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Abstract 

The electrochemical reduction of CO2 to give CO in the presence of O2 would allow the direct valorization 

of flue gases from fossil fuel combustion and of CO2 captured from air. However, it is a challenging task 

because O2 reduction is thermodynamically favored over that of CO2. Typically, 5% O2 in the CO2 feed gas 

is sufficient to completely inhibit the CO2 reduction reaction. Here we report an O2-tolerant catalytic CO2 

reduction electrode inspired by part of the natural photosynthesis unit. The electrode comprises of 

heterogenized cobalt phthalocyanine molecules serving as the cathode catalyst with > 95% Faradaic 

efficiency (FE) for CO2 reduction to CO coated with a polymer of intrinsic microporosity that works as a 

CO2-selective layer with a CO2/O2 selectivity of ~ 20. Integrated into a flow electrolytic cell, the hybrid 

electrode operating with a CO2 feed gas containing 5% O2 exhibits a FECO of 75.9% with a total current 

density of 27.3 mA/cm2 at a cell voltage of 3.1 V. A FECO of 49.7% can be retained when the O2 fraction 

increases to 20%. Stable operation for 18 h is demonstrated. The electrochemical performance and O2 

tolerance can be further enhanced by introducing cyano and nitro substituents to the phthalocyanine ligand. 
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1. Introduction 

Electrochemical reduction of CO2 to useful chemicals would contribute to solving the greenhouse gas issue 

and to utilizing renewable energy. [1-10]  For such an artificial photosynthesis process to be viable, the 

feed gas should come from a practical CO2 source such as fossil fuel flue gases or gases from direct air 

capture systems, both of which contain a significant amount of O2. For example, a typical exhaust gas 

generated by combustion of fossil fuels has an O2/CO2 ratio of ~ 20%, [11] whereas CO2 captured and 

concentrated from air by a moisture-swing sorption method is expected to contain up to 10% O2. [12, 13] 

The presence of O2 poses a tangible threat to the reduction reaction of CO2. Thermodynamically, O2 has a 

reduction potential more than 1 V higher than that of CO2 and, kinetically, CO2 reduction often demands 

a larger overpotential compared to O2 reduction. [14, 15] These effects combine to ensure that CO2 is 

strongly unfavored to compete for electrons with O2. The current mainstream solution is to purify CO2 

before feeding it to an electrolyzer, which requires an additional gas separation system and extra energy 

input. [16, 17] Nature does it differently. The plant photosynthesis process employs enzymes near the 

reactive sites to increase the local CO2 concentration to up to 1000 times the atmospheric level. [18, 19] 

With the lowered O2/CO2 ratio, CO2 can be efficiently converted to glucose at a fast rate in spite of the 

competing O2-reduction photorespiration process. [20] This biological strategy provided the inspiration 

for the design of an artificial electrode within which CO2 can be enriched to facilitate its reduction in the 

presence of O2. 

Herein, we report a catalytic electrode that can selectively produce CO by reducing CO2 in a feed gas 

containing a significant percentage of O2. The electrode design integrates three components: (i) a CO2 

concentrator, (ii) a gas diffusion electrode (GDE), and (iii) a catalyst layer. The CO2 concentrator is 

composed of a thin layer of a polymer of intrinsic microporosity (PIM), which can impede O2 transport but 

is highly permeable to CO2. The catalyst is cobalt phthalocyanine (CoPc) molecules anchored on carbon 

nanotubes (CNTs). Integrated into a flow electrolyzer, the PIM-CoPc/CNT hybrid electrode affords 

effective and durable CO2 reduction with substantially improved O2 tolerance. With 5% O2 in the CO2 feed 

gas, a Faradaic efficiency for CO production (FECO) of 75.9% with a total geometric current density (jtotal) 

of 27.3 mA/cm2 is achieved at a cell voltage of 3.1 V. The electrode can retain a FECO of 49.7% and a jtotal 

of 28.6 mA/cm2 when the O2 volume fraction increases to 20%. Adjusting the substituents on the Pc ligand 

of the supported molecular catalyst allows us to further improve the O2 tolerance and electrochemical 

performance. Since the competition between CO2 reduction and O2 reduction is a function of the O2/CO2 

ratio at the catalytic sites, based on the experimentally observed dependence, we deduce that the PIM layer 

has a CO2/O2 selectivity of 16.5 to 23.5. Without the CO2 concentrating layer, the CoPc/CNT electrode 

essentially cannot perform CO2 reduction at all when the feed gas contains 5% of O2.  
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2. Materials and methods 

2.1. Synthesis of catalyst materials  

All chemicals were purchased from commercial sources and used as received unless otherwise noted. All 

aqueous solutions were prepared with deionized water (Millipore 18.2 MΩ cm). 

