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Abstract 

Large-scale integration of variable and unpredictable renewable-based generation 

systems poses significant challenges to the secure and reliable operation of transmission 

networks. Application of dynamic thermal rating (DTR) allows for a higher utilisation of 

transmission lines and effectively avoids high-cost upgrading and/or reinforcing of 

transmission system infrastructure. In order to efficiently handle ranges of uncertainties 

introduced by the variations of both wind energy sources and system loads, this paper 

introduces a novel optimization model, which combines affine arithmetic (AA) and 

probabilistic optimal power flow (P-OPF) for DTR-based analysis of transmission 

networks. The proposed method allows for the improved analysis of underlying 

uncertainties on the supply, transmission and demand sides, which are expressed in the 

form of probability distributions (e.g. for wind speeds, wind directions, wind power 

generation and demand variations) and related interval values. The paper presents a 

combined AA-P-OPF method, which can provide important information to transmission 

system operators for evaluating the trade-off between security and costs at a planning 

stage, as well as for selecting optimal controls at operational stage. The AA-P-OPF 

methodology is illustrated for a day-ahead planning, using a case study of a real 

transmission network and a medium size test distribution network. 
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Nomenclature 

Indices 
𝑁 Set of bus numbers  
𝐿 Set of line numbers  
𝑙 Transmission line number   
𝑘, 𝑚 Bus numbers, in terms of from and to ends of line 𝑙  
𝑛 Bus number  
𝑠 Number of Markov Chain model states  
𝑤 Wind farm number  
Parameters 
𝑏  Total shunt susceptance of line 𝑙 𝑝. 𝑢. 
𝑦  Total admittance of line 𝑙 𝑝. 𝑢. 
𝑃  Lower bound of supplied active power from the wth wind 

farm 
𝑀𝑊 

𝑃  Upper bound of supplied active power from the wth wind farm 𝑀𝑊 
𝑠  Thermal limit of transmission line 𝑙 𝑀𝑉𝐴 
𝑉  Lower bound of voltage magnitude at bus 𝑘  𝑝. 𝑢. 
𝑉  Upper bound of voltage magnitude at bus 𝑘 𝑝. 𝑢. 
𝐏 Markov Chain transition probability matrix   
𝐂 Cumulative Markov Chain transition probability matrix  
𝝆𝒈 Matrix of linear correlation parameters  

Variables 
𝑃  Active power curtailment for the wth wind farm 𝑀𝑊 
𝑃  Active power injected from the grid at bus 𝑘 𝑀𝑊 
𝑄  Reactive power injected from the grid at bus 𝑘 𝑀𝑉𝐴𝑟 
𝑃  Active power injected from the wth wind farm 𝑀𝑊 
𝑄  Reactive power injected from the wth wind farm 𝑀𝑉𝐴𝑟 
𝑃  Active power demand of the load connected at bus 𝑘 𝑀𝑊 
𝑄  Reactive power demand of the load connected at bus 𝑘 𝑀𝑉𝐴𝑟 
𝑃  Active power injected into line 𝑙 at its from end 𝑀𝑊 
𝑄  Reactive power injected into line 𝑙 at its from end 𝑀𝑉𝐴𝑟 
𝑃  Active power injected into line 𝑙 at its to end 𝑀𝑊 
𝑄  Reactive power injected into line 𝑙 at its to end 𝑀𝑉𝐴𝑟 
𝑉  Voltage at bus 𝑘  𝑝. 𝑢. 
𝑉  Voltage at bus 𝑚  𝑝. 𝑢. 
𝑞  Convection heat loss rate 𝑊/𝑚 
𝑞  Radiated heat loss rate 𝑊/𝑚 
𝑞   Solar heat gain 𝑊/𝑚 
𝑅(𝑇 )  Resistance of conductor  Ω/𝑚 

𝑃  Affine upper bound of supplied active power from the wth 
wind farm  

𝑀𝑊 

𝑃  Affine active power demand of the load connected at bus 𝑘 𝑀𝑊 
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𝑉  Affine wind speed 𝑚/𝑠 

𝜙 Affine wind attacking angle 𝑑𝑒𝑔𝑟𝑒𝑒 

𝐼  Affine line thermal rating 𝐴 
𝑋, 𝑌 Random variables  
𝐐 Uncorrelated sample vector  
𝐘 Correlated sample vector  
Functions 
𝐹(∙) Marginal distribution  
𝐶(∙) Copula function  
Φ(∙) CDF of Gaussian distribution  

1. Introduction 

Significantly increased penetration levels of various renewable energy sources, such as 

wind and photovoltaics (PV) systems, have introduced a range of new challenges for 

network operation and control [1]-[2], as these renewable-based generation systems are 

both highly variable and unpredictable, so therefore cannot be dispatched as the 

conventional generation plants. In addition, large wind and PV farms are typically located 

farther away from load centres, requiring sufficient capacities of interconnecting 

transmission networks. Application of dynamic thermal rating (DTR) effectively avoids 

costly upgrading or reinforcing of transmission system infrastructure, as it allows for a 

higher utilisation of transmission network components than if their static thermal ratings 

(STR) are used. Accordingly, the DTR analysis uses thermal models of network 

components (e.g. overhead lines, OHL) to assess variations in their available capacities, 

based on the forecasted, or real-time monitored, loading and ambient conditions.  

