
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCOTfluors: Small, Conjugatable, Orthogonal and Tunable
Fluorophores for in vivo Imaging of Cell Metabolism

Citation for published version:
Benson, S, Fernandez Vargas, A, Barth, N, De Moliner, F, Horrocks, M, Herrington, C, Abad, JL, Delgado,
A, Kelly, L, Chang, Z, Feng, Y, Nishiura, M, Hori, Y, Kikuchi, K & Vendrell Escobar, M 2019, 'SCOTfluors:
Small, Conjugatable, Orthogonal and Tunable Fluorophores for in vivo Imaging of Cell Metabolism',
Angewandte Chemie. https://doi.org/10.1002/ange.201900465

Digital Object Identifier (DOI):
10.1002/ange.201900465

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Angewandte Chemie

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

https://www.research.ed.ac.uk/portal/en/persons/antonio-fernandez-vargas(dcf9e4bf-f5d2-4485-a88f-2418aea2382c).html
https://www.research.ed.ac.uk/portal/en/persons/fabio-de-moliner(0c9905cc-f262-402f-8c26-25d192f0c8ba).html
https://www.research.ed.ac.uk/portal/en/persons/mathew-horrocks(26bcdcc3-e33f-4312-b32e-7fef62364b70).html
https://www.research.ed.ac.uk/portal/en/persons/c-simon-herrington(fa5b2bd7-78be-40a3-b26f-2b40dfb8ca49).html
https://www.research.ed.ac.uk/portal/en/persons/ziyuan-chang(02102772-414a-4e20-8ce1-d865ed09f99a).html
https://www.research.ed.ac.uk/portal/en/persons/yi-feng(2d986305-f5e3-40ec-9705-c82d71915265).html
https://www.research.ed.ac.uk/portal/en/persons/marc-vendrell-escobar(40a1fcb5-7f80-4f6a-aa81-1d436e29af27).html
https://www.research.ed.ac.uk/portal/en/publications/scotfluors-small-conjugatable-orthogonal-and-tunable-fluorophores-for-in-vivo-imaging-of-cell-metabolism(2c3ce847-896f-4cdd-ac37-38b9a6149b38).html
https://www.research.ed.ac.uk/portal/en/publications/scotfluors-small-conjugatable-orthogonal-and-tunable-fluorophores-for-in-vivo-imaging-of-cell-metabolism(2c3ce847-896f-4cdd-ac37-38b9a6149b38).html
https://doi.org/10.1002/ange.201900465
https://doi.org/10.1002/ange.201900465
https://www.research.ed.ac.uk/portal/en/publications/scotfluors-small-conjugatable-orthogonal-and-tunable-fluorophores-for-in-vivo-imaging-of-cell-metabolism(2c3ce847-896f-4cdd-ac37-38b9a6149b38).html


German Edition: DOI: 10.1002/ange.201900465Fluorescent Probes Hot Paper
International Edition: DOI: 10.1002/anie.201900465

SCOTfluors: Small, Conjugatable, Orthogonal, and Tunable
Fluorophores for In Vivo Imaging of Cell Metabolism
Sam Benson+, Antonio Fernandez+, Nicole D. Barth, Fabio de Moliner, Mathew H. Horrocks,
C. Simon Herrington, Jose Luis Abad, Antonio Delgado, Lisa Kelly, Ziyuan Chang, Yi Feng,
Miyako Nishiura, Yuichiro Hori, Kazuya Kikuchi, and Marc Vendrell*

Abstract: The transport and trafficking of metabolites are
critical for the correct functioning of live cells. However, in situ
metabolic imaging studies are hampered by the lack of
fluorescent chemical structures that allow direct monitoring
of small metabolites under physiological conditions with high
spatial and temporal resolution. Herein, we describe SCOT-
fluors as novel small-sized multi-colored fluorophores for real-
time tracking of essential metabolites in live cells and in vivo
and for the acquisition of metabolic profiles from human
cancer cells of variable origin.

Metabolites are essential biochemical components, with
their transport and localization regulating most biological
functions. Despite advances in fluorescence imaging to label
biomolecules,[1] there are few approaches to image small
metabolites in live cells and intact organisms. Most metabo-
lites do not contain groups that allow direct visualization and

need to be modified with exogenous chromophores. How-
ever, fluorescent labels, in particular red and near-infrared
(NIR) fluorophores, are bulky structures that can impair
metabolite traffic within cells. Our group has recently
developed fluorogenic amino acids to label peptides without
affecting their properties.[2] Herein, we describe a new
strategy for direct imaging of essential metabolites in live
cells and in vivo using small-sized multi-color fluorophores.