The synthesis of CoPc-CN was based on a reported method with some modifications. [21] Typically, 

1,2,4,5-tetracyanobenzene (8.4 mmol, 1.5 g) and cobalt(II) acetate tetrahydrate (2.6 mmol, 0.65 g) were 

well mixed in 25 mL of tetramethylene sulfone with ten drops of 1,8-diazabicyclo[5.4.0]undec-7-ene in a 

seal tube. Subsequently, the tube was filled with Ar, sealed, and kept at 145 oC for 5 h. The reaction mixture 

was then dispersed in 200 mL of methanol and the resulting precipitate was collected, washed with ether 

and dried in vacuum. The solid was further purified by Soxhlet extraction with methanol, after which it was 

dissolved in N,N’-dimethylformamide (DMF) and filtered. The solution was evaporated in vacuum to 

afford the target compound as a dark-green solid (0.34 g, 21%). UV-Vis: λmax (DMF) 686.4nm; HRMS 

(ESI) calculated for CoC40H8N16: 771.04553, found: 771.04470. 

To synthesize CoPc-NO2, 4-Nitrophthalonitrile (10 mmol, 1.73 g), cobalt(II) chloride hexahydrate 

(CoCl2∙6H2O, 2.5 mmol, 0.60 g), urea (80 mmol, 4.80 g) and a catalytic amount of ammonium molybdate 

were first ground into a homogeneous mixture in an agate mortar. Then, the mixture was reacted in the 

solid state at 170 oC for 5 h under Ar atmosphere. The resulting product was stirred at 90 oC for 1 h in HCl 

(1 M, 200 mL) and then in NaOH (1 M, 200 mL). The solid was filtered, washed with water and dried in 

vacuum. The crude product was purified by Soxhlet extraction with methanol. The resulting product was 

then dissolved in DMF and filtered. The DMF solution was evaporated under vacuum to afford the CoPc-

NO2 compound as a dark-green solid (0.83 g, 44%). UV-Vis: λmax (DMF) 675.3 nm; HRMS (ESI) calculated 

for CoC32H12N12O8: 751.02385, found: 751.02344. 

To synthesize CoPc-NH2, CoPc-NO2 (1.5 g, 2 mmol), sodium sulfide nonahydrate (Na2S·9H2O, 9.6 g, 40 

mmol), 2 mL of deionized water and 50 mL of DMF were mixed in a three-necked round-bottom flask, and 

the mixture was stirred at 60 oC overnight under Ar atmosphere. After that, the solution was evaporated 

under vacuum, and the obtained solid was washed with water and then boiled in a 200 mL 5 wt.% aqueous 

sodium hydroxide solution. Subsequently, the precipitate was filtered and washed with water. The resulting 

solid was poured into 500 mL of water with stirring, and 1 M HCl was added to adjust the pH to 5. Filtration 

was applied to remove undissolved side products. The pH of the filtered solution was then adjusted to 8 by 

adding 1 M KOH and the resulting solution was boiled. The formed precipitate was collected by filtration, 

washed with water and methanol, and dried in vacuum to afford the target CoPc-NH2 compound as a dark-

green solid (1.03 g, 82%). UV-Vis: λmax (DMF) 705.0 nm; HRMS (ESI) calculated for CoC32H20N12: 

631.12604, found: 631.12435. 
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CoPc, CoPc-CN, CoPc-NO2 and CoPc-NH2 molecules were anchored onto multi-wall carbon nanotubes 

(CNTs) (CNano Technology Ltd.) based on our previous work. [22] The CNTs were first calcined at 500 

°C in air for 5 h. After cooling down to room temperature, the CNTs were transferred into a 5 wt.% HCl 

aqueous solution and sonicated for 30 min. The purified CNTs were collected by filtration and washed with 

deionized water thoroughly. 30 mg of the purified CNTs were dispersed in 30 mL of DMF by sonication 

for 1 h. Then, a calculated amount of CoPc, CoPc-CN, CoPc-NO2 or CoPc-NH2 dissolved in DMF was 

added to the CNT suspension and then sonicated for 30 min to obtain a well-mixed suspension. The 

suspension was further stirred at room temperature for 20 h. The mixture was then centrifuged and the 

precipitate was washed with DMF and ethanol. Finally, the precipitate was lyophilized to yield the final 

product. The cobalt content in the hybrid materials was adjusted to be ~ 0.27 wt.%.   

