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Abstract

We present a method to calculate total x-ray scat-
tering cross sections directly from ab-initio elec-
tronic wavefunctions in atoms and molecules. The
approach can be used in conjunction with multi-
configurational wavefunctions and exploits analyt-
ical integrals of Gaussian-type functions over the
scattering operator, which leads to accurate and ef-
ficient calculations. The results are validated by
comparison to experimental results and previous
theory for the molecules H, and CO,. Importantly,
we find that the inelastic component of the total
scattering varies strongly with molecular geome-
try. The method is appropriate for use in con-
junction with quantum molecular dynamics simu-
lations for the analysis of new ultrafast x-ray scat-
tering experiments, and to interpret accurate gas-
phase scattering experiments.

1 Introduction

New X-ray Free-Electron Lasers (XFELSs) gener-
ate large numbers of photons and short duration
pulses'~7 that enable time-resolved x-ray scatter-
ing,3'* and thus ultrafast imaging of photochem-
ical dynamics.'> An attractive feature of such ex-
periments is that they provide direct access to the
evolution of molecular geometry via the elastic
component of the scattering. ' However, in virtu-

ally all instances, the experiments actually mea-
sure the fotal scattering, and it is therefore imper-
ative to develop methods to calculate this quantity
efficiently and accurately.

Calculations of total scattering have played an
important role historically,'”??> due to influen-
tial experimental measurements of static x-ray and
electron scattering from gas-phase samples, 326
and because the total scattering is strongly in-
fluenced by electron correlation which provided
fundamental theoretical interest. The prospect of
new ultrafast x-ray scattering experiments and the
equally rapid developments in ultrafast electron
diffraction?’~2° bring new interest to this topic. In
the context of ultrafast processes, distorted geome-
tries and quantum dynamics are important, making
both the efficiency and the accuracy of the calcula-
tions critical for the interpretation of new state-of-
the-art experiments.

In the following, we outline a method for the
calculation of total scattering from ab-initio elec-
tronic wavefunctions, based on our previously de-
veloped code for the prediction of elastic3%32 and
inelastic® scattering®. The elastic scattering cal-
culations in particular can be seen as a contin-
uation of pioneering work by Techert and col-

“Interestingly, the coherence and short pulse duration of
XFELs can lead to interference effects involving inelastic
scattering matrix elements when scattering from coherent
wavepackets is considered. 3438



leagues.>**! An important objective is to match
the level of accuracy required for quantum molec-
ular dynamics simulations of photochemical re-
actions,®’ which generally implies a high-level
multiconfigurational description of the electronic
structure (e.g. CASSCF, CASPT2, or MRCI).
Such multi-reference methods will also yield bet-
ter predictions of the total x-ray scattering due to
an improved description of the electron correla-
tion. In the following, we will outline the theory,
present our computational approach, demonstrate
that we can calculate total scattering accurately,
and show that contrary to common assumptions
the inelastic component of the scattering varies
strongly with molecular geometry.

2 Theory

2.1 X-ray Scattering

The double differential cross section for x-ray scat-
tering in the first Born approximation is,*?

d*oc B

dQdE,

E; * ’
r%(E—O)|eo-e1|S(q,E), (1)

where ry = €% /mec? is known as the classical elec-
tron radius (e signifies the charge and m. the mass
of an electron, and c the speed of light), E1 and
E( are the energies of the scattered and incident
x-ray photons, |eg-e;| is the polarization factor,
and S(q,E") is the dynamic structure factor with
E’ = Ey— E1. The scattering (or momentum trans-
fer) vector, q = ko — K, is defined as the difference
between the incident and the scattered wave vec-
tors, with ko = ky + (E’ /hic).

The dynamic structure factor describes the ma-
terial response and is given by,

S@E) =Y (ol LI¥o)|" 8(Es—Ea~E'). (2)
B

where [¥g) and |¥,,) are the final and initial states,
and L is the scattering operator,

N

L= Z ', 3)

J=1

with the sum running over all N electrons in the

molecule and r; the coordinates of the electrons.
The matrix elements (¥g] L |'¥,) in Eq. (2) origi-
nate from the A - A terms in the interaction Hamil-
tonian taken in first order of perturbation theory,
with A the vector potential of the electromagnetic
field.*?

Waller and Hartree proposed an approximation,
valid in the high photon energy limit (i.e. hard x-
rays), whereby the ratio E1/Ey in Eq. (1) is taken
to be unity.*> Under this assumption, integration
of Eq. (1) over all scattered energies E| is straight-
forward and yields the differential cross section for
total scattering as,

do .
— =13 leg- €} S(q), (4)

dQ
where the dynamic structure factor for total scat-
tering, S(q), is now independent of the energy E’
and is given by,

S(@= Y [(¥sl L 1¥a)|" = (Pal L'LI¥a).  (5)
B

where the second equality exploits the closure re-
lation for electronic states 1 = 25¥p)(Ypl. This
is a powerful result, since it allows the total scat-
tering from a particular electronic state to be cal-
culated without reference to any other electronic
states.

