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Abstract

The massive diffusion of renewable power generators in existing power grids introduces large uncertainties
in power system operation, hindering their hosting capacity, and introducing several critical issues in network
management. To address these challenging issues, weather-based optimal power flow has been recognized
as one of the most promising enabling methodology for increasing the system flexibility by exploiting the
real power components loadability. Anyway, the deployment of this technique in a real operation scenario
could be seriously compromised due to the effects of data uncertainty, which could sensibly affect both the
generated/demanded power profiles, and the components thermal modeling. In this context, the research
for reliable techniques aimed at representing and managing these uncertainties represents one of the most
relevant problem to solve. Armed with such a vision, this paper advocates the role of Affine Arithmetic
in reliable solving weather-based OPF problems in the presence of multiple and correlated uncertainties.
Experimental results obtained on a real case study, which is based on a congested portion of a transmission
system characterized by a massive pervasion of wind generators, will be presented and discussed in order to
assess the benefits deriving by the application of the proposed method.

Keywords: Uncertainty Management, Self-Validated Computing, Optimal Power Flow, Dynamic Thermal
Rating, Electro-Thermal OPF

Nomenclature

fobj Objective function [−]
x Set of the control variables [−]
P gen Set of the generated active powers at PV buses [MVA]
Qgen Set of the generated reactive powers at PV buses [MVAr]
V m Set of the voltage magnitudes at PV buses [V ]
V a Set of the voltage angle at PV buses [rad]

P i
gen Set of the ith partial deviations of the generated active powers at PV buses [MVA]

Qi
gen Set of the ith partial deviations of the generated reactive powers at PV buses [MVAr]

V i
m Set of the ith partial deviations of the voltage magnitudes at PV buses [V ]

V i
a Set of the ith partial deviations of the voltage angle at PV buses [rad]

Pcut,i Curtailed power at ith wind generators [MVA]

V Re Set of voltage real parts [V ]

V Im Set of voltage imaginary parts [V ]
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PV Set of buses where active power and voltage magnitudes are fixed [−]
Pθ Set of buses where active power and voltage angle are fixed [−]
PQ Set of buses where active and reactive power are fixed [−]
N Buses number [−]
V min
i Minimum voltage magnitude at ith bus [V ]
V max
i Maximum voltage magnitude at ith bus [V ]
Vi Voltage magnitude at ith bus [V ]
Pmin
gen,i Minimum generated active power at ith bus [MVA]
Pmax
gen,i Maximum generated active power at ith bus [MVA]
Pgen,i Generated active power at ith bus [MVA]
Qmin

gen,i Minimum generated reactive power at ith bus [MVAr]
Qmax

gen,i Maximum generated reactive power at ith bus [MVAr]
Qgen,i Generated reactive power at ith bus [MVAr]

P fix
inj,i Fixed injected active power at ith bus [MVA]

Qfix
inj,i Fixed injected reactive power at ith bus [MVAr]

yij Magnitude of the i, j element of nodal admittance matrix [Ω−1]
θij Angle of the i, j element of nodal admittance matrix [rad]
δi Angle voltage at ith bus [rad]
Ik Current magnitude at the kth connecting line [A]
Imax
k Maximum current magnitude at the kth connecting line [A]
Nl Number of lines [−]
Tk Conductor temperature of kth line [ �]
Gi,j Real part of the i, j element of nodal admittance matrix [Ω−1]
Bi,j Imaginary part of the i, j element of nodal admittance matrix [Ω−1]
vforw Forecasted wind speed [m · s−1]
v̂w Affine wind speed [m · s−1]

P̂g,i Affine active power generated by the ith bus [MVA]

P̂d,i Affine active power absorbed by the ith bus [MVA]

Q̂d,i Affine reactive power absorbed by the ith bus [MVAr]
Pnom
d,i Nominal active power absorbed by the ith bus [MVA]

Qnom
d,i Nominal reactive power absorbed by the ith bus [MVAr]

1. Introduction

In recent years there have been radical changes in planning and operating power systems, which were mainly
induced by the need of reducing the pollutant emissions and the primary energy consumption, supporting

the sustainable development of the energy sector. In this context, the main international treaties, such as
the Kyoto Protocol and the European 2020 climate & energy package, stimulated the large scale diffusion
of Renewable Power Generators (RPGs) all over the transmission and distribution networks, supporting the
transition from a centralized to a distributed generation paradigm. Even though these technologies lead to
sensible economical and environmental advantages, their large scale diffusion in existing power grids causes
many critical issues that need to be properly addressed1.

In particular, due to the wind and photo-voltaic generation unpredictability the system operators have to
schedule more reserve resources aimed at instantaneously balancing the generated power with the loads and
the system losses. Furthermore, the electricity market rules, which were designed to stimulate the diffusion of
renewable technologies, induce the traditional generators to work far from their optimal operation conditions,
increasing their marginal costs and emissions, hence reducing the environmental benefits of RPGs.

The large scale penetration of RPGs in distribution networks implies another serious drwaback, which
derives from the lose of confidence in one of the principal assumption in distribution system planning
and operation, namely, the unidirectional power flows among decreasing voltage level direction. In this
context, the power flows redistribution casued by RPGs leads the system components to operate closest to

2



their thermal limits, increasing the risk of network congestion2. To manage the contingencies induced by
RPGs, the System Operators (SOs) have to implement proper corrective actions, i.e. market splitting and
renewable power curtailments, which have severe economic consequences, since they modify the ”natural”
market equilibrium. To reduce the economic impacts of network contingencies, SOs are willing to strengthen
the critical interconnections by increasing the network meshing through the construction of new lines and
primary stations3. Anyway, the development of this long-term strategy is hindered by several limitations,
mainly due to the difficulties in updating and constructing new electrical infrastructures.

Consequently, the conceptualization of advanced tools aimed at reliably improving the power components
exploitation represents one of the most promising enabling methodology for supporting a massive integration
of RPGs, increasing the power system flexibility, and reducing the risk of contingency4. Traditionally, SOs
compute the power component thermal limits by considering the worst case conditions for the heat exchange
process, such as maximum solar irradiation, minimum convection cooling rate. But, these conditions insist
on the conductors only for a small percentage of their lifetime, while in the other conditions the infrastructure
is sensibly underemployed. To reliably improve the components exploitation, a very promising technique is
the Dynamic Thermal Rating (DTR) assessment, which aims at dynamically evaluating the thermal rating
of the congested infrastructure on the basis of the actual weather conditions insisting on the conductor.