Three most-commonly used models for assessing conductor surface temperature of 

transmission OHLs are given in: IEC 61597, [3], IEEE Std 738-2006, [4] and CIGRE 

Working Group 22.12 Report, [5]. In this paper, model from [4] is used to determine OHL 

thermal rating, while [6] presents a comparison of these models. Previous work has shown 

that application of DTR can increase thermal loading of transmission lines by 5% - 15%, 

[7], and in that way release network capacity for connecting higher number of generation 
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units and supplying more loads, [8], [9], [10]. Implementation of DTR models for optimal 

power flow (OPF) analysis of networks with wind-based generation is presented in [11] 

and [12].  

Building on the previous work, this paper considers a transmission OHL connecting a 

large wind farm, when there are uncertainties in the wind farm outputs due to inherently 

stochastic variations of wind speeds and wind directions, which will additionally impact 

uncertainties in the estimated DTR values. These uncertainties in the generation and 

transmission systems are considered together with the variations in the connected system 

loads, i.e. uncertainties on the demand side. 

A number of probabilistic optimal dispatch problems are solved by numerical methods, 

such as Gram-Charlier method [13], which derives probability distribution functions 

(PDFs) from the statistical data of state variables. Analytical approaches include: 

convolution methods [14], chance-constrained programming [15], point estimate 

methods [16], etc. However, these approaches require approximations and are often strict 

regarding the PDF formulations of statistic variables. Recently, some new approaches 

have been applied to OPF analysis, such as interval analysis [17], fuzzy theory [18] and 

affine arithmetic [19].  

For example, an affine arithmetic (AA) based numerical approach is applied in [19] to 

solve OPF problems with interval uncertainties, showing how internal errors caused by 

truncations and approximations can be taken into account in solutions with accurate 

output result intervals. To resolve issues of such AA approaches with too wide solution 

ranges, typically manifested in the low probabilities around maximum and minimum 

interval values, modern trends in AA-applications combine probabilistic and AA 

approaches, e.g. [20] and [21], where noise symbols are represented in the form of P-
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boxes (i.e. generic probabilistic functions) and classified into independent group and 

group with unknown dependencies based on the estimated or assumed probability 

distributions of interval values. Although this approach allows to efficiently follow 

propagation of uncertainties through the computational process, it does not provide 

evaluation of the confidence levels and related risks associated with the solutions. 

In order to efficiently handle a possibly large range of uncertainties introduced into power 

system by the variations of its generation, transmission and demand sides, this paper 

introduces a novel optimization model, which combines AA and probabilistic optimal 

power flow (P-OPF) for a DTR-based analysis of transmission networks. The 

uncertainties in bus power injections, including wind generation and load, as well as in 

DTR limits, are initially formulated as interval values, obtained from time series 

generated using a second-order Markov Chain model and Copula function. Probabilistic 

OPF is solved first with the AA approach, using Min-Max intervals of optimal objective 

function values, in order to identify optimal dispatch solutions. As mentioned, these AA 

interval solutions are usually too conservative, as they include all possible values of 

uncertain variables, regardless of their actual probabilities. Therefore, this paper uses 

Monte Carlo Simulations (MCS’) for evaluation of probabilities and uncertainties in input 

values (and risks in output values), based on the methods developed in [22]. This allows 

to specify related uncertainties and risks with suitable confidence levels by considering 

corresponding AA-intervals and P-OPF solutions, i.e. to combine them into the presented 

AA-P-OPF method, which is illustrated on a case study of a real transmission network, 

as well as on a case study of a 33-bus medium-size distribution system, for a day-ahead 

planning studies. 

The main contributions of the paper are: 
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 A novel approach is proposed for analysing wind speed, wind direction and load 

profile time series, which is specifically aimed at evaluating impact of their ranges 

of variations and uncertainties on the correlated power outputs of WFs and DTR of 

OHLs for the analysis of operational network performance. 

 A novel AA-P-OPF method is presented, combining affine arithmetic and 

probabilistic optimal power flow analysis for significantly reduced computational 

times and for specifying confidence level in obtained solution ranges. 

 Thermal model of overhead lines, based on the DTR analysis, is included into the 

OPF analysis of system capacity for evaluating operation of networks with high 

penetration of wind-based generation systems in terms of low-risk wind curtailment 

strategies. 