The expression for S (q) in Eq. (5) can be rewrit-
ten as a Fourier transform of the reduced two-
electron density matrix I'(ry,r;), which yields,

S(q) = f f [(ry,r) 917 dridry + N, (6)

where N is the number of electrons in the molecule
as before. The appearance of the two-electron den-
sity in Eq. (6) hints at the importance of elec-
tron correlation for total scattering.!”?® In con-
trast, the elastic component is proportional to the
(Wo| L |¥,) (i.e. B = @) term in the sum in Eq. (5),
which corresponds to the Fourier transform of the
electron density given by the single-electron oper-

ator p(r) = Z?’zl o(r—r;j),
F(q) = (Yol L ¥,) = f pM(x) & dr,  (7)

where F'(q) is known as the form factor and p(N )(r)



is the electron density. It is common to define the
total inelastic scattering, Sine1(q), as the difference
between the total scattering and the elastic scatter-
ing, i.e.

Sinel(@) = S (@)~ [F (@I ®)

The limits for the elastic and inelastic components
with respect to the amplitude of the momentum
transfer vector, g =|q|, are F(0) = Sjpe1(c0) = N and
F(00) = Sinei(0) = 0.

The orientation of the molecules is isotropic for
thermal liquids and gases, in which case the di-
rectional dependence of q is lost and the signal
must be rotationally averaged. The rotational av-
eraging (:--)q can be done separately for the elas-
tic and total scattering, |F (q)l2 =(|F (q)|2)Q and
S(g) =(S(q))q. In principle, more accurate results
are obtained using a coherent integration over the
rotational wavefunctions of the molecules?!?2-32
but this is only mandated in very specific situations
involving e.g. a polarized or state-selected gas.>?
Recently, Parrish and Martinez have also proposed
an efficient grid-based method for rotational aver-
aging of ab-initio elastic scattering. **

All the results discussed above are directly trans-
ferable to the scattering of high energy elec-
trons 2323263345 if the Thomson differential cross
section is replaced by the corresponding Ruther-
ford cross section and additional elastic scattering
terms due to electron scattering from the nuclei are
included, leading to nuclear-nuclear and nuclear-
electronic interference terms.”® The inelastic con-
tributions are identical for scattering of x-rays and
high energy electrons. 233

2.2 Total x-ray scattering matrix ele-
ments

To fully account for static electron correlation in
atoms and molecules, a multiconfigurational ex-
pansion of the wavefunction is required. Such a
wavefunction is constructed by distributing the va-
lence electrons over different configurations. Each
configuration, represented by Slater determinants
or configurations state functions, contributes to the
total wavefunction |V, ),

Nconf
Po) = Z Ca,i
i=1

LSS ©)

where the ¢, ; are the configuration interaction co-
efficients for the electronic state @, N.onr iS the
number of configurations included in the expan-
sion, and |@¢7) are the Slater determinants. Slater
determinants result from,

N!
g = (N)2 Y (-DPp,dly,  (10)
n=1

with %, the pair-wise permutation opera-
tor acting on the Hartree product (qu =
X (rr,w1).. x\(ry,wy) where r; are the spatial
electron coordinates and w; the spin coordinates.
The spin orbitals y'(r j»w;j) are the products of the
spin functions, | T) or | |), and the orthonormal
spatial molecular orbitals, ¢3.(r ), used to con-

struct each Slater determinant”. The number of
Slater determinants used to construct the wave
function will determine the accuracy of the wave
function. Further corrections are often required
in order to fully consider electron correlation, for
instance using a coupled cluster (CC) approach.

According to Egs. (5-6), the total scattering is
given by applying the two-particle scattering op-
erator to the wavefunction, which yields a Fourier
transform of the two-electron reduced density ma-
trix. The multiconfigurational two-electron re-
duced density matrix for a specific electronic state
reads, 40

Nconf Norb
FELr)= Y 2, > Vi TS, (r2)6)(r2),
i=1 kimn

(11)
where c¢,; and Nopr are defined in Eq. (9), ¥ kimn
are the two-electron reduced density matrix el-
ements, and Ny, is the number of spin-orbitals
¢;.(r) forming the ith Slater determinant, |CD‘SXB).
The yxmn coefficients are obtained via antisym-
metrization® of the spin-orbital combinations. One

bNote that for convenience we allow the index j on the
spin orbitals ) ; mirror the electron index j on the electrons,
but that the subset of spin orbitals {y;} is different for each
Slater determinant. For a total set of 2K spin orbitals, one