The benefits deriving by the application of DTR techniques in existing power systems have been assessed
in several papers, which proposed different solution methodologies, including those based on first order
components thermal models, or integrating distributed sensors for the direct measurement of the conductor
temperature5. These techniques, if integrated in advanced optimization frameworks, known as Weather
Condition-based Optimal Power Flow (W-OPF) or Electro-Thermal OPF (ET-OPF), could reliably improve
the components loadability, enhancing the congestion management flexibility, and maximizing the RPGs’
exploitation6,7,8. The implementation of these frameworks could in principle allow the system operator to
exploit the advantages of the DTR procedures, taking into account both the electrical and thermal state
variables, and to extract actionable intelligence from the large and heterogenoeus data streaming generated
by pervasive monitoring systems installed on the power systems3. Despite these benefits, the application
of W-OPF analyses in real operation scenario is still at its infancy, and several open problems need to be
addressed in order to enhance their robustness.

In particular, some criticalities raised in several papers concern with the reliable assessment of the hot-
spot temperature of overhead lines, since, especially in area with complex orographic characteristics, the
identification of the critical span along the line route is a very complex spatial-temporal problem. Several
approaches have been proposed to solve this complex issue, including the adoption of distributed sensor
networks9, and numerical weather prediction models10.

Another serious limitations of W-OPF approaches is that they are based on deterministic computing
paradigms, which do not consider the effects of the data uncertainties affecting the input variables of the
optimization problem. In particular, non-programmable energy sources unpredictability increase the uncer-
tainty of the injected power profiles, affecting the power flows on the entire power system. Furthermore,
the variables ruling the component thermal dynamics are always affected by strong uncertainties, which are
mainly induced by the spatial profiles of the meteorological variables, and the variation of the components
thermal parameters. All these uncertainties could sensibly affect the robustness of the computed solutions,
compromising the effectiveness of the corresponding loading strategies11,12.

To face this issue, several class of methods can be adopted, including those based on the probability
theory13,14,15, approximation techniques16,17,18,19,20,21,22 and sample based methodologies. Experimental
results obtained on several case studies demonstrated that the performances of these solution algorithms
mainly depend on the consistency and the statistical proprieties of the input data, which, unfortunately,
can be rarely assumed in solving W-OPF problems in a real operating scenario.

In order to overcome these limitations, the deployment of self-validated computing frameworks represents
a promising research direction. The simpler of these approaches is Interval Arithmetic, which is not particu-
larly useful in solving W-OPF problems, since it tends to produce results whose ranges are too much higher
than the real ones because of the error explosion phenomena23. To solve this problem a more complex range
analysis technique based on Affine Arithmetic (AA), which keeps track of the uncertainties dependencies
and propagation by assigning an ”error symbol” to each uncertainty source, could be adopted24. AA has
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been successfully applied to solve complex optimization problems in the presence of multiple and correlated
uncertainties25, allowing to reliably satisfy both equality and inequality constraints. Hence, it could play
an important role in solving uncertain W-OPF problems, by reliably managing the large data uncertainty
affecting both the DTR computing process, and the generated/demanded power profiles.

Furthermore, a plausible mid-term future scenario might introduce additional uncertainty ranges in
power system operation due to the introduction of new technologies (e.g. distributed energy storage systems
and electric vehicles operating in Vehicle to Grid, V2G, configuration, characterized by shifting from power
consumption (loads) to power production (generators and energy storage), which could then absorb or inject
power into the grid depending on their particular operating state. The presented AA-based methodology
can effectively handle these additional uncertainties by an affine form whose bounds are the maximum and
minimum generated or demanded power, ranging from the maximum consumed load power (negative value)
up to the maximum produced power injected into the grid (positive).

In this context, it is important also to underline that the electricity market dynamics could sensibly affect
the number, the magnitude and the location of power transactions. To represent these complex phenomena,
it is possible to consider the energy prices uncertainty (and, in particular, the uncertainty affecting the local
marginal prices). These uncertainties will affect the wind curtailment strategies, as well as the power profiles
injected by conventional controllable generators. However, due to the lack of actual data characterizing the
market dynamics for the considered network area, this has not been addressed in the presented case study.

Armed with such a vision, this paper proposes an AA-based computing framework, which aims at solving
uncertain W-OPF analysis, by explicitly considering the effects of the components’ thermal dynamics on
the system constraints. The main benefits deriving by the application of this approach are:

� There is a strict and complex correlation between the components’ thermal constraints and wind power
production. For example, within the operational region of wind turbine (i.e., between the cut-in and
cut-out wind speeds), if wind speed increases, wind power production does the same, but also the
loading capability of the power components increases, allowing to dispatch more energy produced by
renewable sources. This concept can be effectively represented in the AA-based computing framework
by defining a shared error symbol between the wind speed, wind power production and components’
loading capability.

� both system constraints and OPF solutions are computed according to the same AA-based paradigm,
which allows describing the effects of uncertainty propagation from observable and measurable data
(i.e. wind speed) to system constraints (conductor temperature) and problem solutions.

� the application of AA-based computing allows a robust solution of the optimization problem, consid-
ering all the possible instances of the exogenous uncertainties.

To demonstrate these benefits, measurements and field data obtained from a real case study, which is
based on a portion of a heavily congested transmission system characterized by a large penetration level of
wind generators, will be presented and discussed. The operation of this actual power network is a challenging
issue to address, since the nominal power of the wind generators installed in the considered area is almost 10
times greater than the corresponding peak load demand and the power lines connecting the wind generators
with the national power system are operating very close to their thermal limits. Hence, in the presence of
high wind speed patterns, the power network could be affected by multiple congestions and proper power
curtailment strategies should be implemented in order to maximize line utilization and mitigate negative
effects of congestions.

The rest of the paper is organized as follows: in Section 2 mathematical frameworks of DTR and W-OPF
has been presented in detail. Then, Section 3 provides mathematical of Affine Arithmetic and AA-based OPF
and W-OPF problems, giving instruments to solve them through the traditional algorithms of Optimizaion
theory. Eventually, Section 4 will present results of the application the proposed methodology on a real case
study.
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2. Problem Formulation

2.1. Dynamic Thermal Rating

The Dynamic Thermal Rating is a loading strategy, which aims at exploiting the real capability of electric
power components by dynamically computing their thermal ratings, on the basis of the real meteorological
conditions insisting on the components.

