that reproductive investment was 31 

associated with lower antibody levels and higher strongyle intensities (Albery, Watt, et al. 32 

2018). 33 
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Discussion 1 

This study has revealed fine-scale spatial variation in immunity and parasitism at an individual 2 

level in a large wild mammal population. Spatial heterogeneity contributed considerably to 3 

between-individual differences in immunity and parasitism despite a total sampling area of 4 

only ~12.7 km2. The scale of spatial dependence was therefore extremely short, and well 5 

within the scale of the study area. These findings are in accordance with a previous study 6 

demonstrating fine-scale immune variation in a discrete spatial context (within-site versus 7 

between-site) in wild mice (Abolins et al. 2018). We demonstrate similar spatial variation in a 8 

continuous context, and in both antibody levels and parasite counts, despite considerable 9 

mixing within the population. Furthermore, the response variables differed in terms of their 10 

spatial fields, the distances at which autocorrelation decayed in space, and their interactions 11 

with seasonality. Finally, spatial distributions of antibodies were not similar to any parasite 12 

distributions, implying that fine-scale environmental factors acting on exposure are more 13 

important than host immune susceptibility in driving spatial heterogeneity of parasite infection. 14 

The scale of dependence and its importance for disease ecology studies 15 

Understanding the spatiotemporal scale of disease processes is important for designing 16 

sampling regimes and disease control strategies (Caprarelli and Fletcher 2014; Lachish and 17 

Murray 2018). In this context, our results have several important general implications. Firstly, 18 

fine-scale trends like those exhibited here may scale up quickly where environments vary 19 

across larger distances, contributing to larger-scale geographic patterns of disease that are 20 

more commonly studied (Ostfeld et al. 2005; Murdock et al. 2017; Murray et al. 2018). Second, 21 

disease ecology and ecoimmunology studies that do not consider spatial autocorrelation, even 22 

over short distances, may be missing important sources of variation in immunity and exposure 23 

and risk reporting biased effect estimates. The persistent spatial trend seen in F. hepatica 24 

(Figure 2) demonstrates that different areas of a given study system can be consistently 25 

associated with either higher or lower parasitism, so that uneven sampling in space could 26 

introduce confounding variation and bias. In contrast, where the range of autocorrelation is 27 

extremely short, as in strongyles, sampling regimes that do not consider spatial dependence 28 

may incidentally sample areas of both high and low parasitism, reducing the risk of spatial 29 

biasing. The range of autocorrelation was well within the range of an individual deer’s home 30 

range (Froy et al. 2018), implying that individuals may experience considerable variation in 31 

parasitism depending on their movement choices within this range. Trends are not necessarily 32 

similar across variables, complicating matters: most notably, spatial gradients of F. hepatica 33 

and strongyle intensity differed considerably both in range and patterns, and antibody hotspots 34 

did not align with parasite hotspots (Figure 2). Therefore, information on the spatial distribution 35 

of one immune or parasite measure could not be used to infer the distribution of another, and 36 
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appropriate sampling regimes will differ between response variables. Finally, all models 1 

except E. cervi were further improved when the spatial field was allowed to vary seasonally, 2 

and spatial patterns of antibody levels changed considerably between seasons (Figure 2). 3 

This confirmed our expectations that spatial fields would not be static in time (Hawkins 2012). 4 

Therefore, in some cases, even sampling from a wide, contiguous area may only capture a 5 

cross-sectional snapshot of the spatial dynamics of a given study system, necessitating 6 

longitudinal analysis.  7 

Spatial heterogeneity has the potential to obscure or produce artefactual associations with 8 

other variables, modifying conclusions drawn from models without spatial dependence 9 

structures – in particular by inflating the type I error rate (Beale et al., 2010; Pawley and 10 

McArdle, 2018). However, in this study, fixed effects remained largely unchanged when 11 

incorporating spatial dependence structures despite the importance of spatial heterogeneity 12 

(Figure SI1). In particular, previously reported reproductive status effects (Albery, Watt, et al. 13 

2018) persisted or increased slightly in size, despite the fact that reproductive success varies 14 

across the study area (McLoughlin et al. 2006; Stopher et al. 2012). This demonstrates that 15 

spatial variation can contribute to ecological patterns of disease without necessarily obscuring 16 

other findings (Pawley and McArdle 2018). We suggest that disease ecology studies that 17 

examine wild populations attempt to investigate spatial variation to enrich their results, rather 18 

than viewing spatial autocorrelation as a nuisance (Pawley and McArdle 2018). In addition, 19 

although the spatial fields were broadly reflected by the subpopulation fixed effect results 20 

(Figure SI1), the spatial fields were more easily interpretable and increased model fit, and 21 

therefore incorporating spatial autocorrelation was advantageous. While integrating spatial 22 

dependence did not have severe impacts on effect sizes in our study, we lastly encourage 23 

researchers to consider accounting for spatial dependence even at the fine scales here to 24 

improve statistical inference and account for this variation. 25 

Interpreting the spatial fields 26 

The spatial fields derived from our models can help to indicate the factors determining 27 

immunity and parasite infection. Spatial trends of F. hepatica were especially stark, being 28 

much higher in the south of the study area and decreasing to the north and northeast (Figure 29 