2. Problem Definition 

2.1 Wind Power Curtailment Minimization 

For a given power network 𝐺(𝑁, 𝐿), where 𝑁 = {1, … 𝑛} and 𝐿 ⊆ 𝑁 × 𝑁 represent sets 

of buses and branches (including transmission lines and transformers), respectively, and 

where for each branch 𝑙 ∈ 𝐿, 𝑘 and 𝑚 represent from and to line ends (connecting buses), 

denoted as 𝑙 = (𝑘, 𝑚), the AC OPF problem for minimizing wind curtailment can be 

written as: 

 min ∑ 𝑃∈  (1) 

where 𝑃  is the wind power curtailment for the 𝑤th wind farm (WF). 

Subject to:  

 Power balance equations: 

 𝑃 + ∑ 𝑃∈ − 𝑃 = ∑ 𝑃( , )∈ + ∑ 𝑃( , )∈    ∀𝑘 ∈ 𝑁 (2) 
 𝑄 + ∑ 𝑄∈ − 𝑄 = ∑ 𝑄( , )∈ + ∑ 𝑄( , )∈    ∀𝑘 ∈ 𝑁 (3) 
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where at every bus k: 𝑃  and 𝑄  are active and reactive power from the grid at bus 

𝑘 (For any buses which are not slack bus, 𝑃 = 0, 𝑄 = 0), 𝑃  and 𝑄  are active 

and reactive power injected by the 𝑤 th WF, and 𝑃  and 𝑄  are active and reactive 

power demands of the connected load. 𝑊  is the subset of wind farms located at bus 𝑘. 

 Line flow equations: 

 + 𝑦 𝑉 − 𝑦 𝑉  
∗

= 𝑃 + 𝑗𝑄    ∀ 𝑙 = (𝑘, 𝑚)  ∈ 𝐿  (4) 

 𝑉 −𝑦 𝑉 + + 𝑦 𝑉  
∗

= 𝑃 + 𝑗𝑄    ∀ 𝑙 = (𝑘, 𝑚)  ∈ 𝐿  (5) 

where 𝑏  is the total shunt susceptance of line 𝑙; pairs 𝑃  and 𝑄 , and 𝑃  and 𝑄 , are 

active and reactive powers injected into line 𝑙 at its from and to ends, respectively, with 

𝑉  and 𝑉  voltages at from and to ends of line 𝑙. 

 Wind farm capacities: 

 𝑃 ≤ 𝑃 ≤ 𝑃    ∀𝑤 ∈ 𝑊 (6) 

where 𝑃  and 𝑃  are upper and lower bounds of active power supplied by the 𝑤th WF. 

 Line thermal limits: 

 𝑃 + 𝑗𝑄 ≤ 𝑠 ,   |𝑃 + 𝑗𝑄 | ≤ 𝑠      ∀𝑙 ∈ 𝐿 (7) 

where 𝑠  is the thermal limit (i.e. capacity limit in MVA) of transmission line 𝑙. 

 Bus voltage magnitude limits: 

 𝑉 ≤ |𝑉 | ≤ 𝑉    ∀𝑘 ∈ 𝑁 (8) 

where 𝑉  and 𝑉  are the upper and lower bounds of voltage magnitude at bus 𝑘. 

 Slack bus constraint: 

 𝑉 = 1 + 𝑗0, for k = slack bus (9) 

2.2 Dynamic Thermal Rating (DTR) 
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The DTR of an OHL, also known as real-time thermal rating, considers actual loading 

and weather conditions (e.g. ambient temperature, wind speed, wind direction, solar 

irradiance, etc.), in order to more accurately estimate OHL temperature and then evaluate 

available OHL capacity, [4]: 

 𝐼  =
( , , , ) ( , )

( )
  (10) 

where 𝑞  and 𝑞  are convection and radiation heat loss rates (impacted by wind speed 𝑉 , 

wind attacking angle 𝜙 and ambient temperature 𝑇 ), 𝑞  is solar heat gain and 𝑅(𝑇 ) is 

resistance of conductor at temperature 𝑇 . The DTR is included into OPF analysis by 

replacing 𝑠  in (7) with 𝑠 : 

 𝑠 = √3𝑉 𝐼 , 𝑠 = √3𝑉 𝐼    ∀ 𝑙 = (𝑘, 𝑚)  ∈ 𝐿 (11) 

2.3 Affine Arithmetic  

Affine arithmetic (AA) is a self-validated numerical computation model, which is used to 

solve dependency problems in classical interval mathematic computations. It keeps track 

of the first-order correlations between input and computed output quantities [23]. 

Standard interval arithmetic (IA) often yields to much wider intervals than the actual 

(exact) ranges of the computed function, resulting in an overestimation that effectively 

limits the application of the IA. For instance, in chained computation, where the outputs 

of one step are inputs of the next step, the overestimation tends to get multiplied. This 

results in a cumulative error, also known as error explosion, which can be resolved by 

applying affine arithmetic.  