N

“To calculate the two-particle density matrix defined in
Eq. (11) using GTOs one should antisymmetrize the com-
bined wavefunction. The position of the electrons in the or-
bitals determines the sign of the product allowing the differ-

2K 1\ .. .
can generate ( ) different determinants.



can see that the relation between one- and two-
particle density matrices is different than in the
Hartree-Fock case. %748

Inserting Eq. (11) into Eq. (6), the expression for
the dynamic structure factor becomes,

conf orb
S(@= Y2 > Viimn
i=1 klmn

f ¢L ()i, (1)l (r2) €127 dr drs,
(12)

where the orbital combinations are restricted to
the non-vanishing two electron density matrix ele-
ments.*” In the next section we shall consider the
numerical evaluation of the matrix elements re-
quired to calculate S (q) as in the equation above.

2.3 Evaluation of matrix elements

Evaluation of the combined Fourier transform on
the right-hand side of Eq. (12) involves the expan-
sion of the molecular orbitals {qﬁ;(r)} in a Gaussian
basis G(r),

Np .
¢ir) = > MIGy(p), (13)
k=1

where /\/(]]< are the molecular orbital (MO) coeffi-
cients, Ng is the number of basis functions in the
molecular orbital and G (r) are the contracted ba-
sis functions. The G(r) functions are expressed
in terms of Gaussian type orbitals (GTOs), g,(r),
which approximates a Slater basis for the MO,

Gi(r) = Zus gi(), (14)

with 1, the number of contracted GTOs in Gg(r)
and p the contraction coefficient for each GTO.
The GTOs can be expressed in for instance spher-
ical or Cartesian form,*’ and in the following we
make use of Cartesian GTOs in the standard form,

2
4(0) = Na(x=x) " (y=ya)» (g —za) e e 7407107,

(15)

ent antisymmetric products to be grouped, reducing the time
required for the calculation of Eq. (12).

representing a GTO with normalization constant
Ny, total angular momentum Iy = [ + lay + lag,
exponent y4, and centered at r4 = (x4,y4,24)-

In order to evaluate Eq. (12), we substitute the
¢j.(r) orbitals by their GTO expansion,

Neonf Norb

S((]) Z az Z Y kimn

klmn

Np nopqr
D> MMM Mol iy

opqr abcd

f f go(rn)gy (r1)gd (r2)g}(ra) €97 drydry,
(16)

where we have condensed the sums for simplicity,
with the upper limit 1,4 = {15, 11,114, 1,}. All the
MO and contraction coeflicients are independent
of r; and r, and can thus be removed from the
double-integral. The product of two GTOs can be
simplified using the Gaussian product theorem,

gg(r)gb (r)=C,p e ~Yop(X1=Top)? (17)

with,

YoY
Cop =exp(— orp |ro—rp|2), (18)

YoTYp
Yop =Yot7Vps (19)
r,+ r
r, =1oo ?lp (20)
Yot 7Vp

where o and p are the sub-indices correspond-
ing to the first and second GTO respectively and
we have omitted the angular momentum compo-
nents and the normalization constants. Substitut-
ing Eq. (17) into Eq. (16) and considering the
Cartesian angular momentum components, {4 (r) =
(x— xA)lAX(y - yA)lAY (z—2z4), the dynamic struc-
ture factor is given by,

Neonf Norb Topgr
S(q) = Z i D Yidmn Z Z MEMMI M
klmn opgr=1 s=

S e CopCr f LoD EDL (02, (1)
o Yor(T1 —Top)? e—yqr(rz—rqr)2 2421 dridry,
1)



where we have combined the GTO contraction
coeflicients and normalization constants as €] =
HoN,. The integrals on the right-hand side corre-
spond to Fourier transforms of the Gaussian prod-
ucts in ry and rp. Since the GTOs can be factorized
in terms of the x, y and z Cartesian components,
we can express the r| and r, components in the
double-integral in Eq. (21) in the following prod-
uct form,

Lo(r)gp(r) o~ Yor(T—Top) _

n (1- /10)10/1 (1- /lp)l'” e_')’op(/l_/lnp)z‘
A=x,,Z
(22)

This factorization reduces the double-integral in
Eq. (21) to a product of one-dimensional Fourier
transforms as follows,

f Lo(ry).. L'4TT) dridr, =

[ 7 [(/l = Ap)lot (A= 2,7 e‘%’p“‘”w’)q (q)

A=x,y,Z
% 7:/1 [(/1 _ /lq)lq/l (1- /1,)1”1 e+’yqr(/1—/1qr)2] (q)
(23)

These Fourier transformations can be determined
analytically, as has been shown and tabulated in
previous publications. 3033