Since the report by Ghosh and Whitehouse,[3] nitro-
benzodioxazole (NBD) has been widely used because of its
small size and neutral character. These properties have
facilitated labeling biomolecules with retention of their
native properties.[4] However, NBD (lem� 540 nm) is incom-
patible with other green fluorescent reporters (e.g., GFP) and
has limited application for in vivo use. To address these
shortcomings, herein we report a collection of fluorophores,
named SCOTfluors, with tunable emission covering the entire
visible spectrum. SCOTfluors include the smallest fluoro-
phores emitting in the NIR window (650–900 nm) reported to
date (Figure 1).

Figure 1. General synthetic procedure, structures, and spectral proper-
ties of SCOTfluors. a) Values determined in EtOH. b) QY in dioxane
using acridine orange, fluorescein, rhodamine 101, and Cy5 as stand-
ards.
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Several strategies have been described to optimize the
optical properties of fluorophores for live-cell imaging.[5] For
instance, the replacement of oxygen atoms with geminal
dimethyl groups in rhodamine and fluorescein produced red-
shifted fluorophores with enhanced properties for bioimag-
ing.[6] We envisioned that the synthesis of nitrobenzodiazoles
with different groups bridging the nitroaminoaniline core
would render multi-color fluorophores with tunable emission
and enhanced capabilities for metabolite imaging in live cells.
The preparation of SCOTfluors was achieved in two synthetic
steps from the common intermediate 1 (Figure 1). First, the
aminoaniline core was cyclized with different bridging groups.
All these reactions proceeded similarly for fluoride and
chloride derivatives (full list of analogues in the Supporting
Information). Second, halogenated compounds (2, Figure 1)
underwent substitution with primary and secondary amines to
render the final fluorophores (3–7, Figure 1). Triazole deriv-
atives (4) were synthesized by reaction with sodium nitrite in
acidic media at r.t., thioderivatives (5) were obtained by
condensation with N-thionylaniline under heating, and sele-
nium analogues (6) were prepared by reaction with SeO2

under reflux in EtOH. Finally, carbon derivatives (3 and 7)
were synthesized by Cu-catalyzed coupling using linear and
cyclic ketones, respectively.

We examined the optical properties of SCOTfluors and
compared them to the original NBD (Figure 1 and Figure S1).
With the exception of triazoles (4), all compounds showed
longer emission wavelengths than NBD, long Stokes shifts
(around 80–100 nm), solvatochromic properties (Figure S2),
and good photostability (Figure S3). Among SCOTfluors, Se-
and C-bridged derivatives display red and NIR emission,
respectively, likely owing to reduced HOMO–LUMO gaps
that result in bathochromic shifts in fluorescence emission, as
with heteroatom-bridged rhodamine and rhodol fluorophor-
es.[6b,c,7] To the best of our knowledge, this is the first example
of C-bridged nitrobenzodiazoles as fluorophores with NIR
emission. Furthermore, C-bridged derivatives are readily
accessible through one-step coupling of aminoaniline 1 with
different ketones, representing a new platform for the direct
synthesis of small NIR fluorophores. SCOTfluors proved
compatible for experiments in live cells, showing no signifi-
cant cytotoxicity in HeLa cells (Figure S4).

Then, we examined the properties of SCOTfluors for
imaging the trafficking of essential metabolites under phys-
iological conditions. Sphingolipids are critical components of
membranes in the regulation of cellular metabolism. The
dysregulation of sphingolipid metabolism is associated with
several diseases (e.g., Gaucher and Niemann–Pick[8]) and its
intracellular localization is crucial to understand metabolic
disruption. We used the C-bridged nitrobenzodiazole core to
generate the NIR ceramide 8 (Figure 2A) and monitor its
intracellular localization over time by co-staining with
endoplasmic reticulum (ER) and lysosome markers. Spectral
analysis confirmed that the optical properties of 8 were
independent of the sphingoid base and therefore could be
applicable to several types of biolipids (Figure 2C and
Figure S5). Compound 8 showed insignificant aggregation in
water (Figure S6), and the incubation with liposomes high-
lighted its fluorogenic behavior, with around 15-fold increase

in emission (Figure 2B and Figure S7). We exploited this
property to visualize the recycling of ceramide 8 in real time
in human A549 cells using fluorescence confocal microscopy.

At short times (i.e., 15 min), the ceramide 8 was mainly
found at the Golgi apparatus around the ER, as shown by
high co-localization with ER Tracker Green (R = 91%) but
not LysoTracker Blue (R = 26%). Time-lapse imaging dem-
onstrated that the ceramide 8 translocated to the recycling
lysosomes after 3 h (Figure 2C) as highlighted by the
increased co-staining with LysoTracker Blue (R = 75%).
Notably, these observations agree with prior reports of lipid
mobilization,[9] and could not be obtained with a fluorescein
ceramide analog (Figure S8). These results confirm the
suitability of our approach to prepare neutral NIR-fluores-
cent probes to image biolipid function in cells.