Assuming that 𝑥 is a variable which is subject to uncertainties, the affine form of  𝑥 is: 

  𝑥 = 𝑥 + 𝑥 𝜀 + 𝑥 𝜀 + ⋯ + 𝑥 𝜀  (12) 
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where 𝑥 , is central value, 𝑥  are deviations due to the ith uncertainty, for which 𝜀  

represents the noise symbol with the range [−1,1]. The radius of  𝑥 can be expressed by 

𝑟𝑎𝑑𝑥 =  ∑ |𝑥 |. [𝑥, 𝑥], when the range of 𝑥 can be given as: 

 𝑥 = 𝑥 − 𝑟𝑎𝑑𝑥, 𝑥 = 𝑥 + 𝑟𝑎𝑑𝑥 (13) 

Affine arithmetic consists of affine and non-affine operations. For two interdependent 

affine forms 𝑥 = 𝑥 + ∑ 𝑥 𝜀  and 𝑦 = 𝑦 + ∑ 𝑦 𝜀 , the affine form �̃�, determined 

by affine combinations of 𝑥 and 𝑦, is: 

 �̃� = 𝛼𝑥 ± 𝛽𝑦 ± 𝛾 = (𝛼𝑥 ± 𝛽𝑦 ± 𝛾) + ∑ (𝛼𝑥 ± 𝛽𝑦 )𝜀  (14) 

where the middle point of �̃� is given as 𝑧 = 𝛼𝑥 ± 𝛽𝑦 ± 𝛾  and deviation of the ith 

uncertainty is 𝑧 = 𝛼𝑥 ± 𝛽𝑦 . For a non-affine operation𝑧 ← 𝑓(𝑥, 𝑦), as 𝑓∗ is not affine, 

𝑧  cannot be expressed exactly by affine combinations of noise symbols 𝜀 . Affine 

approximation is necessary in this case and an extra term 𝑧 𝜀  should be introduced. 

 �̃� = 𝑓 (𝜀 , … , 𝜀 ) + 𝑧 𝜀  (15) 

where 𝑓 (𝜀 , … , 𝜀 ) = 𝛼𝑥 + 𝛽𝑦 + 𝛾 . The optimal values of 𝛼, 𝛽, 𝛾 and 𝑧 to minimize 

approximation errors can be determined by Chebyshev approximations [24]. 

By formulating uncertain bus power injections in affine form as (16) and (17), affine 

forms of the other state variables can be derived according to power balance equations 

[19] ， [25] ， [26]. For WF maximum supplied power: 

 𝑃 = 𝑃 + 𝑃 𝜀    ∀𝑤 ∈ 𝑊 (16) 
while for load: 
 𝑃 = 𝑃 + 𝑃 𝜀 ,   𝑄 = 𝑄 + 𝑄 𝜀   ∀𝑘 ∈ 𝑁 (17) 

where each wind generation and load have different error symbols.  
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The affine formulation of DTR in this paper considers uncertainties in wind speeds and 

wind directions, as previously presented in [27], which can be respectively expressed by 

(18) and (19). 

 𝑉 = 𝑉 + 𝑉 𝜀   ∀𝑤 ∈ 𝑊 (18) 

 𝜙 = 𝜙 + 𝜙𝜀  (19) 

The affine form to represent DTR can be calculated as: 

 𝐼 =    (20) 

with the final formulation is given by: 

 𝐼 = 𝐼 + 𝐼 𝜀 + 𝐼 𝜀  (21) 

As previously discussed, AA-based analysis can take into account various sources of 

uncertainties and their assumed ranges during the assessment of DTR and is also efficient 

in terms of the required computation times. However, it can result in too wide solution 

ranges, where of particular concerns are low-probabilities around the minimum and 

maximum values. Therefore, this paper combines AA and probabilistic DTR analysis, 

which is discussed in the further text. 

3. Time series and uncertainty analysis for wind and load profiles 

3.1 Demand Modelling and Load Profile Uncertainties 

For evaluation of load profile uncertainties, two 6-year demand time series, recorded as 

average 30-minute active powers, are used. Two uncertainty models are compared. 

 Sliding window approach 
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Demands on weekdays and weekends are quite different and load profiles are therefore 

classified in two categories: weekdays (WKD) and weekends (WKE). A sliding window 

is implemented for each record in the active power measurements series, consisting of all 

recordings from the same hour of an identical category day (WKD or WKE) within ±14 

days interval. For an individual WKD record, there are 21 values in the sliding window, 

while for every WKE record, there are 9 sliding windows entries. 

The variations of recorded demands in the sliding window represent the uncertainty 

associated to the actual recording (i.e., centre position value in the window), which can 

be expressed by either maximum or minimum, or quantile points, as shown in Figure 1. 

 

Figure 1. Evaluation of demand uncertainty with sliding window approach. 

It is assumed that demand variations follow normal distribution, which is fitted by 

maximum likelihood estimation (MLE) method and validated by three normality tests: 

Jarque-Bera test (JB-test), Anderson-Darling test (AD-test) and Shapiro-Wilk test (SW-

test), with 5% significance level.  