The assessment of the hot-spot temperature is a necessary prerequisite for the correct application of the
DTR paradigm. The methods currently adopted to face this issue can be classified as5:

� Indirect Methods or Weather-Based Methods

� Direct Methods

The first ones allow estimating the conductor temperature by solving a first order thermal model, taking
as inputs its real loading and the worst-case weather conditions insisting on the component26. The main
benefits deriving by the application of these methods mainly derive from their low technological requirements,
which make straightforward their deployment in existing optimization frameworks. On the other hand, the
component thermal estimations computed by these techniques could be affected by large data uncertainties,
which mainly depends on the integrity of the model input data.

Direct methods allow overcoming this limitation, by directly measuring the spatial profile of the conductor
temperature (i.e. by fiber optical-based distributed sensing systems), or by deploying a set of sensors in the
most probable critical spans in order to infer the hot-spot temperature27,28. Although these methods allow
improving the thermal estimation reliability, they require complex sensors aimed at continuously measuring
the conductor temperature and/or the weather variables at conductor height, which is a challenging issue
to address.

Recently, thanks to the large-scale deployment of Phasor Measurement Units (PMUs), new computing
paradigms based on time-synchronized signal processing for DTR have been proposed in the literature5,3.
These approaches aim at processing the time-synchronized phasors acquired by PMUs for estimating the
electrical component parameters, and empirically inferring the corresponding component temperature29.
Although the application of this DTR paradigm exhibits several advantages over the aforementioned direct
and indirect approaches, since it does not require the need for deploying a dedicated and distributed sensing
architecture, it allows estimating the average conductor temperature, which could be sensible different from
the hot-spot.

On the basis of these argumentation, this study relies on Weather-Based Methods based on the thermal
model proposed in ”IEEE Standard 738-2012 for Calculating the Current-Temperature Relationship of Bare
Overhead Conductors” 26, which is one of the most used approach for DTR in W-OPF analyses.

This thermal modeling methodology is based on the integration of the following first order thermal model:

d

dt
(Tavg) =

1

mCp

[
qs + I2R(Tavg)− qc − qr

]
(1)

where:

qs Solar heat gain rate per unit length
I2R(Tavg) Joule-Effect heat gain
qc Convection heat loss rate per unit length
qr Radiated heat loss rate per unit length

Further details on the computation of these terms can be found in26.

2.2. Weather Condition based-OPF

The main idea of W-OPF analysis is to integrate a DTR technqiue in a conventional OPF formulation,
by replacing the static component limits based on maximum ampacity constraints, with dynamic compo-
nent limits based on the maximum hot-spot temperature. The latter can be estimated according to the

5



weather-based DTR, by solving a first order differential equation relating the hot-spot temperature with
the environmental variables measured on the critical span, and the worst case estimation of the conductor
thermal parameters. The overall optimization problem in a certain time interval can be formalized as follows.

min
x

fobj(x)

s.t. V min
i ≤ Vi ≤ V max

i ∀i ∈ [1, . . . , N ]

Pmin
gen,i ≤ Pgen,i ≤ Pmax

gen,i ∀i ∈ {PV ;V θ}
Qmin

gen,i ≤ Qgen,i ≤ Qmax
gen,i ∀i ∈ {PV ;V θ}

Tk < Tmax
k ∀k ∈ [1, . . . , Nl]

P fix
inj,i = Vi

N∑
j=1

Vj yij cos(θij + δj − δi) ∀i ∈ [1, . . . , N ]

Qfix
inj,i = Vi

N∑
j=1

Vj yij sin(θij + δj − δi) ∀i ∈ [1, . . . , N ]

Tk = Ts +
1

mCp

∫ tf

ts

(
qs + I2k R(Tk)− qc − qr

)
dτ ∀ k ∈ [1, . . . , Nl]

(2)

where the state variables are described by the following vector:

x = [Pgen,Qgen,Vm,Va] (3)

2.3. Uncertainty Sources in W-OPF

The solution of W-OPF problem formalized in (2) requires the knowledge of input data, which can be
affected by large uncertainties, mainly deriving by measurement, estimation or forecasting errors.

In particular, the component parameters and the input variables of the thermal model (1) are affected
by large uncertainties, which can be classified as:

� forecasting/measurement uncertainty

� lack of knowledge/approximation

Quantities like line current, environmental temperature, wind speed and direction, sun irradiation are
affected by large uncertainty induced by measurement or forecasting errors, which characterize real-time
operation and pre-dispatch, respectively.

Moreover, since hygrometric air proprieties is measured or computed as function of the environmen-
tal temperature through polynomial regression, they introduce further uncertainty in the thermal model.
Furthermore, electric resistance temperature coefficient, absorption and emission heat exchange factors rep-
resent a further origin of error, since their actual values changes with the conductor ageing and degradation
state.

Further uncertainties affecting W-OPF analyses derive by the randomness characterizing the power
profiles generated by non-programmable RPGs, which are influenced by the unpredictability of the renewable
energy sources, and the intrinsic complexity of the electricity market price dynamics, which influence the
number of power transactions that are carried over the system.

Under such conditions, reliable solution methods that incorporate the effects of data uncertainty into the
W-OPF analysis are required. These algorithms would allow system operators to address both uncertainty
representation and uncertainty propagation, thus allowing them to evaluate the level of confidence of W-OPF
studies.
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3. Solving uncertain W-OPF problems by Affine Arithmetic

3.1. Element of Affine Arithmetic

Affine Arithmetic (AA) is a Self Validated Computing framework that intrinsically keeps track of data
uncertainty propagation, mitigating the error explosion problem characterizing traditional Interval Analysis.
The main feature of AA is the introduction of statistically correlated error symbols that, in some way, take
into account the statistical dependence of two variables affected by the same uncertainty source30. Hence,
in the AA-domain each uncertain elementary quantity, x, can be expressed as an affine form , x̂, which has
the following form:

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn (4)

where x0, [x1 . . . xn] and [ε1 . . . εn] ∈ [0, 1] are the central value, the partial deviations and the noise symbols
of the affine form, respectively.

