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Abstract— Non–negative signals form an important class of
sparse signals. Many algorithms have already been proposed
to recover such non-negative representations, where greedy
and convex relaxed algorithms are among the most popular
methods. One fast implementation is the FNNOMP algorithm
that updates the non–negative coefficients in an iterative
manner. Even though FNNOMP is a good approach when
working on libraries of small size, the operational time of the
algorithm grows significantly when the size of the library is
large. This is mainly due to the selection step of the algorithm
that relies on matrix vector multiplications. We here introduce
the Embedded Nearest Neighbor (E–NN) algorithm which
accelerates the search over large datasets while it is guaranteed
to find the most correlated atoms. We then replace the selection
step of FNNOMP by E–NN. Furthermore we introduce the
Update Nearest Neighbor (U–NN) at the look up table of
FNNOMP in order to assure the non–negativity criteria of
FNNOMP. The results indicate that the proposed methodology
can accelerate FNNOMP with a factor 4 on a real dataset
of Raman Spectra and with a factor of 22 on a synthetic dataset.

Index Terms: Matching Pursuit, Orthogonal Matching Pursuit,
Non-negative Sparse Approximations, Non-negative Least
Square and Spectral Decomposition, Scalable algorithms,
Dimensionality Reduction, Linear Embedding, Raman
Spectroscopy

I. INTRODUCTION

Let the signal of interest be y ∈ RM and a dictionary of

elements Φ ∈ RM×N be given. The linear sparse approxi-

mation can be formulated as finding the sparsest x ∈ RN ,

M < N , i.e having the minimum number of non–zero

elements, as follows:

y ≈ Φx (1)

The greedy sparse approximation algorithms are in gen-

eral characterized by a low computational cost, suitable

for real–time and large scale sparse approximations. The

Orthogonal Matching Pursuit (OMP) [1],[2] algorithm is

introduced, to find the best representation using selected

atoms and approximate the sparse solution of the following

problem:

x̃ := argminxs
||y − Φsxs||2 (2)

There are many applications for which the coefficient

vectors are not only sparse, but they are also non–negative.

Spectral and multi–spectral unmixing, [3],[4], microarray

analysis [5] and Raman spectral deconvolution [6] are a few

examples.

The original implementation of OMP has been modified in

order to adopt the algorithm to the non–negativity setting for

coefficients. Essentially the original minimization problem

introduced in (2) is reformulated by adding a constraint that

guarantees the non–negativity of the coefficients and takes

the following form:

x̃ := argminxs≥0||y − Φsxs||2

||xs||0 ≤ j
(3)

The authors in [7] introduced the Fast Non–Negative

Orthogonal Matching Pursuit algorithm which is a greedy

technique based on OMP suitable for real–time applications.

Even though the implementation of this strategy may be

straightforward when considering a dictionary with a rel-

atively small number of atoms, this is not the case when

working with a library that contains a significant number of

atoms (i.e thousands). This is mainly due to the selection step

of the algorithm which has a computational complexity of

O(MN). Consequently the executional time of the algorithm

will scale linearly along with the number of atoms in Φ.

Essentially the selection of the best possible candidate

within a normalized dictionary can be represented as the

Nearest Neighbor Search (NNS): Given a set of points

P = {p1, p2, · · · , pn} in a metric space X with distance

function d, NNS is to efficiently answer queries for finding

the closest point in P to q ∈ X . There exist several data

structures proposed to fulfill such task such as the kd–tree

[8] or the cover tree [9]. Due to the curse of dimensionality,

it is unlikely that there exist a general efficient solution to

the exact k–NN problem [10]. Approximate algorithms have

been proposed to overcome these impracticalities such as the

locality–sensitivity hashing [11]. Although these algorithms

do not guarantee the acquisition of the exact nearest neighbor

they are fast and scalable.