 Second-order Markov Chain (MC) analysis 
The second-order Markov Chain (MC) model, in which probability of transition from one 

state to the next state depends only on the two successive previous states, is also used to 

analyse variations in the WKD and WKE load profile time series: 
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Pr(𝑋 = 𝑥|𝑋 = 𝑥 , 𝑋 = 𝑥 , 𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) = Pr (𝑋 = 𝑥|𝑋 =
𝑥 , 𝑋 = 𝑥 ), if Pr(𝑋 = 𝑥 , 𝑋 = 𝑥 , 𝑋 = 𝑥 , … , 𝑋 = 𝑥 ) > 0 (22) 

where 𝑋 , 𝑋 , 𝑋 … is a sequence of random variables. The recorded demand data are 

fuzzily approximated with a resolution of 0.5MW as: 

 old
new

P 0.5
P 0.5

0.5 2
     

 (23) 

where: P  is recorded active power data, and    is floor function. The number of MC 

model states is equal to the rank of the corresponding sorted active power, with transition 

probability matrix, P , giving probabilities of state-to-state transfers; cumulative transition 

probability matrix C  gives cumulative transfer probabilities: 
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 (24) 

where: s  is the number of states, and ijkp  is the probability of transferring from state i  

(at 1t t   ) and following state j  (at t t ) to the state k  (at 1t t  ). The elements of 

P  are calculated with the MLE method from [28] and elements of C  are then calculated 

as 
1

k
ijk ijxx

c p


 . The empirical mean, variance, median, maximum and minimum 

values, as well as cumulative probability boundaries of quantiles (denoted as (1 )xQ  and 

xQ , where xQ  is quantile value) of transferring from states i  and j  are: 

1

mean
s

ij ijk
k

k p


   

 2

1

variance mean
s

ij ijk ij
k

p k


    

   median . . 0.5 min 0.5 , where 1, ,ij ijk ijkk s t c c k s     K  

(25) 
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 1max . . 1, 1, , 1, where 1, ,ij ijk ijk ijsk s t c c c k s    K K   

 1 1min . . 0, 0, , 0, where 1, ,ij ijk ijk ijk s t c c c k s    K K

   (1 ) = . . (1 ) min (1 ) , where 1, ,x ij ijk x ijk xQ k s t c Q c Q k s       K  

   ( ) = . . min , where 1, ,x ij ijk x ijk xQ k s t c Q c Q k s    K   

For median ij , if there exist multiple solutions of k , then their mean value is chosen. If 

(1 )x ijQ k   has multiple solutions, the smallest k  is selected, and for ( )x ijQ k , the 

largest k  is selected, if it has more than one solution. Like in sliding window approach, 

variations of transfer states are fitted with normal distributions by MLE, with an example 

of the second-order MC model for assessing uncertainties in hourly demands shown in 

Figure 2 (same day as in Figure 1). 

 
Figure 2. Demand uncertainty evaluation with the second-order MC model 

As the second order MC model is based on the whole recorded dataset (annual values), 

where two successive previous recordings are considered as the condition for the next 

estimated value, the second order MC model is selected for the uncertainty analysis of 

load profiles. 

3.2 Generated Cross-Correlated Wind Profiles 
Correlated wind profiles for several WFs are generated based on Copula theory [29]-[30] 
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marginal probability for each variable [31]. Considering a bivariate distribution, 

according to Sklar`s theory [32], if the marginal distributions XF  and YF  are known, 

their joint distribution XYF  can be written as    , ( ), ( )XY X YF x y C F x F y . If XF  and 

YF  are continuous, then the Copula function C  is unique.  

If  XF x u  and  YF y v , where u  and v  are respectively realisations of uniformly 

distributed variables U  and V ,       1 1, ,UV X YC u v F F u F v   can be used to build 

corresponding Copula function from multivariate distribution function and multivariate 

Gaussian Copula is applied in this paper to analyse high-dimensional correlations 

between wind speeds at several WFs, as well as for transmission network OHLs.  

Multivariate Gaussian Copula function has one Copula linear correlation parameter g  

for every bivariate dependence, so the d-dimensional Gaussian Copula can be written as: 

   1 1 1
1 2 1 2, , , ; ( ), ( ), , ( )g d dC u u u u u u      

gg ρρK K  (26) 

   1 2
1 2

1 2

1
T 12

, , , ;
, , , ;

1
exp ( )

2

d
g d

g d
d

C u u u
c u u u

u u u

 




  

    
 

g
g

g g g g

ρ
ρ

ρ ζ ρ I ζ

K
K

K
 

(27) 

 1 1 1
1 2( ), ( ), , ( )du u u     gζ K  (28) 

This approach transforms marginal distributions into a uniform domain in [0,1]  using 

marginal cumulative density function (CDF), and then transforms the uniform domain 

into a normal domain [30]. In that way, dependencies between ( 1,2,3, , )ix i d K  are 

expressed by the dependencies between their standard normal transforms. In fitting 

Gaussian Copula, parameter gρ  is  again estimated using MLE method [28]. 
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Since correlation matrix gρ  is a positive definite matrix, Cholesky factorisation can be 

applied: *gρ TT , where Τ  is a lower triangular matrix and *T  is its conjugate 

transpose. The first step of sampling from a given Gaussian d-dimensional Copula is to 

generate d-dimensional variable 1 2[ , , , ]dQ q q qK , which can be uncorrelated, and 

every dimension of the variable iq  (  1,2, ,i d K ) follows standard normal distribution. 