We also examined whether SCOTfluors could be used to
image in vivo tissues with high metabolic activity. Fluorescent
deoxyglucose tracers can monitor glucose uptake in meta-
bolically active cells and tissues,[10] although few have been
reported for in vivo use. We synthesized compound 9 (Fig-
ure 3I) as an in vivo-compatible glucose analog by conjuga-
tion of the nitrobenzoselenadiazole 6 with 2-deoxyglucos-
amine. Notably, we performed the reaction with chloride and
fluoride derivatives of 6 and observed increased reactivity and
recovery for the latter (Figure S9). Compound 9 showed
emission around 605 nm with a remarkable Stokes shift of
115 nm (Figure S10), enabling multiplexed imaging with blue
and green fluorescent proteins (i.e., BFP and GFP, Fig-
ure 3A–F). We examined the transport of 9 in HeLa cells

Figure 2. A) NIR-fluorescent ceramide 8. B) Emission of 8 in PBS
(black) and in phosphatidylcholine/cholesterol (7:1) liposomes (red).
C) Confocal microscopy images of A549 cells treated with 8 (50 mm,
red), LysoTracker Blue (magenta) and ER Tracker Green (green) after
15 min (co-localization = white arrows) and 3 h (co-localization= yel-
low arrows). Total co-localization coefficients (R) were determined
using ImageJ. Scale bar = 15 mm.
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transfected with EGFP-tagged GLUT4, the main glucose
transporter in mammalian cells. Fluorescence microscopy
showed the uptake of 9 in GLUT4-EGFP cells and co-
localization with the transporters (Figure 3A–C). Notably,
the uptake of 9 was blocked by competition with excess
glucose (Figure 3D–F) and was increased by pre-treating
HeLa cells with insulin[11] (Figure 3H and Figure S11). These
results confirm that compound 9 is a functional substrate of
GLUT4 and that enables dual tracking of glucose uptake and
its transporters under physiological conditions. Finally, we
tested compound 9 in vivo in zebrafish embryos to visualize
regions of high glucose uptake. In vivo administration and
imaging of compound 9 in wildtype zebrafish embryos
indicated bright red fluorescence staining in regions of the
developing brain (e.g., midbrain and hindbrain; Figure 3J),
which express GLUT2 transporters to supply glucose from
circulation.[12] We confirmed that the staining was dependent
on the active transport of 9 through GLUT2 by examining
glut2 morpholino-injected zebrafish, which have reduced
levels of GLUT2. In vivo images of 9-treated glut2 morpho-
lino-injected zebrafish showed much weaker fluorescence in
the same regions (Figure 3J). We also tested compound 6-
NEt2 as a control and observed no tissue-specific staining in
wildtype or in glut2 morpholino-injected zebrafish (Fig-
ure 3J), highlighting the role of deoxyglucose to recognize
GLUT2 transporters. Altogether, compound 9 can be used to
image glucose uptake in vivo and to perform non-invasive
studies of glucose transport in whole organisms.

Next, we used SCOTfluors to prepare the first red-
fluorescent analogue of lactic acid, an essential metabolite in
muscle, blood, and cancer cells. Lactic acid is known as
a carbon source in cancer cells and its uptake in tumours has
been recently linked to aggressive oncological behaviour,[13]

yet little is known about its traffic and diffusion inside cancer
cells. We conjugated the nitrobenzoselenadiazole 6 with l-

isoserine to produce compound 10 (Figure 4A, lem� 605 nm)
as a probe to study the transport of lactic acid in live cells.
First, we confirmed increased uptake in hypoxic (1 % O2)
versus normoxic (20 % O2) cells, since lactic acid can
accumulate in environments with low concentrations of
oxygen (Figure 4B).[14]

Figure 3. Fluorescence images of GLUT4-EGFP HeLa cells treated with 9. A–F) Green (GLUT4-EGFP), red (9, 100 mm) and merged (Hoechst
33342) images of HeLa cells without additional glucose (A–C) and in media containing 5 mm d-glucose (D–F). White arrows identify co-
localization of GLUT4-EGFP and 9. Scale bar =10 mm. G) Fluorescence emission spectra of BFP (blue), GFP (green), and 9 (red). H) Insulin-
dependent (100 nm, 1 h) uptake of 9 (red, 100 mm) in GLUT4-EGFP HeLa cells. I) Chemical structures of compounds 6-NEt2 and 9. J) In vivo
images of the head in zebrafish embryos (28 h post fertilization, hpf) after injection of 6-NEt2 or 9 (both 50 pmol) to the yolk sac (blue
arrowheads). Fluorescence images were taken of wildtype zebrafish or zebrafish that had been injected at one cell stage with 4.2 ng anti-sense
glut2 morpholino. Yellow arrows point at midbrain and hindbrain regions within the zebrafish embryo heads. Scale bar = 100 mm.