Within this paper we introduce an Embedded Nearest

Neighbor (E–NN) in order to reduce the computational

cost of the selection step in the algorithm. Considering

the dictionary Φ, this means that we shrink the size of

M via dimensionality reduction. Given that the data are

typically characterized by an intrinsic dimensionality, we

are addressing E–NN as a practical framework that exploits

the benefits of conducting the brute force search on the

K–dimensional subspace compared to the M–dimensional

original domain. Since it is expected that a mismatch in

between the closest point from one domain to the other



will occur, we introduce an update step on the algorithm to

compensate the error and eventually acquire the exact NN. In

that sense, we are considering E–NN as a bridge between the

approximate to the exact solution for the brute force search.

II. LINEAR EMBEDDINGS

In this section we introduce the guidelines for reducing

the size of problem via a Linear Embedding. The standard

notion regarding dimensionality reduction is that by having

an input signal y ∈ RM , the dimension of the signal is

reduced via a linear operator Q : RM → RK , with K <

M , that embeds the input signal into the lower dimensional

space. The projection of the signal ŷ in RK is then computed

as follows: ŷ = Qy.

Linear embedding is a standard approach in many appli-

cations where we seek for a low–dimensional representation

of data living on a high–dimensional space. There exist

different methods to perform the embedding, i.e principal

component analysis (PCA) [12], random projections [13]

etc. A common characteristic of these embeddings is that

the relevant position between library elements is changed

when the points are embedded from RM to RK . In that

sense, given a pair of elements φi, φc ∈ RM and their

representations φ̂i, φ̂c ∈ R
K , we usually have: d(φi, φc) 6=

d(φ̂i, φ̂c). For an algorithm that searches for the Nearest

Neighbor (NN) of y in Φ, this may lead to a situation

in which NNM 6= NNK where NN is the abbreviation

for the Nearest Neighbor and M,K corresponds to the

dimensions for each domain. At this section we introduce the

Embedded Nearest Neighbor (E–NN) algorithm that under a

specific condition the search in the lower dimensional space

eventually yields the nearest neighbor in the original domain.

In that sense we are seeking an embedding that yields a

minimum distortion from RM → RK . This aspect of the

problem can be addressed in terms of a reformulation of the

Constructive Johnson–Lindenstrauss [14] introduced in (4)

where d(b, t) = ||b − t||2, where b, t ∈ A ⊂ RM . Let Q

distorts the distance for at most ǫb,t. We then have:

(1− ǫbt)d(b, t) ≤ d(b̂, t̂) ≤ (1 + ǫbt)d(b, t)

d(z, t)− ǫbtd(b, t) ≤ d(b̂, t̂) ≤ d(b, t) + ǫbtd(b, t)

d(b, t)− δ ≤ d(b̂, t̂) ≤ d(b, t) + δ

(4)

where,

δ = max
b,t∈A⊂RM

ǫbtd(b, t), (5)

Lemma 1.∀b, t ∈ A with a δ coming from (5) and ∀y 6∈ A
with max ǫytd(y, t) ≤ δ, the E–NN introduced in Algorithm

1 guarantees the acquisition of the exact NN.

Proof: Considering three points y, b, t where d(y, b) ≤
d(y, t). Then there exist 4 characteristic cases for pairwise

distances.

• Both distances shrink: d(ŷ, b̂) ≤ d(y, b), d(ŷ, t̂) ≤
d(y, t). Then by incorporating (4) :

d(ŷ, b̂) ≤ d(y, b) ≤ d(y, t) + δ.

• Both distances stretch. Then from (4) we have:

d(ŷ, b̂)− δ ≤ d(y, b) ≤ d(y, t)
⇒ d(ŷ, b̂) ≤ d(y, t) + δ

• d(ŷ, b̂) stretches: d(y, b) ≤ d(ŷ, b̂), d(ŷ, t̂) shrinks:

d(y, t) ≤ d(ŷ, t̂) + δ. Then it follows:

d(ŷ, b̂) ≤ d(y, b) + δ ≤ d(y, t) + δ.