The coefficients xi are finite floating-point numbers, and the εi are symbolic real variables (noise) whose
values are unknown, but assumed to lie in the interval U = [−1; 1]. Each noise symbol represents an
independent component of the total uncertainty of the ideal quantity, x; the corresponding coefficient gives
the magnitude of that component.

The fundamental invariant of affine arithmetic states that, for every AA operation, there is a single
assignment of values from U to each of the noise variables in use that makes the value of every affine form
x̂ equal to the true value of the corresponding ideal quantity, x.

The key feature of AA is that the same noise symbol may contribute to the uncertainty of two or more
quantities arising in the evaluation of an expression, when the sharing of the noise symbols indicates (partial)
dependency between the underlying quantities x̂ and ŷ, determined by the corresponding coefficients xi and
yi.

Correlation between uncertain variables is considered by sharing error symbol between two different
affine quantities. Hence, two variable sharing error symbols are affected by the same uncertainty seeds and
are correlated someway.

Dependent uncertainty sources are modeled by sharing error symbols between variables. For example:

� Case 1: Independent uncertainty sources:

x̂1 = 1 + 2ε1 + 0ε2 = [−1 1] (5)

x̂2 = 1 + 0ε1 + 2ε2 = [−1 1] (6)

x̂1 − x̂2 = 0 + 2ε1 − 2ε2 = [−4 4] (7)

� Case 2: Dependent uncertainty sources:

x̂1 = 1 + 2ε1 = [−1 1] (8)

x̂2 = 1 + 2ε1 = [−1 1] (9)

x̂1 − x̂2 = 0 + 0ε1 = ∅ (10)

Each affine form, x̂, can be managed as an interval by defining the equivalent overall deviation r =∑n
i=1 |xi|, representing the minimum radius that contains all the allowable value of x̂, whichever is the

combination of the independent component of the noise symbols set, ε. The correspondent interval can be
expressed as:

x̄ = [x0 − r, x0 + r]

Let us define some useful operators in the AA domain.

Definition 1 (mid). The ”mid” operator returns the central value of an affine form x̂.

mid(x̂) = x0 (11)
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Definition 2 (rad). The ”rad” operator returns the radius of an affine form x̂.

rad(x̂) =

Nerr∑
i

|xi| (12)

Definition 3 (inf). The ”inf” operator returns the lower bound of an affine form x̂.

inf(x̂) = x0 − rad(x̂) (13)

Definition 4 (sup). The ”sup” operator returns the upper bound of an affine form x̂.

sup(x̂) = x0 + rad(x̂) (14)

Moreover, it is possible to define proper mathematical operators for AA-based computing. In particular,
to compute a general function of two affine forms x̂ and ŷ, it is necessary to find an application F̂ such
that ẑ = F̂ (x̂, ŷ) is coherent with respect to the correspondent ideal quantity z = f(x, y). If the function f
is linear, then its affine extensions is trivial, since it can be expressed through a linear combination of the
partial deviations of the ”primitive” noise symbols, as follows:

αx̂+ βŷ + γ = (αx0 + βy0 + γ) + +ε1(αx1 + βy1) + · · ·+ εn(αxn + βyn) (15)

On the other hand, if f is non-linear, then it should be approximated by a first order polynomial that well
fit the function in a specified range, and a new noise symbol representing the corresponding approximation
error should be considered:

f̂app = z0 + ε1z1 + ε2z2 + · · ·+ εnzn + εkzk

where the new noise symbol εkxk and the corresponding partial deviation represent the endogenous
uncertainty.

Hence, a non-affine operation between two affine forms x̂ and ŷ can be recasted as αx̂ + βŷ + γ, where
coefficients α, β and γ need to be identified. To this aim, two possible approaches can be adopted, namely
the Chebyshev approximation and the minimum range31,32.

3.1.1. The role of the AA-based framework in solving Robust Optimization problems

The definition of a formal connection between the AA-based optimization and robust optimization is
not a trivial task, although these two paradigms seems to be characterized by several common features,
and can be also considered as particular instances of the Granular Computing theory, which is an advanced
tool for uncertainty management in optimization problems based on the holistic integration of multiple and
heterogeneous paradigms of computational intelligence and information science [R2].

Roughly speaking, the general problem of robust optimization can be stated as follow:

min
x,u

fobj(x,u,p)

s.t. g(x,u,p) ≤ b

h(x,u,p) = c

(16)

where u is the vector of the control variables, x is the vector of the state variables, p is the vector of the
uncertain parameters, fobj is the objective function, h is the vector of the equality constraint functions, and
g is the vector of the inequality constraint functions.

In robust optimization, which could be considered as a particular instance of probabilistic-scenario based
programming, this problem is solved by defining the most relevant scenarios, which are characterized by a
combination of crisp values of the uncertain parameters p, and relaxing the problem constraints, by defining
an in-feasibility penalty function, which measure the amount of constraint violation.

The proposed AA-based framework deploys a different paradigm to solve the problem in (R2). The main
idea is to represent the uncertain parameters p by affine forms, and to compute the deterministic values
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of the control variables, jointly with the corresponding affine forms of the state variables, by solving the
following approximate optimization problem:

min
x,u

f̂obj(x, û, p̂)

s.t. ĝ(x, û, p̂) ≤ b

ĥ(x, û, p̂) = c

(17)

where the objective function can be defined so that it measures the impact of the control variables on the
bounds of the power system state variables, which are described by affine forms.

Such a formulation allows identifying the central values and the partial deviations of both the state and
the control variables, satisfying the optimality conditions defined by the following Theorem:

Theorem 1 (AA-Optimality Conditions). 33 Given an AA-based Optimization Problem as (17), x̂∗ is
said to be an optimal solution if the quantity[

mid
(
fobj(x̂)

)
, rad

(
fobj(x̂)

)]
has a minimum in x̂ = x̂∗.

Hence, the optimality conditions in the AA domain can be satisfied by solving a deterministic multi-
objective optimization problem, which can be solved by traditional methodologies, identifying a proper
trade off between the two objective functions. Alternatively, in the scientific literature the chance to solve
the problem by formulating a two stage decomposition has been described, by finding first the solution
of the ”nominal” problem, i.e. identifying the central values of the optimal affine forms without taking
into account the uncertainties, and then the ”perturbed” problem, considering the uncertainty. It is worth
nothing that the latter problem requires the identification of a very large set of variables to be optimized,
i.e. of (number of uncertainty sources)x(number of ”uncertain quantities” to be optimized), increasing the
problem cardinality.