Figure 4. A) Structure of 10. B) Fluorescence emission of live cells
after incubation with 10 (100 mm) at different oxygen tensions (nor-
moxia= blue; hypoxia = red) and in normoxic cells after competition
with lactic acid (no lactate = red; 5 mm lactate= blue). Values as
means and s.e.m. as error bars. C) TIRF tracking of fluorescent
particles in untreated (top) and DMOG-treated (10 mm, bottom) HeLa
cells after incubation with compound 10 (100 mm) (Movies 1–2). Scale
bars = 1 mm. D) Histograms of the diffusion coefficients of fluorescent
particles in normoxic (blue) and hypoxic (red) cells. Dotted lines
delineate fast and slow diffusion species. Mean diffusion coefficients
(D) were determined after averaging the tracks of multiple particles for
each condition (n = 1009 for untreated; n = 2906 for DMOG-treated).
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We performed flow cytometry analysis to observe that
hypoxic cells were significantly brighter than normoxic cells
after incubation with the same concentration of compound 10.
We also performed competition assays between 10 and excess
of lactic acid in normoxic cells, which markedly reduced the
fluorescence staining, suggesting a common transporter for
compound 10 and lactic acid in live cells (Figure 4B).
Encouraged by these results, we used total internal reflection
fluorescence (TIRF) microscopy to image the real-time
diffusion of lactic acid in normoxic and hypoxic cancer cells
with super-resolution. For these studies, we used HeLa cells
that had been treated or not with dimethyloxalylglycine
(DMOG), a permeable prolyl 4-hydroxylase inhibitor that
upregulates hypoxia-inducible factors.

We tracked the paths of over 1000 individual particles in
both untreated (i.e., normoxic) and DMOG-treated (i.e.,
hypoxic) cells after incubation with compound 10 and
measured their respective intracellular diffusion coefficients
(Figures 4 D-E and Figure S12, Movies 1–4). Remarkably,
particles in hypoxic cells showed higher mean diffusion
coefficients than in normoxic cells, as well as a reduction of
the slow diffusion species. Altogether, these results suggest
that hypoxic tumors might display faster recycling rates for
intracellular lactic acid than normoxic tumors and demon-
strate the utility of compound 10 as a new probe for imaging
lactic acid metabolism in live cells with high spatiotemporal
resolution.

Finally, given the multi-color capabilities and high stabil-
ity of SCOTfluors under physiological and oxidative environ-
ments (Figure S13), we employed them to analyze the
metabolic profiles of human cells from different origin. The
groups of Chang and Rotello previously reported the
discrimination of cancer cells using fluorescent dyes[15] or
host–guest arrays.[16] In this study, we incubated human cancer
cell lines with compounds 8, 10, and 11 (Figure 5) as
respective analogues of ceramide, lactic acid, and glucose in

order to obtain metabolic uptake signatures. First, we plated
the cells at similar densities and incubated them with the
probes under the same conditions. Next, we measured their
fluorescence emission in the NIR, red, and green regions to
determine their intracellular levels of ceramide, lactic acid,
and glucose, respectively. Notably, different cancer cells
presented variability in their metabolic uptake, as represented
by their intracellular glucose/lactate and ceramide/lactate
ratios (Figure 5). Whereas the biological implications of these
results remain to be defined, these results demonstrate that
SCOTfluors can generate multiplexed metabolic readouts
from live cells, which is not possible in other imaging
modalities.

In conclusion, we developed SCOTfluors as small-sized
fluorophores covering the entire visible spectrum. SCOT-
fluors are readily obtained by bridging aminoanilines with
different groups and include the smallest NIR-emitting
fluorophores to date. We validated SCOTfluors for real-
time and in situ imaging of different small metabolites (e.g.,
lipids and sugars) in live cells and in vivo, as well as their
combination to generate multi-color fingerprints in cells. The
tunability and versatility of SCOTfluors will enable non-
invasive bioimaging studies of essential metabolites that
cannot be performed with conventional fluorophores.
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SCOTfluors: Small, Conjugatable,
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Small fluorophores: A family of small
multi-color benzodiazole fluorophores for
non-invasive imaging of essential
metabolites in live cells and in vivo is
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