CoOx/CNT was prepared following a previous work. [23] 4 mg of mildly-oxidized CNTs were dispersed 

in 14 mL of ethanol and sonicated for 1 h. 0.8 mL of Co(CH3COO)2·4H2O aqueous solution (0.2 M) and 

0.8 mL of NH3·H2O (28.0 - 30.0 wt.%) were added to the suspension in sequence. The mixture was kept at 

80 °C in an oil bath for 12 h for the reaction to complete. After centrifuging and washing with deionized 

water for three times, the product was lyophilized and stored under ambient conditions.  

2.2. Synthesis of PIM 

The preparation of PIM was based on a previous work. [24] A mixture of 3,3,3',3'-tetramethyl-1,1'-

spirobisindane-5,5',6,6'-tetrol (5.0000 g, 14.69 mmol), 2,3,5,6 tetrafluorophthalonitrile (2.9389 g, 14.69 

mmol, recrystallized from ethanol) and anhydrous potassium carbonate (16.2390 g, 117.50 mmol) in 100 

mL of anhydrous dimethylformamide was stirred at 65-70 °C for 72 h. The bright yellow mixture was 

cooled to room temperature, poured into 500 mL of water and stirred for 1 h. The solid was collected by 

filtration, washed with deionized water and then acetone until the washings were clear. The resulting 

powder was dried and dissolved in tetrahydrofuran. Subsequently, methanol was added drop-wise until the 

solution became turbid. The solution was further stirred for 30 min to precipitate a gel. The polymer was 

then dissolved in tetrahydrofuran and added drop-wise to a 500 mL mixture of methanol and acetone (1:1) 

with vigorous stirring and the precipitated fine powder was filtered. The powder was refluxed in methanol 

for 24 h, filtered and then dried in a vacuum oven at 120 °C for 9 h to afford the desired polymer (6.65 g, 

92%) as a bright yellow powder. νmax (polymer film) (cm-1): 2953, 2864, 2241, 1445, 1262, 1009; 1H NMR 

(250 MHz, CDCl3): δH = 6.81 (br, s, 2H, Ar H), 6.42 (br, s, 2H, Ar H), 1.56 (br, m, 4H, 2 CH2), 1.31 (br, 

m, 12H, 4 CH3); GPC (Chloroform): Mn = 60,400, Mw = 194,700. BET surface area = 812 m2/g; total pore 

volume = 0.7648 cm3/g at P/Po = 0.9814; TGA analysis (polymer film): Initial weight loss due to thermal 

degradation commences at ~ 500 °C with a 87% loss of mass below 1000 °C.  

2.3. Gas selectivity measurement in pressure increase apparatus  
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Polymer membranes were prepared by casting a PIM solution (2-5 wt.% in tetrahydrofuran) into a flat-

bottomed glass dish. The solvent was evaporated slowly under a slow flow of N2 at ambient temperature to 

give a bright yellow membrane. CO2/O2 selectivity of the as-prepared polymer membrane was deduced 

from gas permeation data, which were measured at 30 °C with pure CO2 and O2 gases using a custom-made 

fixed-volume pressure-increase instrument (typically at 200-300 mbar). Prior to each measurement, the 

system was sufficiently evacuated to completely remove the previous gas. 

2.4. Hybrid electrode preparation  

10 mg of catalyst powder was dispersed in 5 mL of ethanol, followed by the addition of 40 μL of 5 wt.% 

Nafion perfluorinated resin solution and a bath sonication for 1 h. Then, a calculated amount of the 

homogeneously mixed ink was deposited on one side of a 0.6 cm × 0.9 cm × 0.37 mm 

polytetrafluoroethylene-hydrophobized carbon fiber paper (Toray 120, Fuel Cell Store) and dried under an 

IR lamp. The final loading of the catalyst was 0.37 mg/cm2. Then, 15 mg of PIM was dissolved in 3 mL of 

chloroform. 600 µL of the solution was deposited dropwise on the other side of the carbon fiber paper and 

dried in a fume hood. The adopted volume was an optimized result (Fig. S1 online).  