The target correlated variable 1 2[ , , , ]dY y y yK  can be obtained from Y TQ . 

Afterwards, by applying inverse standard normal distribution, Y  can be transferred into 

a correlated variable in the uniform domain in [0,1] . 

The available datasets are 3-year recordings at nine uncorrelated locations: one (L1) with 

synchronous/simultaneous recording of wind speed and wind direction, and eight (L2-L9) 

with only wind speed measurements. The synchronous wind speed and wind direction 

time series are used for wind profile at the OHLs. For L2-L9, MC models are fitted based 

on the historical data and new eight auto-correlated wind speed time series are obtained 

based on the transition matrices. To generate required cross-correlated wind speed time 

series, the target correlation matrix gρ  in Table I is assumed [33]: 

Table I: Target correlation matrix gρ  
 L1 L2 L3 L4 L5 L6 L7 L8 L9 

L1 1 0.900 0.840 0.810 0.650 0.890 0.680 0.670 0.770 

L2 0.900 1 0.930 0.940 0.830 0.910 0.850 0.850 0.860 

L3 0.840 0.930 1 0.940 0.820 0.840 0.860 0.850 0.800 

L4 0.810 0.940 0.940 1 0.860 0.820 0.910 0.910 0.860 

L5 0.650 0.830 0.820 0.860 1 0.750 0.860 0.850 0.750 

L6 0.890 0.910 0.840 0.820 0.750 1 0.790 0.790 0.880 

L7 0.680 0.850 0.860 0.910 0.860 0.790 1 0.980 0.860 

L8 0.670 0.850 0.850 0.910 0.850 0.790 0.980 1 0.870 

L9 0.770 0.860 0.800 0.860 0.750 0.880 0.860 0.870 1 

Table II shows obtained auto- and cross-correlated wind speed time series: 
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Table II: Calculated correlation matrix of simulation time series 
 L1 L2 L3 L4 L5 L6 L7 L8 L9 

L1 1 0.893 0.847 0.806 0.642 0.889 0.676 0.666 0.767 

L2 0.893 1 0.928 0.939 0.824 0.903 0.841 0.847 0.859 

L3 0.847 0.928 1 0.934 0.816 0.845 0.855 0.848 0.804 

L4 0.806 0.939 0.934 1 0.852 0.812 0.893 0.904 0.860 

L5 0.642 0.824 0.816 0.852 1 0.743 0.848 0.841 0.741 

L6 0.889 0.903 0.845 0.812 0.743 1 0.790 0.786 0.874 

L7 0.676 0.841 0.855 0.893 0.848 0.790 1 0.973 0.858 

L8 0.666 0.847 0.848 0.904 0.841 0.786 0.973 1 0.871 

L9 0.767 0.859 0.804 0.860 0.741 0.874 0.858 0.871 1 

An example of the correlated daily wind profiles (generated for eight WF sites and one 

OHL) is illustrated in Figure 3a. The uncertainties in the wind speeds and wind directions 

are calculated based on the applied MC model, using approach similar to the one 

described in Section 3.1, which is further illustrated for WF1 in Figure 3b. 

 
a) 

 
b) 

Figure 3. Evaluation of wind energy resource: a) nine correlated wind speed profiles, 
and b) one of the corresponding wind profiles (for WF1) with identified ranges of 

variations/uncertainties. 
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4 Two Study Cases Used for Analysis 

4.1 Case 1: 10-bus Network (Small Real Network) 
4.1.1 Network specification 
This case study is a real transmission network, Figure 4, with a high penetration of wind 

power, where frequent OHL congestion (i.e. overloading of OHLs in terms of their STR 

limits) results in wind energy curtailment. The network has 10 buses, where Bus 1 is the 

slack bus (connection point to HV bulk power system). There are eight wind farms, WF1 

to WF8, operating with unity power factor and two bulk load supply points, L1 and L2, 

located at Bus 3 and Bus 10, with peak demands of 56 MW, 6 MVAr and 50 MW, 

5 MVAr, respectively. All lines in network are OHLs, whose dynamic thermal ratings 

can be calculated according to thermal model presented in Section 2. The STR and DTR 

limits are implemented on all lines, which are assumed to be ACSR ‘Fox’ conductor type, 

[35]. Detailed network information can be obtained from [34]. 

 
Figure 4. Configuration of the analysed network. 

