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Abstract. The hydrodynamics is studied numerically of a horizontal cylinder

undergoing forced in-line oscillation beneath the free surface of otherwise quiescent

liquid at low Keulegan-Carpenter and Froude numbers. The DFIB-SPH numerical

model uniquely combines two well-established techniques: the direct forcing immersed

boundary (DFIB) method and smoothed particle hydordynamics (SPH). This

facilitates accurate evaluation of the potentially violent free surface motions through

SPH and the hydrodynamic force on the solid body using a volume integral. A

parameter study is conducted covering a range of Keulegan-Carpenter numbers (KC =

3, 7, and 10) and submergence ratios (H/D = 0.5 − 2.0) at fixed Reynolds number

(Re = 100) and Froude number (Fr = 0.35). The flow pattern and transverse force

coefficient are found to be affected by the proximity of the cylinder to the free surface.

Spectral analysis suggests that free surface wave motions are linked to the transverse

force acting on the submerged, oscillating cylinder.
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1. Introduction

Accurate prediction of fluid-structure interaction is important in the design of offshore

structures, the majority of which consist of assemblages of cylindrical members.

Oscillating horizontal cylinder in otherwise quiescent fluid represents a simplified model

of the vibration of horizontal cylindrical member of an offshore structure. It also provides

a simple model of vibrating tube or pipe submerged in liquid inside a tank or vessel.

Flow around an oscillating cylinder in quiescent fluid is characterised by two

non-dimensional numbers, the Keulegan-Carpenter number (KC = UT
D

) and Reynolds

number (Re = UD
ν

) where U is the velocity amplitude, T is the period of cylinder

oscillation, D is the cylinder diameter, and ν is the fluid kinematic viscosity coefficient.

The ratio between KC and Re is called the frequency parameter, and denoted as

β =
Re

KC
. (1)

Many researchers have studied vortex formation in the vicinity of a stationary

cylinder in oscillatory flow or an oscillating cylinder in otherwise quiescent fluid. A

systematic description of the vortex formation pattern is given by Williamson (1985)

who grouped the flow regimes according to the KC number, namely: pairing of attached

vortices (0 < KC < 7), transverse street/single-pair (7 < KC < 15), double-pair

(15 < KC < 24), three-pair (24 < KC < 32), and four-pair (32 < KC < 40). A

subsequent study by Obasaju et al (1988) observed similar flow regimes and boundaries

between regimes in terms of KC. Obasaju et al (1988) named the double-pair as the

diagonal regime, the three-pair as the third vortex regime, and the higher regimes as the

quasi-steady regime. For 0 < KC < 7, a pair of vortices forms in the cylinder wake and

remains attached to the cylinder each half cycle. The attached vortex pair is symmetric

up to KC = 4. In the symmetric regime, the fundamental frequency of in-line force is

equal to the frequency of cylinder oscillation, and the transverse force is virtually zero.

For KC > 4, the vortex pair becomes asymmetric giving rise to a fluctuating transverse

force at the oscillation frequency. In the transverse street/single-pair regime, a vortex is

shed from the cylinder each half cycle. During two successive half cycles, two vortices of

opposite sign are released. A vortex street develops with time in the direction of vortex

migration. At 7 < KC < 13, the vortices migrate in a direction roughly perpendicular

to the cylinder movement. At 13 < KC < 15, the vortex pair advects away at about

45o to the direction of cylinder oscillation. In the single-pair regime, the fundamental

frequency of the transverse force is twice the frequency of cylinder oscillation whereas

the in-line force continues to fluctuate at the same frequency as the cylinder oscillation.

The higher regimes is named according to the number of vortex pair sheds each cycle.

For each flow regime, Williamson (1985) found that the ratio of frequency of transverse

force and cylinder oscillation is constant over the range of β value studied. It should be

noted however, that an earlier study by Sarpkaya at higher Reynolds number suggested

that the ratio increases progressively with increasing frequency parameter (Sumer and

Fredsøe, 2006). The investigations by Williamson (1985) and Obasaju et al (1988) were
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conducted at a relatively high value of frequency parameter. Tatsuno and Bearman

(1990) mapped flow regimes at a low frequency parameter (β < 160) for KC < 15).

They found eight distinct flow regimes in terms of KC and β. Numerical investigations

conducted later by Justesen (1991) and Iliadis and Anagnostopoulos (1998) using two-

dimensional models confirmed the flow pattern identified in the foregoing experimental

results and revealed that the inception of asymmetric flow is a function of β.