2). Given that the parasite distributions were not explained through differences in immune 30 

susceptibility, particularly considering minimal overlap with antibody level distributions (Figure 31 

2), spatial patterns in parasite intensity likely instead resulted from spatial variation in 32 

exposure. This heterogeneity likely originated from the drier environment in the north 33 

compared to the wet, marshy ground in the south of the valley, the latter of which could be 34 

conducive to parasite persistence in the environment. After being excreted, F. hepatica eggs 35 

develop to form infectious miracidia, which seek out and infect Galba truncatula water snails 36 



Albery et al., 2019  Spatial variation in disease in wild deer  

12 
 

(Taylor et al. 2016; Beesley et al. 2018). After a period within the snail, cercariae are produced 1 

which encyst on vegetation as metacercariae to be consumed by deer. Wet areas are likely to 2 

host higher G. truncatula abundance, and warmer, wetter environments are conducive to fluke 3 

development and host seeking behaviour, both of which will produce higher exposure 4 

(Ollerenshaw and Smith 1969). The observed fluke distribution agrees with a number of 5 

studies in livestock demonstrating high fluke risk where grazing and wet areas intersect (e.g. 6 

Olsen et al., 2015). Similar relationships with water sources are displayed by the human 7 

trematode Schistosoma mansoni, which shows a similar range of autocorrelation (Brooker et 8 

al. 2006). Our corroboration of these findings in a wild mammal implies that similar 9 

environmental risk factors may be influencing trematode infection in wild animals, humans, 10 

and livestock. 11 

In contrast to F. hepatica, the spatial field of strongyle intensity is difficult to interpret: spatial 12 

autocorrelation introduced important variation, yet the range of autocorrelation was small, 13 

similar to that reported for human hookworm infection (Brooker et al. 2006), and displayed no 14 

discernible pattern either across the study period nor within seasons (Figure 2). Strongyles 15 

may be less impacted by environmental factors than is F. hepatica due to their direct life cycle, 16 

which does not involve a secondary host, such that spatial autocorrelation in intrinsic factors 17 

affecting susceptibility is more important than environmental effects on exposure and 18 

transmission. Host genetic similarity is a possible intrinsic factor producing the spatial 19 

autocorrelation seen in strongyle counts and antibody levels: both are heritable in ungulates 20 

(Bisset et al. 1992; Callaby et al. 2014; Hayward et al. 2014), and genetic relatedness is 21 

correlated with spatial distance in this system (Stopher et al. 2012). Alternatively, as social 22 

behaviours commonly covary with spatial behaviour (e.g. Sanchez and Hudgens 2015), the 23 

spatial patterns established here may be partially explicable through social metrics such as 24 

conspecific density. Future studies in this population could examine whether local population 25 

density and/or other social variables affect individuals’ immunity and parasitism in ways that 26 

the INLA SPDE effect was unable to detect, potentially by using individual-level behavioural 27 

metrics derived from census data (Coulson et al. 1997; Froy et al. 2018). 28 

Ecological and epidemiological implications 29 

The fine-scale spatial heterogeneity demonstrated here has implications for the ecology and 30 

control of infectious disease in wild ungulate populations. For example, localised transmission 31 

hotspots may maintain parasite diversity, preventing competitive exclusion of parasites 32 

through geographic niche differentiation and contributing to the considerable genetic 33 

differentiation seen in liver fluke populations (Beesley et al. 2016). Additionally, when 34 

combined with sex-specific deer ranging patterns, spatial trends could contribute to previously 35 

observed sex biases in infection intensity (Albery, Kenyon, et al. 2018). Finally, it is possible 36 
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that the strong seasonality in ranging behaviour (Stopher et al. 2012) interacts with seasonal 1 

patterns of parasitism and immunity (Albery, Kenyon, et al. 2018). With more data, future 2 

investigations in this system may be able to examine these associations. 3 

As F. hepatica is an important livestock parasite, fluke control initiatives should consider the 4 

presence of high-risk wet areas of grazing that may be used by deer populations. However, it 5 

is worth noting that the fluke hotspots here were observed at the per-capita count level, rather 6 

than as an absolute number of parasites in the environment. Given the higher deer density in 7 

the north, taking F. hepatica as an example, it is likely that the absolute number of fluke eggs 8 

being excreted in the north is higher than the south, but these parasites are less likely to 9 

complete their life cycle due to unsuitable environmental conditions. In the future, it may be 10 

possible to compare the excretion and movement patterns of the deer with pasture larval 11 

counts and snail sampling across the study area to examine the rate at which successful 12 

infection occurs, and to investigate whether deer living in the high-risk southern area of the 13 

valley may indeed be vectoring F. hepatica to the north (Chintoan-Uta et al. 2014; French et 14 

al. 2016).  15 
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