4.1.2 Wind profiles, load profiles and their uncertainties 
Two days are selected for analysis: one in summer (6th of June) and one in winter (2nd of 

January), in order to evaluate seasonal variations in DTR limits. Using the methodology 

presented in Section 3, daily wind speed profiles for WF1-WF8, daily load profiles for 

L1 andL2, as well as daily wind speed and wind direction profiles for OHLs are generated 

for these two days, based on the available historical measurements with evaluated ranges 
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of uncertainties (the time step for all time series is 30 minutes). Example wind speed 

profiles for WF1 (Bus 2) and load profiles for L1 (Bus 3) are plotted in Figures 5 and 6, 

while wind speed and wind direction profiles for OHL L1-2 are plotted in Figures 7 and 

8, all for the two selected days.  

For a given wind speed profiles, power outputs of wind turbines (WTs) in WF can be 

estimated through many approaches [34]. Most common approach is the use of 

manufacturer power curve, which specifies the relationship between the input wind speed 

and WT output power. However, manufacturer power curves are obtained in controlled 

conditions (air-tunnels), where impact of variations in wind speeds and wind directions, 

WT dynamics and other site and application specific factors are not considered. In order 

to fully represent uncertainties in WF power outputs, probabilistic models developed in 

[22] and [37] are applied to estimate WF output generation profiles and their uncertainties, 

for generated input wind speed profiles, with Figure 8 giving an example for WF1. 

 
a) winter day 
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b) summer day 
Figure 5. Daily load profiles and uncertainties for load L1 at Bus 3. 

 
a) winter day 

 
b) summer day 

Figure 6. Daily wind speed profile and uncertainties at OHL L1-2. 

 
a) winter day 
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b) summer day 
Figure 7. Daily wind direction (line attacking angle) and uncertainties at OHL L1-2. 

 
a) winter day 

 
b) summer day 

Figure 8. Daily power output and uncertainties for WF1. 

4.1.3 Comparison between DTR and STR values 

Firstly, Min-Max ranges of DTR values, corresponding to minimum and maximum wind 

speed and wind direction uncertainties (as in Figures 6 and 7), are used as input values in 

the AA-based OPF method. The evaluated upper and lower bounds of DTR values, as 

well as STR value, are plotted for the considered day and L1-2 in Figure 9. As the load 

profile is recorded with the resolution of 30 minutes, the DTR is also calculated with this 

resolution. The time constant of the considered OHL conductor is in the order of 10 

minutes, [38] and [39], which means that the OHL will reach steady state thermal 

operating condition within each 30-minute period, i.e. that thermal capacitance of the 

OHL conductor can be neglected.  
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a) winter day 

 
b) summer day 

Figure 9. Comparison between STR and AA-OPF DTR values for L1-2. 
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b) summer day 

Figure 10. Comparison of wind curtailments with STR and AA-OPF DTR limits. 

To evaluate benefits of applying DTR limits for maximising wind power exported into 

the grid (and minimising wind curtailment), the AA-based OPF with DTR and STR limits 

are solved separately and upper/lower bounds for the estimated total wind curtailments 

are plotted in Figure 10. DTR limits allows to export much more generated wind power: 

for a winter day, as there is no curtailment at all (high-wind and low temperature), while 

for a summer day, there is some curtailment (medium-wind and high temperature). 

4.1.4 Comparison between AA-based OPF and MCS-based P-OPF 
A probabilistic MCS-based OPF is then implemented to identify PDFs required for 

optimal dispatch solutions. In this MCS-based P-OPF, generated power of each WF is 

sampled according to distribution functions developed in [22], while loads are sampled 

with normal distributions, where standard deviations are estimated according to 0.95 and 

0.05 quantiles in Figure 5. For each 30-minute time interval, 5,000 MCS solutions for all 

uncertain variables (eight WF generations and two load demands, as well as wind speeds 

and wind directions at OHLs) are inputted into the OPF solver.  
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The daily maximum and minimum wind curtailments determined by MCS-based P-OPF 

are compared with AA-OPF results in Figure 11, confirming that there is no curtailment 

for a winter day.  

 

a) winter day 

 
b) summer day 

Figure 11. Comparison of wind curtailment results with MCS and AA methods. 

For a summer day, P-OPF results give close to zero curtailment, while AA-OPF results 

suggest a possible large curtailment. This is because AA-OPF uses minimum and 

maximum values from the estimated ranges of variations, which have very low 
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probabilities, resulting in too large ranges of uncertainties and possible inappropriate 

operational decisions related to wind curtailment strategies. 

To evaluate the above point in more detail, the PDFs of P-OPF solutions for wind 

curtailment for a summer day are plotted together with AA-OPF Min-Max intervals, and 

AA-OPF intervals obtained when variations of input variables are limited to their 0.05 to 

0.95 quantiles uncertainty ranges in Figure 12.  