3.2. Proposed Solution

The solution of the W-OPF problem formalized in (2) in the presence of data uncertainty can be effectively
addressed by AA-based computing. To this aim, the state and control variables can be described by the
following affine forms:

x̂ = [P1
gen, . . . ,P

Nerr
gen ,Q1

gen, . . . ,Q
Nerr
gen ,V1

m, . . . ,V
Nerr
m ] (18)

and the uncertain optimization problem can be recasted in the affine domain as follows:

min
x̂

f̂obj(x̂)

s.t. V min
i ≤ V̂i ≤ V max

i ∀i ∈ [1, . . . , N ]

Pmin
gen,i ≤ P̂gen,i ≤ Pmax

gen,i ∀i ∈ {PV ;V θ}

Qmin
gen,i ≤ Q̂gen,i ≤ Qmax

gen,i ∀i ∈ {PV ;V θ}

T̂k < Tmax
k ∀k ∈ [1, . . . , Nl]

P̂ fix
inj,i = V̂i

N∑
j=1

V̂j yij cos(θij + δ̂j − δ̂i) ∀i ∈ [1, . . . , N ]

Q̂fix
inj,i = V̂i

N∑
j=1

V̂j yij sin(θij + δ̂j − δ̂i) ∀i ∈ [1, . . . , N ]

T̂k = T̂s +
1

mCp

∫ tf

ts

(
qs + Î2k R(T̂k)− q̂c − qr

)
dτ ∀k ∈ [1, . . . , Nl]

(19)
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This formulation of the W-OPF problem is strengthen, since it allows to directly deal with the affine
forms of the state and control variables. Furthermore, this formulation allows to meld the shared uncertainty
sources that plays roles in both the electric and thermal part of the problem, producing robust results
in terms of conductor temperature estimation and optimal control variables identification. Eventually,
this formulation allows to consider also further sources of uncertainties deriving from other phenomena of
particular applications and that can be simply correlated to the other variables involved in the process.

The solution of this problem, which is defined in the AA mathematical domain, require the formulation
of its robust counterpart in order to be solved by traditional algorithms. Based on Theorem 1, the robust
counterpart of the OPF problem formulated in Eq. 19 can be constructed as a multi-objective NLP problem
whose objective functions aim at minimizing both the central value and the radius of the original affine
figure of merit, f̂obj , to be minimized.

All algebraic equations representing linear and non-linear equality constraints have to be solved by
opportune operators defined in24 which assess that two affine forms are equal if both their central values
and all partial deviation assume the same value. Inequality constraints are also managed through opportune
operators defined in24 whose aim is to produce robust limitation of the considered quantity. For example,
solving:

P̂ fix
inj,i = P̂ calc

inj,i (20)

needs to impose:

P fix,0
inj,i = P calc,0

inj,i

P fix,1
inj,i = P calc,1

inj,i

...

P fix,Nerr
inj,i = P calc,Nerr

inj,i

(21)

and solving:
T̂k < Tmax

k (22)

needs to require:
sup(T̂k) < Tmax

k (23)

Hence,the problem to be solved is:

min
x̂

[mid
(
f̂obj(x̂)

)
; sup

(
f̂obj(x̂)

)
]

s.t. V min
i ≤ inf

(
V̂i
)
≤ sup

(
V̂i
)
≤ V max

i ∀i ∈ [1, . . . , N ]

Pmin
gen,i ≤ inf

(
P̂gen,i

)
≤ sup

(
P̂gen,i

)
≤ Pmax

gen,i ∀i ∈ {PV ;V θ}

Qmin
gen,i ≤ inf

(
Q̂gen,i

)
≤ sup

(
Q̂gen,i

)
≤ Qmax

gen,i ∀i ∈ {PV ;V θ}

sup(T̂k) < Tmax
k ∀k ∈ [1, . . . , Nl]

P̂ fix,c
inj,i = P̂ calc,c

inj,i ∀i ∈ [1, . . . , N ], ∀c ∈ [1, . . . , Nerr]

Q̂fix,c
inj,i = Q̂calc,c

inj,i ∀i ∈ [1, . . . , N ], ∀c ∈ [1, . . . , Nerr]

where:

P̂ calc
inj,i = V̂i

N∑
j=1

V̂j yij cos(θij + δ̂j − δ̂i) ∀i ∈ [1, . . . , N ]

Q̂calc
inj,i = V̂i

N∑
j=1

V̂j yij sin(θij + δ̂j − δ̂i) ∀i ∈ [1, . . . , N ]

T̂k = T̂s +
1

mCp

∫ tf

ts

(
qs + Î2k R(T̂k)− q̂c − qr

)
dτ ∀k ∈ [1, . . . , Nl]

(24)
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Line From To
Length Line Resistance Line Reactance Line Susceptance
[Km] r [p.u.] x [p.u.] b [p.u.]

1 1 2 33.20 0,00821 0,056278 0,02223
2 2 3 3.42 0,000846 0,005797 0,00229
3 1 3 34.7 0,008581 0,05882 0,023234
4 3 9 ≈ 10 0,002473 0,016951 0,006696
5 8 9 ≈ 10 0,002473 0,016951 0,006696
6 2 10 10.2 0,002522 0,01729 0,00683
7 2 7 16 0,003957 0,027122 0,010713
8 6 7 ≈ 1.7 0,00042 0,002882 0,001138
9 5 6 ≈ 1.7 0,00042 0,002882 0,001138
10 4 5 10.8 0,002671 0,018307 0,007231

Table 2: Branch Data

4. Case Study

The proposed methodology have been applied in the task of solving a W-OPF problem for a real case
study, which is based on a congested transmission network characterized by a massive pervasion of wind
generators. The analyzed 10-buses power system is represented in Fig. 1 and characterized by the data
summarized in Tabs. 3 and 2. In this study, both the generators and the loads are assumed to operate at
constant power factor.

189 MW

0 MVAr

85 MW

0 MVAr

56 MW

5.6 MVAr

74.5 MW

0 MVAr

62.8 MW

0 MVAr

50 MW

5 MVAr

70.1 MW

0 MVAr

70.9 MW

0 MVAr

85 MW

0 MVAr

16.4 MW

0 MVAr

Figure 1: The Analyzed Power System

The analyzed power system is a strategic section of the transmission network, since it collects a large
amount of the total wind energy generated in the served area, and it is frequently congested, especially
during high windy periods. To mitigate the consequences of these critical conditions, the TSO imposes
severe power curtailments to all wind generators, which modify the ”natural” market equilibrium. Hence,
more effective loading strategies aimed at reliably increasing the components exploitation are particularly
useful in this context, in order to allow TSO to reduce the wind power curtailments, enhancing the network
flexibility.