Most studies concerning an oscillating cylinder in otherwise quiescent fluid or

oscillatory flow past a stationary cylinder consider a cylinder placed in an infinite fluid

or very far from the boundary. Relatively few studies have been conducted to investigate

the effect of proximity to a boundary which can act to suppress vortex shedding. In a

study of the effect of wall proximity in oscillatory flows, Sumer et al (1991) found that

the vortex shedding regimes identified by Williamson (1985) can change considerably.

At KC = 4, the symmetry of the attached vortex pair disappears with decreasing gap

ratio, the ratio of the distance from the cylinder to the bottom wall boundary and the

cylinder diameter. For zero gap ratio, the attached vortex only grows from the top

surface of the cylinder. Because of proximity to the wall, the vortex from the previous

half cycle is swept over the top surface of the cylinder and disappears during the start

of the next half cycle. The transverse vortex street, observed by Williamson (1985) for

7 < KC < 13, disappears for gap ratio < 1.7, for which the line of migration of the

vortex pair is parallel to the free stream. This vortex pattern is confirmed by Scandura

et al (2009) who undertook numerical simulation for KC = 10 and β = 20 and 50. At

small KC, such as 10-20, vortex shedding is maintained for gap ratios down to about

0.1. The critical value of the gap ratio, a value below which the vortex shedding is

suppressed, increases with KC.

Lin and Rockwell (1999) studied experimentally the effect of proximity to the free

surface on the hydrodynamic force on a submerged body at very low Fr and constant

KC = 10. They found that for a cylinder placed relatively far from the free surface, two

cycles of modulated transverse force occurred for each cycle of cylinder oscillation, in

agreement with the established result for a cylinder in infinite fluid. The time history

of transverse force matched that obtained by Obasaju et al (1988) also at KC = 10.

Lin and Rockwell (1999) conducted their study at very low Fr number where the free

surface only deforms slightly and the proximity effect is similar to that for a free slip

boundary. At larger Fr, the free surface can undergo considerable deformation and

wave breaking may occur, leading to substantial production of vorticity. To the present

authors’ knowledge, the effect of free surface vorticity on vortex formation at the cylinder

remains largely unaddressed.

Smoothed particle hydrodynamics (SPH) (Monaghan 1994) offers a means of

accurately simulating the violent free surface motions of a liquid. However, when SPH

is applied to a submerged solid, it can be awkward to obtain a correct prediction of the

hydrodynamic force, owing to the oscillatory pressure field and difficulty in enforcing

non-slip boundary condition at the solid-liquid interface. Given that SPH evaluates

pressure using an equation of state, the effect of the oscillating of pressure field can be
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remedied by means of the δ-SPH method which introduces an additional density filter

term to the continuity equation (Marrone et al 2011). However, the δ-SPH method

employs an elaborate algorithm to evaluate field variables at the boundary based on

moving least-squares interpolation (Marrone et al 2011).

The direct forcing immersed boundary method has been specifically developed to

model fluid flow interactions with complicated immersed bodies (Noor et al 2009).

By introducing a virtual force to the Navier-Stokes equation to enforce the non-slip

boundary condition, the DFIB method eliminates the need for a boundary algorithm.

The hydrodynamic force is then evaluated by means of a volume integral of the virtual

force over the solid body, instead of the conventional surface integral of fluid stress which

requires knowledge of boundary normal (Noor et al 2009).

In the present study, we apply a combination of direct forcing immersed boundary

and smoothed particle hydrodynamics methods to study the local hydrodynamics

induced by a submerged horizontal cylinder undergoing forced oscillations close to a

liquid free surface at low Fr and KC. The DFIB method (based on the volume of solid

function proposed by Noor et al) is used to model the solid body and simplify the

hydrodynamic force calculation. For the SPH part, the δ-SPH method proposed by

Marrone et al, which offers reduced noise in the pressure field, is implemented. In this

manner, we exploit the best features of each technique. A parameter study is conducted

for different submergence ratios (the ratio of the distance from the cylinder to the free

surface and the cylinder diameter) and KC values, for constant Re and Fr. The effects

are interpreted of submergence ratio and KC on the vortex pattern, the hydrodynamic

force signature, and the free surface elevation.

2. Governing equations and numerical scheme

The SPH method uses a weakly compressible model to simulate an incompressible fluid.