• d(ŷ, b̂) shrinks: d(ŷ, b̂) ≤ d(y, b), d(ŷ, t̂) stretches:

d(y, t) ≤ d(ŷ, t̂). Then:

d(ŷ, b̂) ≤ d(y, b) ≤ d(y, t). �

The analysis provided by proof of the Lemma simply states

that in cases where NNM 6= NNK , assuming that b =
NNM and t = NNK , then d(ŷ, N̂NM ) ≤ d(y,NNK)+ δ.

The complexity of the E–NN introduced in Algorithm 1

varies over steps 2–4 of the algorithm. At step 2 the input

signal y ∈ RM is embedded in RK via the linear operator

Q ∈ RK×M . Hence the complexity of step 2 is O(KM).
At step 3 we conduct a number of N distance computations

over M–dimensional vectors. The computational cost of the

corresponding operations is O(KN). Finally, at the last of

the the algorithm we perform a number of |S| distance

computations on the original space RM . The computational

cost of the step is O(|S|M).
As it can be derived from the analysis there are two critical

parameters to benefit from the brute force search in the

lower dimensional space. The intrinsic dimensionality of the

dataset expressed by K and the cardinality of S on the update

step which depends on δ.

Essentially we are seeking for an embedding Q:

δ = min
Q

max
i,c

ǫicd(φi, φc), ∀i, c ∈ Φ. (6)

The most common approach to construct a dimension

reduction is principal component analysis (PCA). A key

advantage of PCA is that it is computationally efficient. The

embedding to the K–dimensional space is simply performed

by taking the K dominant eigenvectors of the data covariance

matrix. The main drawback of PCA though is that it distorts

pairwise distances arbitrarily. In that sense the distance

distortion may be significantly larger from the one pair of

points to the other.

An alternative to PCA is the approach of random pro-

jections. According to the Johnson–Lindenstrauss lemma ,

given any point cloud Ω in RM , there exists an embedding

Q of dimension K = O(log|Ω|) with minimal distortion

of the
(

|Ω|
2

)

pairwise distances between the |Ω| points. This

linear embedding is easy to implement in practice. We

simply construct a matrix Q ∈ RK×M with elements drawn

randomly from a certain probability distribution. The authors

in [15], introduced a deterministic framework, called NuMax,

Algorithm 1 Embedded NN (E–NN)

1: Input: Φ, Φ̂, Q, y.

2: ŷ = Qy.

3: Form set S=
{

i : d(φ̂i, ŷ) ≤ d(y,NNK) + δ
}

, ∀φ̂i ∈ Φ̂.

4: return arg mini∈S d(y,Φi) .



Fig. 1: The figure demonstrates the empirical cumulative

distribution function (CDF) of δ over Φ. The distortion on Φ
introduced by random embeddings into Swiss Roll is much

larger than Numax and PCA hence it is not demonstrated.

that constructs linear, near–isometric embeddings for data

that live in a high–dimensional space. Given a set of training

points Φ ∈ RM , the authors consider a secant set S(Φ)

consisting of all pairwise difference vectors of Φ that lie on

the unit sphere. The problem is formulated as an affine rank

minimization problem to construct Q such that the norms of

all vectors in S(Φ) are preserved up to a distortion parameter.

We aim to solve the problem introduced in Equation (6)

empirically for library Raman spectra with M = 1507 and

N = 4041 [16] and a library of Swiss Roll data [17] which

is a synthetic machine Learning dataset of points that lie on

a 2–D manifold but embedded in R1507. We found that the

minimization problem introduced by the NuMax algorithm

yields a matrix Q ∈ RK,M with K = 172 for Raman while

for the Swiss Roll case K = 3. Then we construct Q for

PCA and random projections by setting K = 172 and K =
3 accordingly such that we can investigate which method

serves the purpose for RK .