4.1. Uncertain-OPF

The first case study analyzed is based on the application of the AA-based methodology in the task of
solving an uncertain OPF problem by considering all the loads varying in a 20% nominal power radius
interval, and the wind speed varying on a 5% with respect to its forecasted value34. These uncertain sources
are represented by two independent noise symbols, one for the load’s and one for the wind generation’s
profiles.
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Bus Type
Pd Qd Pg Qg

[MW ] [MVAr] [MW ] [MVAr]

1 Slack 0 0 0 0
2 Wind Generator 0 0 189 0
3 Wind Generator 56 5.6 85 0
4 Wind Generator 0 0 16.4 0
5 Wind Generator 0 0 70.1 0
6 Wind Generator 0 0 70.9 0
7 Wind Generator 0 0 85 0
8 Wind Generator 0 0 62.8 0
9 Wind Generator 0 0 74.5 0
10 Load 50 5 / /

Table 3: Bus Data

In particular, the wind speed is modeled by the following affine form:

v̂w = vforw + 0.05 vforw ε1 + 0 ε2 (25)

Once uncertainty in wind speed is modeled, its propagation into the wind power outputs has to be modeled
in order to perform the W-OPF analysis. This is done by modeling each wind farm through an equivalent
power curve fitted on real data acquired form wind farms in the considered area35.

Starting from these power curves, the lower and upper bounds of the generated wind power are computed
considering the wind power output bounds associated to wind speed bounds, through the aforementioned
polynomial power curve model denoted with PC(Pnom

g,i , vs) in the following expressions:

P inf
g,i = PC(Pnom

g,i , vinfs )

P sup
g,i = PC(Pnom

g,i , vsups ) (26)

These bounds translate in the AA domain in a central value and a partial deviation which is associated
to the error symbol proper of the uncertainty in wind speed, as shown in the following:

P 0
g,i =

P inf
g,i + P sup

g,i

2

P 1
g,i =

P sup
g,i − P

inf
g,i

2

Finally, the affine forms of the generated wind power are defined as:

P̂g,i = P 0
g,i + P 1

g,i ε1 (27)

As far as the load uncertainty is concerned, the active and reactive power demand at the iit bus can be
defined as:

P̂d,i = Pnom
d,i + 0.1 Pnom

d,i ε2

Q̂d,i = Qnom
d,i + 0.1 Qnom

d,i ε2

To identify the minimum power curtailments that assure a secure and reliable power system operation,
the following uncertain OPF can be solved:

12



min
x

NGEN∑
i=1

mid(P̂ 2
cut,i) + sup(P̂ 2

cut,i)

s.t. Vmin
i ≤ inf

(
V̂i
)
≤ sup

(
V̂i
)
≤ Vmax

i ∀ i ∈ [1, . . . , N ]

Ik < Imax
k ∀ k ∈ [1, . . . , Nl]

P calc,n
inj,i = P fix,n

inj,i ∀i ∈ {PV ; PQ}, ∀n ∈ [1, . . . , Nerr]

Qcalc,n
inj,i = Qfix,n

inj,j ∀i ∈ {PQ}, ∀n ∈ [1, . . . , Nerr]

P̂ calc
inj,i = V̂ Re

i

N∑
j=1

(
Gi,j V̂

Re
j −Bi,j V̂

Im
j

)
+ V̂ Im

i

N∑
j=1

(
Bi,j V̂

Re
j +Gi,j V̂

Im
j

)
∀i ∈ {PV ; PQ}

Q̂calc
inj,i = V̂ Im

i

N∑
j=1

(
Gi,j V̂

Re
j −Bi,j V̂

Im
j

)
− V̂ Re

i

N∑
j=1

(
Bi,j V̂

Re
j +Gi,j V̂

Im
j

)
∀i ∈ {PQ}

(28)
where the decision variables are described by the following affine forms:

x = [Pcut
0 ,Pcut

1 , . . . ,Pcut
Nerr

VRe
0 ,VRe

1 , . . . ,VRe
Nerr

,VIm
0 ,VIm

1 , . . . ,VIm
Nerr

] (29)

This problem has been solved in Matlab ®, by using the embedded optimization solvers. The effective-
ness of the computed solution has been assessed by comparing the obtained results with those obtained by
applying a Monte Carlo simulation on a particular case whose principal input parameter are shown in Tab.
4.

Wind Speed 10 [m/s]
Wind Direction 226 deg
Environmental Temperature 5.52 �

hour 14
day April 8th

Table 4: Case Study Data

Wind Speed 5% uncertainty in wind speed forecasting translate into generated power whose bounds are:

Bus # Lower Bound [MW] Upper Bound [MW]

1 0 0
2 121.3994 158.9741
3 54.5976 71.4963
4 10.5341 13.7946
5 45.0270 58.9634
6 45.5408 59.6363
7 54.5976 71.4963
8 40.3380 52.8231
9 47.8532 62.6644
10 0 0

Table 5: Forecasted Wind Generation

Load has been considered varying 20% from its forecasted value, bringing to a ratio between the generated
and consumed power which is in the interval [3.30 6.48].

In the following, Fig. 2 reports the wind power curtailment bounds for each network buses, which is a
strategic information extremely useful in solving many critical operation problems, such as robust reserve
scheduling, and optimal energy storage operation. Another important information derived from the obtained
affine forms is the quantification of the impacts of each uncertainty sources on the problem solutions. This is
clearly shown in Tab. 6, where the central values and the partial deviations of the wind power curtailments

13



have been reported. This information has a great impact on power system operation, providing useful
information aimed at supporting the operator in solving complex decision making problems. Moreover, once
the uncertainty levels are defined, the proposed framework provides the boundary profiles of both the state
(see Tab. 9, 10) and control (see Fig. 3 and Tab. 7, 8) variables, which are useful for assessing the robustness
of the computed set-points.

Another valuable feature of the AA-based method is that it allows to overcome the limitation of clas-
sical IA-based computing, avoiding error explosion phenomena and estimating solution bounds, which are
consistent with respect to the ones obtained by the Monte Carlo procedures.