Therefore, instead of enforcing an incompressibility condition, we solve the continuity

equation which is given in non-dimensional form as

Dρ

Dt
= −ρ∇ · u (2)

where ρ is non-dimensional density, t is non-dimensional time, and u is the non-

dimensional velocity vector. The non-dimensional momentum conservation equation

including the virtual force term, f , defined by the DFIB method can be written as

Du

Dt
= −1

ρ
∇p+

1

Re
∇2u + g + f (3)

where p is non-dimensional pressure and g is the non-dimensional body force term

given as g =
(
0i + −1

Fr2
j
)
. Here, the Froude number is based on the cylinder diameter

and defined as Fr = U/
√
gD where g is the gravitational acceleration. In the weakly

compressible model, the pressure is obtained from the following linear equation of state,

p = c20 (ρ− 1) (4)



5

where c0 is the non-dimensional reference speed of sound.

To smooth the pressure field, a filter is applied, based on inclusion of a density

diffusion term, in keeping with the δ-SPH method. With this additional term, the

semi-discrete continuity equation reads

Dρi
Dt

= −ρi
∑
j

(uj − ui) · ∇iW̃ijVj + δhc0
∑
j

ψij · ∇iW̃ijVj (5)

where i denotes the ith particle, j denotes a neighbouring particle,∇iW̃ij is the corrected

gradient of the kernel function, δ is a coefficient that represents the intensity of diffusion,

h is the support length of the kernel function, ψij is the density diffusion term, and Vj
is the volume of the j th neighbour particle. In this study, δ = 0.1. The density diffusion

term, ψij, is given by

ψij = 2
(ρj − ρi)
|xij|

xij
|xij|

− (∇ρi +∇ρj) (6)

where xij = xj − xi, and x is the position vector. The semi-discrete Navier-Stokes

equation can be written as

Dui
Dt

=−
∑
j

mj

(
pi
ρ2i

+
pj
ρ2j

)
∇iW̃ij

+
2

Re

[∑
j

(uj − ui)

(
xij

|xij|2
−
∑
j

∇iWijVj

)
· ∇iW̃ijVj

]
+ g + fi

. (7)

In Eq. (7), the pressure gradient term is discretized using a symmetric gradient operator

and the viscous term is discretized using a Laplacian operator similar to the one proposed

by Schwaiger (2008). The corrected kernel gradient at the ith particle, ∇iW̃ij, in Eqs.

(5) and (7) is given by

∇iW̃ij = Li · ∇iW (xij) (8)

where Li is the kernel gradient correction proposed by Chen et al (1999) and Wij is the

quintic Wendland kernel function. In the present study, the smoothing length of the

kernel function is 1.2∆x0 where ∆x0 is the initial particle spacing.

The virtual force term in Eq. (7) is defined as

fi = ηi
us − ui

∆t
(9)

where ηi is the volume of solid (VOS) function of the ith particle and us is the prescribed

solid velocity (Noor et al 2009). This term represents the interaction between the solid

and fluid. Inclusion of this term in the Navier-Stokes equation enforces the non-slip

boundary condition on the solid body. For a regular geometry, such as a circular cylinder,

ηi can be represented by an analytical equation. For a circular cylinder, the formula is

ηi (xi, yi) =

{
1 for

√
(xi − xC)2 + (yi − yC)2 ≤ r

0 otherwise,
(10)
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where xC and yC are the coordinate of the center of the cylinder and r is the radius of

the cylinder. In the grid-based method, the solid boundary does not generally coincide

with the cell. Therefore, the volume of solid function does not exactly represent the solid

geometry. Consequently, the non-slip boundary condition is enforced slightly inside the

solid boundary. This problem can be remedied by using smaller grid around the solid

body. In the SPH method, this problem can be avoided by uniformly distributing some

particles inside the solid region and also along the solid boundary. The hydrodynamic

force is calculated using a volume integral of the virtual force given as

F = −
∫

fdm (11)

which is easier to evaluate than the conventional surface integral. For the SPH method,

the above formula can be discretized into summation over the fluid particles.