2.5. Flow electrolyzer fabrication  

The flow electrolyzer was fabricated following our previously published protocol. [25] The 0.6 cm × 0.9 

cm × 0.37 mm anode and cathode were housed between two 0.5 mm thick poly(methyl methacrylate) 

(PMMA) plates, where a 0.2 × 0.5 cm2 window was cut out. Two identical 0.2 mm thick PMMA plates 

with a 0.2 cm × 7 cm channel were adjacently placed to facilitate the laminar electrolyte flows. An anion 

exchange membrane (AEM, Selemion DSV) was sandwiched in-between as the separator. A 5 cm × 1 cm 

× 0.5 cm gas reservoir was constructed on the cathode side to deliver CO2/O2 feed gas to the opposing-

catalyst side of the cathode. The anode is CoOx/CNT coated on a carbon fiber paper electrode with a mass 

loading of 0.37 mg/cm2. A leakage test was carried out prior to each experiment by immersing the 

electrolyzer into a beaker filled with water and passing Ar gas through all channels.  

2.6. Electrochemical measurements 

The electrochemical measurements were controlled by an electrochemical workstation (Bio-Logic VMP3 

Multi Potentiostat). The cell polarization profiles were obtained by the chronoamperometry technique. Each 

data point was an average over a run time of 180 s. Currents were normalized to the geometric active area 

of the electrode, i.e. 0.1 cm2. We noted that the current density variation from device to device was larger 

than common H-cell studies because of the much smaller working electrode area. Two 0.5 M KHCO3 

aqueous solutions were used as the catholyte and anolyte, which were driven into the flow cell using a dual-

channel syringe pump (LSP02-1B, Longer Pump) at a constant flow rate of 0.5 mL/min. After passing 

through the electrolyzer, the catholyte and gas effluents were combined and collected by a home-made 

collector. Due to the limitation of our cell design, the cathode potential was estimated by measuring the 
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potential difference between the cathode and an external Ag/AgCl reference electrode immersed in the 

catholyte effluent, which gave a cathode potential of ~ -1.1 V vs RHE at the cell voltage of -3.1 V. When 

conducting long-term electrolysis, a dual-channel peristaltic pump (P625, Instech) was used to circulate the 

electrolytes at a constant flow rate of 0.5 mL/min. All the electrolyte solutions were purified before use 

following a method described in our previous work. [26] To adjust the volume fraction of O2, high-purity 

CO2 (99.999%, Airgas Inc) and O2 (99.999%, Airgas Inc) were mixed in a home-made gas mixer at 

calculated flow rates as controlled by independent mass flow controllers (Alicat Scientific), and finally 

delivered to the gas reservoir at a total flow rate of 20 sccm. Gas products were extracted from the home-

made collector placed at the outlet of the gas chamber and the catholyte channel for analysis by a GC (SRI 

Multiple Gas Analyzer #5) equipped with molecular sieve 5A and HayeSep D columns. N2 was used as the 

carrier gas. H2 and CO were quantified by a thermal conductivity detector (TCD) and a flame ionization 

detector (FID), respectively. Gas volumes were obtained from the output peak areas using calibration 

curves. No liquid product was detected in our experiments. 

3. Results 

CO is one of the most cost-effective products from electrochemical CO2 reduction because it could be 

further electrochemically reduced to hydrocarbons [27, 28] or used as a feedstock in the Fischer-Tropsch 

process to produce liquid fuels. [29] Besides noble metals such as Au and Ag, [30, 31] metal-nitrogen 

coordination materials, with our CoPc-based molecules anchored on CNTs as an example, [22] are 

selective and active electrocatalysts for CO2 conversion to CO. [32, 33] When CoPc/CNT is used as the 

cathode catalyst in a flow electrolytic cell that we have recently constructed, [25] pure CO2 can be converted 

to CO with high efficiency. In the voltage range of 2.7-3.7 V, the cell exhibits FECO > 93% and FEH2 < 10%, 

with jtotal increasing with the voltage from 18.4 to 54.7 mA/cm2 (Fig. 1). In sharp contrast, when 5% O2 is 

incorporated in the CO2 feed gas, FECO and FEH2 drop drastically to essentially zero in the examined voltage 

range (Fig. 1), indicating that O2 reduction has already been completely dominant at this relatively low 

O2/CO2 ratio. The higher current density in the presence of O2 is likely associated with faster O2 reduction 

compared with CO2 reduction. 
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Fig. 1. FECO, FEH2 and jtotal vs cell voltage with and without O2 in the feed gas. CoPc/CNT is used as the 

cathode catalyst, CoOx/CNT as the anode catalyst, and 0.5 M aqueous KHCO3 as the electrolyte. Error 

bars represent standard deviations from multiple measurements. 