A theoretical explanation of these results can be provided by reminding that the AA method is a partic-
ular type of a self-validated computing, since it uses ranges, rather than distributions, to describe the data
uncertainty. Specifically, the affine form ẑ = f̂(x̂) = z0 +

∑p
h=1 xhεh defines a range [z0 −

∑p
h=1 |zh|; z0 +∑p

h=1 |zh|] for the variable z, namely a set of real values that is guaranteed to contain the true value of z,
provided that the input variable x lies in the range [x0 −

∑p
h=1 |xh|; x0 +

∑p
h=1 |xh|]. This property, which

is referred to as the “fundamental invariant of range analysis”, can be generalized as follows32:

Theorem 2 (Fundamental Invariant of Range Analysis). For every function f : <n → <m , it is
possible to define an AA-based range extension, fA, with the following property:

If the input vector (x1, . . . , xn) lies in the range jointly determined by the given affine forms (x̂1, . . . , x̂n),
namely xj ∈ [xj,0−

∑p
h=1 |xj,h|; xj,0+

∑p
h=1 |xj,h|] ∀j ∈ [1, n], then the quantities (z1, . . . , zn) = f(x1, . . . , xn)

are guaranteed to lie in the range jointly defined by the affine forms (ẑ1, . . . , ẑn) = f(x̂1, . . . , x̂n)

The overestimation, and hence the conservative nature of the determination of the joint range obtained
by the affine forms (ẑ1, . . . , ẑn), depends on the computing paradigm adopted to estimate fA , which is
selected on the basis of a proper trade-off between accuracy and computational burden. This is confirmed
for the analysis presented in this paper through a comparison with a Monte Carlo model, which is assumed to
give the best inner approximation of the solution bounds, as the bounds obtained by the presented AA-based
W-OPF method are slightly conservative (please see Figures 2-4).
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Figure 2: Wind Power Curtailment - Bounds
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Bus # Central Value Error Symbol 1 Error Symbol 2

1 0 0 0
2 6,574241 1,410193 -5,16405
3 5,971402 0,067399 -5,904
4 6,548054 6,53676 -0,01129
5 6,548129 6,534076 -0,01405
6 6,549027 6,546217 -0,00281
7 6,550674 5,166902 -1,38377
8 5,96145 5,869529 -0,09192
9 5,964621 5,79769 -0,16693
10 0 0 0

Table 6: Affine Form - Pcut
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Bus # Central Value Error Symbol 1 Error Symbol 2

1 1 0 0
2 1,002686 0,000241 -0,00077
3 1,002468 0,000239 -0,00078
4 1,005032 7,85E-06 -0,00069
5 1,004941 6,16E-05 -0,00069
6 1,004864 7,36E-05 -0,00069
7 1,004731 8,94E-05 -0,0007
8 1,00387 0,00016 -0,00074
9 1,003458 0,000189 -0,00075
10 1,001049 0,000277 -0,00115

Table 7: Affine Form - Vr

Bus # Central Value Error Symbol 1 Error Symbol 2

1 0 0 0
2 0,058258 0,004201 -0,00232
3 0,055501 0,004146 -0,00237
4 0,090017 1,42E-03 -0,00191
5 0,089593 2,37E-03 -0,00191
6 0,088622 2,55E-03 -0,00191
7 0,086734 2,75E-03 -0,00192
8 0,070842 0,003893 -0,0023
9 0,066085 0,004034 -0,00232
10 0,049658 0,004198 -0,00404

Table 8: Affine Form - Vi

Bus # Central Value Error Symbol 1 Error Symbol 2 Approximation Error

1 -1,95033 -0,14329 0,083664 0
2 0,957644 0,137521 0,05164 0,000274
3 -0,15946 0,067516 -0,05296 0,000199
4 0,023321 -5,22E-02 0,000113 5,15E-05
5 0,314092 -9,10E-03 0,000141 9,86E-06
6 0,318415 -8,58E-03 2,81E-05 9,49E-06
7 0,394746 1,65E-02 0,013838 3,75E-05
8 0,280431 -0,00831 0,000919 1,50E-05
9 0,343752 0,00179 0,001669 1,67E-05
10 -0,5 -1,67E-17 -0,1 0,000219

Table 9: Affine Form - Pcalc

Bus # Central Value Error Symbol 1 Error Symbol 2 Approximation Error

1 0,172101 0,012562 0,014823 0
2 5,27E-15 -1,27E-16 8,50E-17 0,001215
3 -0,056 2,28E-14 -0,0112 0,000772
4 2,31E-13 3,68E-13 -4,55E-15 1,69E-04
5 1,29E-14 -6,91E-14 1,79E-16 4,06E-05
6 1,74E-13 -1,62E-13 -2,90E-15 3,96E-05
7 1,91E-13 2,58E-13 3,74E-15 1,38E-04
8 -1,46E-13 -1,78E-13 5,41E-14 5,88E-05
9 1,33E-12 3,18E-12 5,03E-14 2,05E-05
10 -0,05 -7,81E-18 -0,01 0,000818

Table 10: Affine Form - Qcalc
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4.2. Uncertain W-OPF

In order to assess the benefits deriving by the application of a dynamic loading strategy, the power
line connecting the buses 1 and 2 have been equipped by a DTR system, which acquires the conductor
temperature and the environmental variables in the expected critical span, and the corresponding static
loading limit has been converted in a dynamic thermal constrain. In this case, the control variables are
described by the following affine forms:

x = [Pcut
0 ,Pcut

1 , . . . ,Pcut
Nerr

VRe
0 ,VRe

1 , . . . ,VRe
Nerr

,VIm
0 ,VIm

1 , . . . ,VIm
Nerr

] (30)

and the overall W-OPF problem can be formulated as:

min
x

NGEN∑
i=1

mid(P̂ 2
cut,i) + sup(P̂ 2

cut,i)

s.t. Vmin
i ≤ inf

(
V̂i
)
≤ sup

(
V̂i
)
≤ Vmax

i ∀ i ∈ [1, . . . , N ]

Tk < Tmax
k ∀ k ∈ [1, . . . , Nl]

P calc,n
inj,i = P fix,n

inj,i ∀i ∈ {PV ; PQ}, ∀n ∈ [1, . . . , Nerr]