In the WCSPH model, the density variation needs to be restricted in order that

the fluid behaves properly as it approaches the incompressibility limit. This is achieved

by prescribing the reference speed of sound, c0, in the equation of state such that the

Mach number is less than or equal to 0.1 (M ≤ 0.1). Therefore, it is customary in the

WCSPH model, to set

c0 ≥ 10Umax (12)

where Umax is the maximum velocity. If the body force is absent, Umax can be chosen

equal to the inlet velocity or the boundary velocity (for cases with a moving boundary

such as the cavity flow). When a body force is present, the maximum velocity is selected

as

Umax =

√
L

Fr2
(13)

where L is the initial fluid depth.

In the present study, the bottom boundary is modelled using dynamic boundary

particles (Crespo and Dalrymple, 2007). Instead of using an open or periodic boundary

condition at a vertical boundary, we use a wall boundary with a numerical damping

layer placed in front of it. The damping layer slowly brings the velocity to the far field

value of zero. Here the damping model is applied in a similar way to that of Mayer et

al (1998) using the decay function suggested by Fuhrman et al (2006). Fig. 1 depicts

schematically the problem domain and the damping zones.

Time integration is carried out using the predictor-corrector Beeman algorithm.

Virtual force is omitted when calculating the acceleration in both prediction and

correction steps of the Beeman algorithm. The predictor step is

u∗
i = uni +

1

2
∆t
(
3ani − an−1

i

)
, (14)

ρ∗i = ρni +
1

2
∆t
(
3ρ̇ni − ρ̇n−1

i

)
, and (15)

x∗
i = xni +

[
∆tuni +

1

6
∆t2

(
4ani − an−1

i

)]
(1− ηi) (16)
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where a = Du
Dt

and ρ̇ = Dρ
Dt

. The predicted pressure is calculated as

p∗i = c20 (ρ∗i − 1) (17)

The corrector step is based on the Adam-Bashforth-Moulton method and is given by

u∗∗
i = uni +

1

12
∆t
(
5a∗

i + 8ani − an−1
i

)
, (18)

ρn+1
i = ρni +

1

12
∆t
(
5ρ̇∗i + 8ρ̇ni − ρ̇n−1

i

)
, and (19)

x∗∗
i = xni +

[
∆tuni +

1

6
∆t2 (a∗

i + 2ani )

]
(1− ηi) . (20)

The pressure is updated by

pn+1
i = c20(ρ

n+1
i − 1). (21)

Next, an equation of motion is solved for the solid velocity, un+1
s , and displacement,

∆xn+1
s . Subsequently, the virtual force is updated by

fn+1
i = ηi

un+1
s − u∗∗

i

∆t
. (22)

Finally, the fluid velocity is corrected using the updated virtual force,

un+1
i = u∗∗

i + ∆t fn+1
i , (23)

and the position of fluid particle is updated by

xn+1
i = x∗∗

i + ∆xn+1
s ηi. (24)

After the time integration step, the velocity of the fluid particles in the damping zone

is corrected according to the damping model. A variable time step is used, following

Monaghan and Kos (1999). The numerical scheme described above is implemented by

modifying the open-source SPHYSICS code (Gomez-Gesteira et al 2012). The code is

compiled and run on Intel R© Xeon R© E5-2650 processors and Linux environment.

3. Results and discussion

The implemented numerical scheme is first validated and tested for particle number

independence by simulating the forced oscillations of a horizontal cylinder in otherwise

quiescent fluid without a free surface at low KC. The cylinder is oscillated sinusoidally,

with velocity prescribed by

us(t) = − cos(2πf0t). (25)

Fig. 1 shows the problem domain. Results are then presented from a parameter study

for KC = 3, 7, and 10 and submergence ratio values of H/D = 0.5, 0.75, 1.0, 1.5, and

2.0 at constant Re = 100 and Fr = 0.35.
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3.1. Validation and particle independence

The DFIB-SPH model is validated for the case of a cylinder oscillated in an infinite

expanse of otherwise still fluid (i.e. without a free surface) at KC = 5 and Re = 100.

At such low KC and Re, it is well established that vortices form, grow, and then remain

attached to the cylinder. The present numerical predictions are compared against

experimental data and alternative numerical prediction obtained using a finite volume

solver with a body fitted grid by Dütsch et al (1998). Fig. 2 shows the predicted limit-

cycle time histories of transverse force over three oscillation cycles obtained for three

different smoothed particle sizes against corresponding numerical predictions presented

by Dütsch et al (1998); it should be noted that the DFIB-SPH results in Fig. 2 have

been post-processed using a method recommended by Shen et al (2009). The present

results are in agreement with those of Dütsch et al especially for ∆x0 = 0.04D and

∆x0 = 0.025D where grid convergence appears to have been achieved. We therefore

use ∆x0 = 0.04D for the subsequent cases. Fig. 3 depicts the present predictions and

Dütsch et al’s experimental measurements of vertical profiles of horizontal (left column)

and vertical (right column) velocity components at time t = nT +7T/12 (corresponding

to a phase angle of 210o) at three sections in the stream-wise direction along the domain.