At 01:00 and 05:00 hours, AA Min-Max intervals are around [0.010 MW, 55.305 MW] 

and [0.059MW, 29.854 MW] while 95%-5% AA intervals reduce to [0.0977 MW, 

0.156 MW] and [0.085 MW, 0.164 MW]. The probability (i.e. risk) that the wind 

curtailment will fall out of this interval is obtained from the P-OPF distributions and in 

both cases is less than 0.4%. At 09:30 and 13:00 hours, Min-Max AA intervals are 

[0.085 MW, 221.194 MW] and [0.103 MW, 185.209 MW], while 95%-5% AA intervals 

reduce to [0.107 MW, 0.145 MW] and [0.106 MW, 0.147 MW] with the probability that 

wind curtailment will fall out of this interval less than 0.2%. 

a) 01:00 hours b) 05:00 hours 
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c) 09:30 hours d) 13:00 hours 
Figure 12. Comparison of AA-OPF and P-OPF solutions for wind curtailment. 

4.2 Case 2: 33-bus Network (Medium Size Network) 
4.2.1 Network specification 

In the 33-bus network, taken from [40], four WTs are located at Buses 13, 21, 24 and 29, 

each with rated power of 2 MW and operating with unity power factor. The total peak 

demand is 3.7 MW and 2.3 MVAr, which is represented with two different load profiles. 

The system comprises 32 transmission OHLs: DTR is applied to L1-2, which is an ACSR 

Fox-type conductor [35], while for other OHLs the STR of 200 A is applied. The 

variations in wind generation are balanced by controlling thermal generation at Bus 1. As 

in the previous case study, AA-OPF and P-OPF methods are used to calculate interval 

values and probability distributions of the WTs the power outputs, from which required 

thermal generation reserve for supplying variable demands can be determined. The same 

load profiles and wind profiles presented in Figures 5, 6 and 7 are applied to wind 

demands, generation and calculation of DTR of OHL. 
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Figure 13. Configuration of the 33-bus distribution network. 

4.2.2 Comparison between AA- OPF and P-OPF results 

 
a) winter day 

 
a) summer day 

Figure 14. Comparison of wind curtailment results with AA-OPF and P-OPF methods. 
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a) 10:00 hours 

 
b) 13:30 hours 

Figure 15. Comparison of AA-OPF and P-OPF solutions for wind curtailment. 

Maximum and minimum daily wind curtailment profiles obtained by AA-OPF and P-

OPF are plotted in Figure 14, again for one day in summer and one day in winter. On the 

winter day, no wind curtailment is implemented, because OHL thermal rating is extended 

significantly when DTR is applied (low ambient temperature and high wind speed). 

However, during most of the time on the summer day, significant wind curtailment is 

required to prevent overloading, but Min-Max curtailment interval provided by AA-OPF 

is wider than by P-OPF method. The corresponding uncertainty ranges are detailed in 

Figure 15, where PDFs of P-OPF solutions at two hours on the considered summer day 

are plotted together with AA-OPF Min-Max intervals and 95%-5% intervals. At 10:00 

hours, the curtailment value interval obtained by P-OPF method is [0.047 MW, 2.744 

MW], while the Min-Max interval obtained by AA-OPF is [0.008 MW, 2.747 MW]. If 

again 95%-5% AA interval is used, the uncertainty in curtailed wind energy reduces to 

[0.060 MW, 0.072 MW] without introducing significant risk. Similar results are obtained 

at 13:30 hours, when Min-Max AA interval of [0.017 MW, 1.465 MW] reduces in case 

of 95%-5% AA interval to [0.062 MW, 0.074 MW]. 

The results for the analysis of the second test network also indicate that optimal 

generation dispatch and wind curtailment regime can be obtained if too wide solutions 

ranges of AA-OPF with Min-Max intervals are evaluated in terms of the involved risks 
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and uncertainties with the selected confidence levels. The process of finding appropriate 

confidence level can be denoted as a tuning of AA-OPF method and is much faster than 

MCS-based P-OPF approach, as it does not require large number of simulations. In other 

words, a limited number of selected P-OPF cases can be solved first, to assess solution 

intervals, confidence levels and related risks, and then AA-OPF can be used for further 

analysis. In that way, these two approaches will be combined in an AA-P-OPF approach, 

as it is presented in this paper. 

5 Conclusions   

A novel OPF model with probabilistic DTR limits is presented for a day-ahead planning 

of networks with high wind penetration. The model combines AA-OPF and P-OPF 

approaches and is illustrated on a case study of a real transmission network (small system) 

and 33-bus network (medium size system). Time series with uncertainties are generated 

using Copula Function and second-order MC model, based on recorded historical data. 

The presented AA-P-OPF method can be used by system operators for optimal generation 

dispatch and for selection of low-risk wind curtailment strategies, where risk level is 

directly related to the specified confidence level in the evaluated uncertainty ranges. 

Compared to the sampling-based P-OPF approach, the presented AA-P-OPF method is 

much more efficient in terms of the required computational times, while it can also resolve 

issue with too wide solution ranges obtained by AA-OPF method with Min-Max intervals, 

as it can take into account probability distributions of input uncertainties. A possible 

extension of the presented work is implementation of chance-constrained OPF analysis, 

which is subject of the future work by the authors. 
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