Qcalc,n
inj,i = Qfix,n

inj,j ∀i ∈ {PQ}, ∀n ∈ [1, . . . , Nerr]

P̂ calc
inj,i = V̂ Re

i

N∑
j=1

(
Gi,j V̂

Re
j −Bi,j V̂

Im
j

)
+ V̂ Im

i

N∑
j=1

(
Bi,j V̂

Re
j +Gi,j V̂

Im
j

)
∀i ∈ {PV ; PQ}

Q̂calc
inj,i = V̂ Im

i

N∑
j=1

(
Gi,j V̂

Re
j −Bi,j V̂

Im
j

)
− V̂ Re

i

N∑
j=1

(
Bi,j V̂

Re
j +Gi,j V̂

Im
j

)
∀i ∈ {PQ}

Tk = Ts +
1

mCp

∫ tf

ts

(
qs + I2k R(Tk)− qc − qr

)
dτ ∀ k ∈ [1, . . . , Nl]

(31)
The obtained results have been summarized in Figs. 5-6 and in Tab. 11. By analyzing these data it is

worth observing the benefits deriving by the deployment of the AA-based W-OPF analysis, which allows
lowering the wind power curtailments, assuring the system security also for the worst-case instance of the
uncertain variables.

Bus # Central Value Error Symbol 1 Error Symbol 2
1 0 0 0
2 4,866667 2,998339 -1,86833
3 5,385078 5,384418 -0,00066
4 4,846931 4,606996 -0,23993
5 4,847203 4,602754 -0,24445
6 4,847295 4,583567 -0,26373
7 4,849383 4,563162 -0,28622
8 5,373174 5,29919 -0,07398
9 5,376808 5,226771 -0,15004
10 0 0 0

Table 11: Pcut - Dynamic Thermal Rating
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The computational burdens of the analyzed techniques are summarized in Tab. 12, which reports the
simulation times observed during the studies.

Elapsed Time [sec]

Traditional OPF 1.2
AA-Based OPF - STR 3.5
AA-Based OPF - DTR 4.5

Table 12: Simulations Elapsed Time

Finally, the results of a day of operation has been shown in Fig. 7 and Fig. 8-9. In particular, Fig.
7 show the upper bound of the overall curtailment profiles in case of STR and DTR, demonstrating the
effectiveness of the proposed methodology in reducing the power curtailment of wind farm by increasing the
capability of a congested line.
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Figure 7: Dynamic Thermal Rating vs Static Thermal Rating

Moreover Fig. 8 and 9 depict the overall power curtailment profile joint to the wind speed and environ-
mental temperature profiles.

It is important to highlight that the results have been obtained considering the conductor temperature
equal to its maximum value at each time instant. This means that the heat capacity of the conductor has
been not considered in the computation of the thermal constraints. Hence, only the more favorable cooling
conditions of the conductor contributes to the exploitation of the additional capability of the line operated
under DTR regime.

The presented analysis is related to a relatively simple test system, whose size, configuration and char-
acteristics are all taken from a real network, in order to correctly represent analyzed section of actual
transmission system with a high penetration level of wind generation. The previous work by the authors
was aimed at assessing the effectiveness of the AA-based methodology for solving large and very large power
networks, e.g.25, suggesting that the AA-based W-OPF analysis presented in this paper can be also applied
in case of larger networks, characterized by multiple congested power lines, massive penetration of renewable
power generators, distributed composite loads, and complex market dynamics. The authors are currently
working on this problem.
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Figure 8: Wind Speed vs Wind Power Curtailment
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Figure 9: Environmental Temperature vs Wind Power Curtailment
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5. Conclusions and Future Works

Weather-based optimal power flow is one of the most promising enabling methodologies aimed at im-
proving the hosting capacity of renewable power generators, the power components exploitation, and the
network flexibility, without requiring the need for new electrical infrastructures. Anyway, its large-scale
deployment in realistic operation scenario could be hindered by the multiple and correlated uncertainties
affecting both the generated/demanded power profiles, and the components thermal modeling, which should
be accurately represented and managed in order to obtain reliable problem solutions, satisfying the severe
security and reliability levels characterizing modern power system operation. To address these challenging
issues this paper:

� conceptualized a reliable solution technique based on AA, which allowed solving uncertain W-OPF
analysis by explicitly considering the effects of the load/generator uncertainty and the components’
thermal dynamics on both the objective function and the power system constraints;

� proposed a new computing model based on the range analysis theory, which aims at propagating the
effects of the wind speed uncertainty into the generated power;

� presented and discussed the results obtained on a real case study, which was based on a congested
portion of a real transmission system characterized by a massive pervasion of wind generators.

The analysis of the obtained experimental results demonstrated the effectiveness of the AA-based computing
paradigm in reliably identifying the bounds of the uncertain W-OPF problem solutions, by considering all
the possible combinations of the input data uncertainty. This result is still more relevant if we consider that
the affine form of the problem solution has been quickly obtained by solving a deterministic optimization
problem, which has been formalized according to proper AA-based mathematical operators.

As mentioned in the paper, an important advantage of the presented AA-based method is that it allows
to obtain, in one relatively simple calculation step, the lower and upper boundaries (i.e. the best and the
worst case estimations) of the problem solution, instead of performing a large number of probabilistic Monte
Carlo runs, which are required to capture these bounds from the tails of output distributions. However,
the AA-based solution might return unrealistically large ranges when the probabilities around the boundary
values are very small. To resolve that issue, a suitable confidence interval can be introduced for selecting
the input uncertainty ranges, which can be obtained either from an assumed distribution of uncertainties
around the central (or most expected) value, or from a limited number of Monte Carlo runs. The authors
are currently investigating this problem as a possible future direction for improving the presented analysis.

References

[1] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D’haeseleer, Distributed Generation: Definition, Benefits
and Issues, Energy policy 33 (6) (2005) 787–798.

[2] K. G. Boroojeni, M. H. Amini, S. Iyengar, M. Rahmani, P. M. Pardalos, An economic dispatch algorithm for congestion
management of smart power networks, Energy Systems 8 (3) (2017) 643–667.

[3] E. M. Carlini, C. Pisani, A. Vaccaro, D. Villacci, Dynamic Line Rating Monitoring in WAMS: Challenges and Practical
Solutions, in: 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a
better tomorrow (RTSI), 2015, pp. 359–364. doi:10.1109/RTSI.2015.7325124.
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