The current position of the cylinder can be seen at section x = 0.6 where the horizontal

velocity component is constant at about 0.8 and the vertical velocity component is

constant at 0.0 for −0.5 ≤ y ≥ 0.5. In general, both sets of results are in very close

agreement, the slight discrepancies arising because of the assumption of two-dimensional

flow in the present model, unlike the fully three-dimensional experiments conducted by

Dütsch et al.

3.2. Parameter study

A parameter study is now described using predictions made by the DFIB-SPH model

to examine the influence of the distance to the free surface of a horizontal cylinder

undergoing forced oscillations on the surrounding flow pattern, hydrodynamic force

coefficients, and free surface wave deformation for KC = 3, 7, and 10. In all cases,

the still water depth is set equal to 7D, where D is the diameter of the cylinder. The

submergence ratio H/D is expressed as the ratio of the depth of submergence from the

still water level to the top of the cylinder, H, to the diameter of the cylinder, D.

3.2.1. Effect of submergence ratio on flow patterns First, we consider the submergence

effect at a low value of KC = 3. For submergence ratio in the range 1.0 ≤ H/D ≤ 2.0,

an asymmetric vortex pair forms behind the cylinder. Fig. 4 illustrates the predicted

instantaneous vorticity distribution in the plane of the cylinder at four intervals during

the oscillation cycle for H/D = 2.0. As the cylinder reaches the end of a half cycle

and reverses, a vortex pair detaches from the cylinder surface. A nascent vortex of

opposite rotation forms on the other side of the cylinder, and as this vortex pair grows

larger, the previously detached vortices disappear. The degree of asymmetry of the
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vortex pair is different between the first half cycle and the second half cycle. During

the first half cycle, when the cylinder moves towards the left, the degree of asymmetry

in the vortex pair is smaller compared to the second half cycle when the cylinder moves

towards the right. During the first half cycle, the upper vortex is slightly bigger and

has higher absolute peak vorticity than the lower vortex. In the second half cycle the

situation is reversed. The lower vortex is considerably bigger and has higher absolute

peak vorticity. A similar flow pattern is observed when the cylinder is placed beneath

a free surface at H/D = 1.5. When the cylinder is placed closer to the free surface,

such that the submergence ratio becomes H/D = 1.0, the degree of asymmetry of the

vortex pair becomes larger. At larger submergence ratios the highest vorticity keeps

alternating between the upper and lower vortices but, at H/D = 1.0, the lower vortex

is consistently larger compared to the upper vortex throughout the cycle. Whereas the

lower vortex grows downstream, the upper vortex is swept over along the back surface

of the cylinder. No vortex shedding occurs for 1.0 ≤ H/D ≤ 2.0 at KC = 3. For

H/D = 0.5 and 0.75, a transverse vortex street develops. At the smaller submergence

ratios, the degree of asymmetry between the upper and lower vortices is larger, with the

upper vortex curling further downward along the back surface of the cylinder. At the

end of a half cycle, the upper vortex reaches the bottom of the cylinder and interacts

with the lower vortex causing it to detach. The lower shed vortex then travels downward

(perpendicular to the direction of cylinder oscillation). At the end of the following half

cycle, another vortex with opposite sign is shed from the bottom of the cylinder. At a

submergence ratio of 0.5, free surface wave breaking occurs downstream of the cylinder,

generating a vortex which advects downward to the cylinder and coalesces with the

attached upper vortex on the cylinder surface, substantially increasing the strength of

the upper vortex (see Fig. 5).

At the higher value of KC = 7, an asymmetric vortex pair again forms behind the

cylinder during each half cycle at submergence ratio H/D = 1.0, 1.5, and 2.0. Fig.