The performance for each method is evaluated with respect

to the error distortion function δ(φi, φc) as follows:

δ(φi, φc) = |d(φi, φc)− d(φ̂i, φ̂c)|. (7)

The obtained results are demonstrated in figure 1.

A. The case of mixture y

Within our framework we set δ with respect to the

knowledge derived from elements that belong to an available

library Φ. The case of mixtures y is slightly different. In

particular, each y with sparsity (number of contributing

atoms) up to j is formulated as a linear combination of

φi ∈ Φ as follows: y =
∑j

w=1 awφw.

This essentially means that there is not any particular

knowledge regarding δ(φi, y). Hence, an obvious question

is whether y is consistent with the choice of δ. Given that

according to the results introduced in figure 1 the Q obtained

by the NuMax algorithm yields the best results we perform

a simulation study for y over a sparsity level up to 5 which

is the maximum sparsity of the signals for the applications

0 1 2 3 4 5

j

0

0.05

0.1
mean

max

min

learn

Fig. 2: The figure demonstrates the range of distortion over

sparsity.δmean(j) =
1

|Y||Φ| (
∑

ym∈Y

∑

φi∈Φ δ(φi, ym)),

δmax(j) = max δ(φi, ym), δmin(j) = min δ(φi, ym)

we focus on. The distortion is then evaluated according to

the error distortion function introduced in (7) with y taking

the place of φi and ŷ the place of φ̂i accordingly. For each

j we generate a set of mixtures Y = {ym}
L
m=1 via 10000

(denoted as L) Monte Carlo simulations. The obtained results

are demonstrated in figure 2. Note that aw ∼ U [0, 1] and

||y||2 = ||ŷ||2 = 1.

The results indicate that δ flunctuates around δlearn. We

empirically observe that the maximum pairwise distortion

∀φi ∈ Φ (denoted as δlearn) exceeded only 0.003% over L.

Even in these cases, the algorithm acquires the exact NN.

This is happening due to the fact that the pairwise distortion

is on average much lower than δmax and a lower δ hence

serves the purpose.

III. SEARCH FNNOMP

In this section we introduce an update on the structure

of FNNOMP, as introduced in Algorithm 2, with respect to

the algorithm introduced in Algorithm 1. The first change in

the structure takes place in the selection step of FNNOMP

[6, pp2] where we place E–NN. A common phenomenon in

sparse non–negative decomposition is that a selected atom

may be rejected by the non–negativity criteria introduced

in Table I and with respect to equation (8). Consequently,

we need to modify the content in Table I compared to the

original FNNOMP version. A key aspect of the changes

is the insertion of the U–NN algorithm, as introduced in

Algorithm 3, such that E–NN adopts on the non–negativity

setting. All the changes in the overall structure of FNNOMP

are highlighted with red.

In practice Update NN can be addressed as a next NN

Algorithm. In that sense anytime that the NN acquired by

E–NN and indexed by µ is rejected by the criteria introduced

if then

0 < z ≤ zt, z > zc zj+1 ← z, Terminate

0 < z ≤ zt, z ≤ zc zj+1 ← zc, p← pc, Terminate

z > zc ≥ zt p = p+ 1, µ ←U–NN

z ≥ zc > zt zj+1 ← zc, p← pc, Terminate

z > zt > zc zc ← zt, pc ← p, µ ←U–NN

z < 0 Terminate

TABLE I



zj+1 ≤ z
t =

{

min
γi<0

|xi|
|γi|

∃i, γi ≤ 0

∞, otherwise
(8)

Algorithm 2 E–NN on FNNOMP

1: Initialization: s = z0 = ∅, j = 0, r0 = y.