 

Inspired by nature (Fig. 2a), our design strategy for the O2-tolerant catalytic CO2 reduction electrode is to 

integrate in the electrode a function of concentrating CO2 from a CO2/O2 mixture. We chose a PIM material 

(Fig. S2 online) to serve as a molecular sieve with high gas permeability. [24, 34] The size-selective pores 

within the polymer structure can reject bigger O2 molecules (kinetic diameter = 0.346 nm [35, 36]) and 

allow rapid transport of smaller CO2 molecules (kinetic diameter = 0.33 nm [35, 37]). A thick (100 µm) 

membrane of this polymer demonstrates a CO2/O2 selectivity of ~ 6.2 in a pressure-increase time-lag 

apparatus. [24] Our electrode adopts a layered architecture, where the CoPc/CNT catalyst and the PIM are 

coated on opposing sides of a carbon fiber paper GDE (Fig. 2b). It was anticipated that the gas selection 

layer would lower the O2/CO2 ratio of the feed gas reaching the supported molecular catalyst so that it can 

effectively perform CO2-to-CO conversion.  
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Fig. 2. Design principle and electrochemical performance. (a) Illustration of plant photosynthesis in the 

presence of O2.  (b) Schematic diagram and cross-section scanning electron microscopy image of the 

architecture of the PIM-CoPc/CNT hybrid electrode for O2-tolerant catalytic CO2 reduction. Atoms: black 

– carbon, red – oxygen, pink - cobalt, blue – nitrogen. (c) FECO, FEH2 and jtotal vs volume fraction of O2 in 

the CO2 feed gas. Error bars represent standard deviations from multiple measurements. (d) FECO and jtotal 

during an 18 h electrolysis at O2 volume fractions of 5% (solid markers) and 20% (hollow markers). PIM-
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CoPc/CNT is used as the cathode, CoOx/CNT as the anode catalyst, and 0.5 M aqueous KHCO3 as the 

electrolyte. Cell voltage: 3.1 V. 

 

The PIM-CoPc/CNT hybrid electrode was integrated into our flow electrolytic cell (Fig. S3 online) which 

was operated at a controlled voltage of 3.1 V for maximized FECO (Fig. S4 online). Without any O2 in the 

CO2 feed gas, FECO is 96.9% with jtotal = 29.3 mA/cm2 (Fig. 2c), similar to the control without the PIM gas 

selection layer (Fig. 1). Measurements were then conducted with O2 in the feed gas to assess the O2 tolerance 

of the electrode. With 5% O2, CO2 reduction to CO can still proceed with a high FE of 75.9% and a total 

current density of 27.3 mA/cm2, indicating effective size-exclusion of O2 by the PIM layer. With stepwise 

increments of 5% in the O2 content, jtotal stays at ~ 30 mA/cm2 and FEH2 remains below 6%, whereas FECO 

gradually decreases to 69.7% at 10% O2, 60.6% at 15% O2, 49.7% at 20% O2, 43.3% at 25% O2, and 32.1% 

at 30% O2 (Fig. 2c). As the volume fraction of O2 increases to 35%, FECO falls below 20.0% and jtotal 

increases to 34.9 mA/cm2, suggesting that O2 reduction dominates the electrode reaction. Our CO2 

electrolytic cell shows stable performance during long-term operation. With 5% O2 in the CO2 feed gas, 

FECO remains largely stable between 79.4% and 75.8% for 18 h of continuous electrolysis at a controlled 

cell voltage of 3.1 V, with jtotal = ~ 32 mA/cm2 (Fig. 2d). Good durability is also achieved with a high O2 

volume fraction of 20%: Throughout the entire 18 h period, FECO slowly descends from 53.7% to 48.4% 

(Fig. 2d). 