6 depicts the vorticity pattern over a complete limit cycle for H/D = 1.0. The lower

vortex is always larger than the upper vortex. At the end of each half cycle, a vortex is

shed from the bottom of the cylinder. When the cylinder reverses, instead of advecting

away from the cylinder and helping to form a vortex street, the shed vortex is washed

back towards the cylinder and its energy dissipated. The process effectively repeats

itself, but in an alternating direction, each half cycle. It should be noted that KC ≈ 7

represents the transition from attached vortices (for KC < 7) to vortex shedding (for

KC > 7) regimes observed for a cylinder oscillated far from any boundary (Obasaju

et al 1988). At a lower submergence value of H/D = 0.75, vortex shedding occurs

forming a transverse street. At KC = 7, the shed vortex does not travel far, but instead

dissipates after advecting downward at about 1D. At the free surface, wave breaking

starts to occur behind the cylinder, and a vortex is released from the breaker that advects

toward the cylinder. The vortex shedding and wave breaking processes are similar to

those at KC = 3 and H/D ≤ 0.75. A similar flow pattern is also observed at KC = 7

and H/D = 0.5, where the shed vortex is stronger and so advected further downward,
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helping form a vortex street. At the free surface, wave breaking, vorticity production,

and vortex merging phenomena similar to the H/D = 0.75 are observed.

At KC = 10, a single asymmetric vortex pair is again observed at submergence

ratios H/D = 1.0, 1.5, and 2.0, with similar behaviour as noted for KC = 3 and 7 at

the same values of submergence ratio. A single-pair regime is observed at KC = 10 and

H/D = 0.75 (see Fig. 7). At the end of the first half cycle during which the cylinder

moves to the left, a negative (clockwise-rotating) lower vortex is shed from the bottom

of the cylinder. This lower vortex is similar to that which develops in the washed back

shedding regime, but is much stronger. Hence, when the cylinder moves to the right

during the second half cycle, instead of being washed back and dissipating, the detached

lower vortex advects below the cylinder to the left. At the end of the second half cycle,

a positive-signed lower vortex is shed from the bottom of the cylinder. The newly shed

vortex forms a pair with its predecessor. This vortex pair then advects downward at an

angle to the direction of cylinder oscillation, but does not persist long; the lower vortex

from the first half cycle decays slowly eventually disappearing as does its successor. An

upper vortex is also detached at the end of each half cycle. However, the upper shed

vortex is almost immediately washed back towards the cylinder and reattaches, helping

form the lower vortex during flow reversal. During each half cycle, wave breaking is

also observed behind the moving cylinder. Wave breaking produces vorticity at the

free surface, leading to the generation of a vortex when the cylinder reverses direction,

and the disturbance to the free surface stops. This vortex advects downward towards

the cylinder and merges with a vortex of the same sign on the surface of the cylinder.

At H/D = 0.5, the breaking of free surface waves intensifies, creating a stronger upper

vortex which remains attached, migrating around the back of the cylinder to its base (see

Fig. 8). This process forces the lower shed vortex to migrate downward (perpendicular

to the cylinder movement) causing a transverse vortex to form.

Fig. 9 maps the flow patterns observed in the present study according to Keulegan-

Carpenter number and submergence ratio. A trend is noticeable that departs from the

infinite fluid and near wall cases. In the case of an oscillating cylinder in infinite fluid, the

flow pattern is entirely determined by KC, whereas in the case of an oscillating cylinder

in a liquid with a free surface, the flow pattern is also affected by the proximity of the

cylinder to the free surface. Sumer et al (1991) studied the effect of a plane boundary

on oscillatory flow past a cylinder and found that the wall boundary consistently acts

to suppress vortex formation and shedding across all KC numbers. Our predictions of

free surface, viscous flow past a cylinder show that the free surface plays a different role

to that of a fixed wall. At low values of KC, proximity of the cylinder to the liquid free

surface tends to promote vortex shedding, whereas there is no shedding in the case of

infinite fluid. At higher values of KC, the free surface can act to promote a higher regime

of vortex shedding pattern for small submergence ratio than for the infinite fluid case.

At smallest cylinder submergence, the vortex shedding pattern reverts to the transverse

street regime, indicating that strong wave breaking at the free surface confines vortex

formation in the transverse street regime.
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Unlike a plane wall boundary, free surface is deformable. As the distance between

cylinder and still water level is reduced, the free surface flow over the cylinder becomes

supercritical leading to a moving hydraulic jump becoming established downstream

(relative to the direction of motion of the cylinder) whose wave amplitude grows

until wave breaking occurs. The breaking wave produces considerable vorticity which

interacts with the flow field immediately to the lee of the moving cylinder. It is this

interaction that influences the flow patterns observed at the smallest submergence ratios

considered herein.