2: while j < K& max(ΦT rk > 0).

i µ← Embedded–NN.

ii p← 1.

iii pc ← µ.

iv zc = 0
v while ∼ Terminate & p < N

vi zt from (8).

vii z← ψT
µ rk: ψµ = q

||q||2
, q = (I −ΨΨT )φµ

viii Update based on Table I

ix end while

x s = s ∪ µ.

xi Update Ψ and R−1

xii zj+1 ← [zj , zj+1]
xiii rj+1 =← rj − zj+1ψj+1

xiv j ← j + 1

3: end while .

4: output: x|s ← R−1zj

Algorithm 3 Update NN

1: Input: Φ, Φ̂, y, µ, S.

2: S = S − µ.

3: Form set S′ =
{

i : d(φ̂i, ŷ) ≤ min d(y,NNK) + δ
}

.

4: Form set S′′ = S′ − S.

5: return arg minφi∈S∪S′′ d(y, S) ∪ d(y, S′′) .

in Table II, the task of U–NN is the acquisition of the next

closest point to y. To do as such we need to reject µ from

S. This is done in step 2 of the algorithm.

The implementation of E–NN provides U–NN with the

full set of distance measurements in RK and a number of

distance measurements equal to |S| − 1 in RK since µ is

rejected in Step 2. Hence no additional distance computation

is conducted in Step 3 of U–NN but a simple logical compar-

ison that yields a new set of indexes. Given though that for

some of these indexes the distance in RM is already available

from E–NN we introduce Step 4 in order to avoid the

recomputation. We then compute the distances for φi ∈ S
′′

and then we perform a comparison with the measurements

of φi ∈ S in order to find the next NN in RM .

IV. RESULTS

In this section we evaluate the performance of the pro-

posed algorithm with respect to FNNOMP. Based on the

results introduced in figure 1 we select the Q obtained by the

NuMax algorithm as the linear operator that projects offline

the dictionary Φ and online the mixture y in RK while for

the Swiss Roll we select the Q obtained by PCA. We set

δ = 0.09 for the Raman library and δ = 0 for the Swiss
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Fig. 3: Top of the figure: Elapsed time for each of the

algorithms. Bottom: Acceleration over sparsity. Where Ac-

celeration(j) = Time FNNOMP(j)
Time E-NN FNNOMP(j) .

Roll. We then generate signal mixtures of varying sparsity j

from the elements in Φ.

The obtained results demonstrated in figure 3 show that

E–NN FNNOMP is generally faster than FNNOMP. The

overall performance of the algorithm though decays over

sparsity for the Raman spectra. Given that the computational

cost at steps 1 and 2 of E–NN, the only parameter related to

the complexity that may vary over j is |S|. In order to obtain

a better understanding regarding that issue we demonstrate

the average number of points per iteration of the algorithm

in figure 4. As can be seen from the results, the task of signal

decomposition in the lower dimensional space becomes more

difficult while sparsity increases. This is obviously not the

case for the search in Swiss Roll. Essentially the acceleration

factor remains constant. This happens because δ = 0 hence
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Fig. 4: Average points in Step 4 of E–NN over sparsity.



the update step of E–NN is unnecessary. This means that in

practice we compare the implementation of FNNOMP into

different domains. This phenomenon may occur when all of

the points that lie in RM in reality they lie in the same

subspace RK . As it can be seen from the Raman library

though this is not something to be expected in a realistic

setting.

V. CONCLUSIONS

We here presented E–NN which is a novel algorithm

aiming to accelerate the NN sparse decomposition using

a big library. The obtained results indicate that the E–NN

FNNOMP outperforms FNNOMP. The current approach of

E–NN leverages the underlying sparsity of Φ via a linear

embedding of Φ on RK . However many datasets contain

essential nonlinear structures that are invisible to linear

techniques [18]. For example, the Swiss Roll dataset consists

of 3D points that form a 2D manifold. PCA and NuMax

reveal the underlying linear subspace that our artificial

dataset lives, but they cannot benefit from the underlying

geometrical structure of this space. Exploring the nonlinear

dimensionality reduction for acceleration of nonnegative

sparse approximations has been left for the future work.
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