A notable advantage of our molecular CoPc-based catalyst materials is that their catalytic sites can be 

tailored by chemical synthesis to introduce substituents that might further enhance performance. Our prior 

work has revealed that electron-withdrawing substituents on CoPc can improve the electrocatalytic activity 

for CO2 reduction to CO. [22] Hence, we prepared cyano-, nitro- and amino-substituted CoPc molecules 

(Fig. S5 online) and their corresponding hybrids with CNTs. With pure CO2 as the feed gas, the three hybrid 

materials can all catalyze CO2 electroreduction with FECO > 90% (Fig. S6 online). With CO2 containing 5% 

O2, the three substituted CoPc-based electrodes, like CoPc/CNT, all completely lose their function for 

catalyzing CO2 reduction (Fig. S6 online). However, integrating a PIM CO2-concentrating layer imparts O2 

tolerance to all electrodes (Fig. S7 and S8 online). Because ligand modification influences both the catalytic 

activity for CO2 reduction and that for O2 reduction, O2-tolerant CO2 reduction could be further enhanced. 

Indeed, the PIM-CoPc-CN/CNT electrode can deliver a jtotal of 56.3 mA/cm2 with a FECO of 83.7% at a cell 

voltage of 3.1 V in the presence of 5% O2 in the CO2 feed gas (Fig. S8a online), demonstrating higher 

reaction rates and selectivity. The PIM-CoPc-NO2/CNT electrode has even higher O2 tolerance, showing a 

FECO+H2 as high as 82.3% in the presence of 20% O2 (Fig. S8b online). 

4. Discussion 
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The PIM layer plays a pivotal role in this bio-inspired electrode structure. It filters O2 and enriches CO2 

from the feed gas, and thus creates a low-O2 local environment for the catalyst to effectively perform 

electrochemical CO2 reduction to CO. For a given catalyst, the reaction selectivity between CO2 reduction 

and O2 reduction should be dependent on the O2/CO2 ratio at the catalyst surface, if the other conditions are 

held constant. This allows us to derive the local O2/CO2 ratio at the catalyst surface of the O2-tolerant hybrid 

electrodes and to further estimate the CO2 concentrating power of the PIM layer. For each CoPc-based 

catalyst, we first recorded the dependence of the FEO2/FECO ratio on the O2/CO2 feed ratio in the PIM-free 

electrode configuration (Fig. S9a-d online), and then compared with the O2/CO2-dependent FEO2/FECO data 

for the corresponding PIM-containing electrode (Fig. S9e-h online) to determine the local O2/CO2 ratio at 

the catalyst surface at each O2/CO2 feed ratio (Fig. S10 online). The results derived independently from the 

four different CoPc-based catalysts are consistent and reflect the capability of the PIM layer in selectively 

transporting CO2 over O2. As the volume fraction of O2 increases from 0 to 35% in the feed gas, the local 

O2 concentration at the catalyst is maintained below 2%, corresponding to an average CO2/O2 selectivity of 

~ 20 (Fig. 3), which suggests that ~ 95% O2 in the feed gas is rejected by the PIM layer. Compared to the 

CO2/O2 selectivity of 6.2 measured in the standard pressure-increase apparatus, the enhanced separation in 

our electrolyzer could be attributed to the gas-liquid co-flow configuration as well as the relatively high 

concentration of CO2 in the feed gas. 

 

Fig. 3. Volume fraction of O2 at the catalyst surface vs that in the feed gas, and CO2/O2 selectivity of the 

PIM gas selection layer in the O2-tolerant hybrid electrodes. Error bars represent standard deviations from 

measurements of PIM-CoPc-CN/CNT, PIM-CoPc/CNT, PIM-CoPc-NH2/CNT, and PIM-CoPc-NO2/CNT 

electrodes as shown in Fig. S10 (online). 

5. Conclusions 

In summary, we have devised a bio-inspired hybrid electrode structure to realize efficient and durable O2-

tolerant electrocatalytic CO2 reduction. This unprecedented performance is based on the cooperation 
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between the microporous polymer that selectively permeate CO2 and the heterogenized molecular catalyst 

that actively converts CO2 to CO. The reaction rate and O2 tolerance can be further enhanced by appending 

substituents to the catalyst structure. These electrodes may be useful for directly valorizing O2-containing 

industrial flue gases or utilizing CO2 from direct air capture. 
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