3.2.2. Hydrodynamic force components We now examine the spectra of in-line and

transverse force coefficients and free surface elevation time series, the latter computed

vertically above the mean position of the oscillating cylinder. In all cases, the peak

frequency of the in-line force coefficient is the same as the cylinder oscillation frequency,

regardless the depth of submergence. Fig. 10 depict the in-line and transverse force

coefficient spectrum along with the free surface elevation spectrum at KC = 3, 7, and

10 respectively, in each case for submergence ratios of 0.5, 1.0, and 2.0. At KC = 3,

the peak transverse force frequency and peak free surface elevation spectral frequency

occur at the cylinder oscillation frequency for H/D = 1.0 to 2.0, but alter to twice

the cylinder oscillation frequency for H/D = 0.5, corresponding to vortex shedding.

At KC = 7 and 10, the fundamental frequencies of the transverse force coefficient and

free surface elevation spectra are invariably twice the frequency of cylinder oscillation

for all submergence ratios. The general agreement between the peak frequencies of the

transverse force coefficient and free surface elevation indicates an intimate coupling

between the free surface motions and the underlying flow field which induces the

transverse force on the cylinder.

Fig. 11 presents the root-mean-square of transverse force coefficient, Cl,rms, as

a function of submergence ratio for KC = 3, 7, and 10. At a given value of

Keulegan-Carpenter number, Cl,rms increases as the submergence decreases; this is most

pronounced for 1.0 ≤ H/D ≤ 2.0 at KC = 3. At a given submergence, Cl,rms increases

as KC decreases. In short, Cl,rms is a function of both KC and submergence ratio,

experiencing the greatest variation as KC is reduced. Fig. 12 presents the corresponding

plot of the average transverse force coefficient, Cl,avg, over the range of KC numbers and

submergence ratios considered. Owing to the gravitational force component, Cl,avg is

negative for all KC numbers and submergence ratios. At constant KC, the magnitude

of Cl,avg decreases with increasing submergence until H/D = 1.0; for higher values of

H/D, it seems that the free surface no longer affects the value of Cl,avg.

Fig. 13 shows the root-mean-square free surface displacement created by the

oscillating cylinder as a function of cylinder submergence ratio for KC = 3, 7, and 10.

Here we can see an almost linear, monotonic decline in root-mean-square free surface

elevation with submergence ratio. There is less effect of KC, except that the root-mean-

square free surface elevation is generally lower for KC = 7 than KC = 3 or 10.
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4. Conclusions

A numerical model has been developed, based on a unique combination of otherwise

well-established direct forcing immersed boundary (DFIB) and smoothed particle

hydrodynamics (SPH) methods, for application to viscous free surface flows in the

vicinity of solid boundaries. The model exploits the advantages of both methods, with

DFIB used to evaluate boundary forces and SPH to represent the very complicated

behaviour of a highly deformable liquid free surface. Particle convergence and validation

tests have shown that the DFIB-SPH model accurately predicts the in-line forces and

velocity profiles for a cylinder oscillated in almost infinite fluid at low Reynolds number,

in agreement with published data from an alternative numerical model and laboratory

experiments (Dütsch et al 1998). The DFIB-SPH model has been applied to a parameter

study on the hydrodynamics of a cylinder forced to oscillate harmonically beneath the

free surface of a viscous liquid, over ranges of KC numbers and submergence ratios at

Re = 100 and Fr = 0.35. The model predictions indicate that the vorticity patterns

depend on both KC and the proximity of the cylinder to the free surface. It is found

that the free surface boundary has a different effect to a rigid-lid boundary, the latter

suppressing vortex shedding. At low KC, where no vortex shedding is observed in

the case of infinite fluid, the presence of a deformable free surface tends to promote

vortex shedding at low values of cylinder submergence by supplying vorticity created

by the breaking of a hydraulic jump wave that forms downstream of the crest of the

cylinder. At higher KC, proximity of the cylinder to the free surface seems to confine

the vortex shedding mode to a transverse vortex regime, arising from a strong vortex

created within the breaking wave. It is also found that proximity to the free surface

only affects the average transverse force coefficient when the submergence ratio is less

or equal to the cylinder diameter. The magnitude of the transverse force coefficient

and free surface elevation both increase as the cylinder’s mean location approaches the

free surface. The peak frequencies of the free surface elevation and transverse force

coefficient time histories are consistently the same for any given KC and submergence

ratio, which suggest that the free surface wave motions and transverse force on the

oscillating cylinder are strongly coupled.
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Dütsch H, Durst F, Becker S and Lienhart H 1998 Low-Reynolds-number flow around an oscillating

circular cylinder at low Keulegan-Carpenter numbers J. Fluid Mech. 360 249–271

Fuhrman D R, Madsen P A and Bingham H B 2006 Numerical simulation of lowest-order short-crested

wave instabilities J. Fluid Mech. 563 415–441

Gomez-Gesteira M, Rogers B, Crespo A, Dalrymple R, Narayanaswamy M and Dominguez J 2012

SPHysics – development of a free-surface fluid solver – Part 1: Theory and formulations Comput.

Geosci. 48 289–299

Iliadis G and Anagnostopoulos P 1998 Viscous oscillatory flow around a circular cylinder at low

Keulegan-Carpenter numbers and frequency parameters Int. J. Numer. Methods Fluids 26 403–442

Justesen P 1991 A numerical study of oscillating flow around a circular cylinder J. Fluid Mech. 222

157–196

Lin J C and Rockwell D 1999 Horizontal oscillations of a cylinder beneath a free surface: vortex

formation and loading J. Fluid Mech. 389 1–26

Marrone S, Antuono M, Colagrossi A, Colicchio G,Le Touzé D and Graziani G 2011 δ-SPH model for
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Figure 1. Problem domain.
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Figure 2. Validation and particle convergence test: time histories of in-line force

coefficient obtained for a circular cylinder undergoing forced sinusoidal oscillations in

otherwise still fluid at KC = 5 and Re = 100, obtained for three particle sizes using

the DFIB-SPH model and experimentally by Dütsch et al (1998).
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Figure 3. Non-dimensional vertical y-profiles of the in-line flow velocity component at

three sections in the stream-wise direction along the domain, at time t = nT + 7T/12,

corresponding to a phase angle of 210o for KC = 5 and Re = 100: numerical predictions

by the DFIB-SPH model, experimental data from Dütsch et al (1998).
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Figure 4. Instantaneous vorticity distribution predicted by the DFIB-SPH model at

different times during the forced oscillation cycle of a horizontal cylinder beneath the

free surface of a liquid for KC = 3, H/D = 2.0.
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Figure 5. Instantaneous vorticity distribution predicted by the DFIB-SPH model at

different times during the forced oscillation cycle of a horizontal cylinder beneath the

free surface of a liquid for KC = 3, H/D = 0.5.
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Figure 6. Instantaneous vorticity distribution predicted by the DFIB-SPH model at

different times during the forced oscillation cycle of a horizontal cylinder beneath the

free surface of a liquid for KC = 7 H/D = 1.0.



19

us us

us us

ω: -4 -3 -2 -1 -0.75 0.75 1 2 3 4

Figure 7. Instantaneous vorticity distribution predicted by the DFIB-SPH model at

different times during the forced oscillation cycle of a horizontal cylinder beneath the

free surface of a liquid for KC = 10 H/D = 0.75.
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Figure 8. Instantaneous vorticity distribution predicted by the DFIB-SPH model at

different times during the forced oscillation cycle of a horizontal cylinder beneath the

free surface of a liquid for KC = 10 H/D = 0.5.
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Figure 9. KC-H/D map indicating different classes of flow patterns obtained for

a horizontal cylinder undergoing forced oscillation below the free surface of a liquid,

predicted by the DFIB-SPH model.
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Figure 10. In-line force coefficient, transverse force coefficient, and free surface

elevation spectra obtained for KC = 3− 10, and submergence ratios of H/D = 0.5−2.

Here f is frequency, and f0 is the oscillation frequency.
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Figure 11. Root-mean-square values of transverse force coefficient obtained for KC

= 3, 7, and 10, and submergence ratios of H/D = 0.5− 2.
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Figure 12. Average values of transverse force coefficient obtained for KC = 3, 7, and

10, and submergence ratios of H/D = 0.5− 2.
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Figure 13. Root-mean-square values of free surface elevation obtained vertically above

the mean position of the oscillating cylinder for KC = 3, 7, and 10, and submergence

ratios of H/D = 0.5− 2.