2.4 The Independent Atom Model

In the result section extensive comparisons are
made to the Independent Atom Model (IAM) orig-
inally proposed by Debye.° This model is widely
used across crystallography, not the least due to
its considerable computational convenience. The
IAM approximates the electron density as a sum of
isotropic isolated-atom electron densities centered
at the positions of the nuclei, which makes it pos-
sible to use tabulated>! atomic form factors, f; O(q),

and inelastic corrections, S}r’fel}’[l(q) to express the
total scattering as,

Nut 2

PAOE

i=1

Nat

+ Y SiMg), @4)

i=1

S1am(q) =

where the sums run over all the N, atoms in the
molecule and R; are the position vectors for the
atoms. In the more familiar rotationally averaged
form, Eq. (24) becomes,

Nat

&m@—Zﬁ@Nm

L,J

+Z%ﬁm

(25
where R;; = |R;—R| is the distance between atoms
i and j. In both expressions above, the first term
corresponds to the elastic component and the sec-
ond to the inelastic (which is identical in both ex-
pressions and which is considered to be indepen-
dent of molecular geometry). The shortcomings in
the IAM approximation for elastic scattering are
well documented, and mainly relate to an inade-
quate description of the distortion of the electron
density in molecules due to chemical bonding (see
e.g. Refs.?%32). Arguably, the shortcomings for
the inelastic component are greater, however in the
context of crystallography the dominance of the
elastic component serves to offset this.

3 Computational details

The wavefunctions used to obtain scattering cross
sections are calculated using multireference con-
figuration interaction (MRCI) with the choice of
active space and basis specified in each case, and
using canonical orbitals. MRCI accounts for much
of the static electron correlation, as well as dy-
namic correlation, and provides an attractive com-
promise between computational resources and ac-
curacy, making it possible attain reliable cross sec-
tions at affordable computational cost.

The CI configurations are expanded in config-
uration state functions (CSFs) for simplicity, ex-
pressing the spin populations as branches in a sta-
tistical sense in terms of spin quantum numbers.
Matrix elements corresponding to the total scat-
tering are pre-computed, accounting for antisym-
metrization in the application of the two-particle
density matrix operator to the wavefunctions.>?
These coeflicients, combined with the configura-
tion interaction vectors, are used to solve Egs. (21)
and (23).

The one- and two-particle density matrices are
constructed from ab-initio MRCI outputs consid-



ering both diagonal and off-diagonal terms. Fur-
thermore, in small systems, such as atoms or di-
atomic molecules, symmetry is useful to reduce
the number of calculations required. We have used
the electronic structure package MOLPRO>3 and
a modified version of our recently developed ab-
initio x-ray diffraction (AIXRD) code3%33 to cal-
culate total and elastic cross sections. Also note
that the rotational averaging (:--)q is done numer-
ically, but that analytical solutions are also possi-
ble.>* Fig. 1 illustrates the relationship between
the convergence of the rotational-averaging and
the number of points used in the numerical integra-
tion in the H, molecule. The results from Bentley
et al.” are used as the reference value, and all the
differences shown are normalized. It is noted that
at least 50 points per Euler angle are required to
obtain a reliable rotational-averaging of the scat-
tering signal.

(]
10 20 30 40 50
Number of points

Figure 1: Rotational-average convergence of the
total scattering as a function of the number of in-
tegration points in the H, molecule. The reference

value is taken from Ref.>>

When we compare results of different calcula-
tions in this article, we use the direct difference
defined as,

Aliotalelas/inel} (@) = Imethod(q) — Iref(q),  (26)

where the subscript refers to whether the cross-
sections are for total, elastic or inelastic scatter-
ing, and the reference calculation, /¢, is obtained
using the highest level of theory available (largest

active space and basis set). The corresponding per-
cent difference is defined as,

AI{total/elas/inel} (Q)

Iref (CI) ’
(27)

with the integrated absolute percent difference,

% Aljtotal felas /inel} (@) = 100

qmax

<|%Al{total/elas/inel}(Q)D =
qmin

(28)

4 Results and Discussion

4.1 Total scattering from molecules

In this section we begin by validating our method
against available experimental data and previous
computations and establish reference calculations
for the two molecules H, and CO,. We then ex-
amine convergence with respect to the level of
ab-initio theory used for the electronic structure
calculations for various methods. We use multi-
reference ab-initio methods to benchmark our cal-
culations against previous results, but we note that
the calculations could in principle also be car-
ried out using a single-reference method such as
CCSD(T).

411 H,

The H, molecule is a well-established bench-
mark system both for experiments>®° and the-
ory. 19-21,31,38.55.60-62 1 Fig 2, we show the cal-
culated rotationally averaged total, elastic and in-
elastic scattering signals for the ground state H,
molecule. Our ab-initio results are calculated at
the MRCI(2,7)/aug-cc-pVTZ level of theory, with
the bond length fixed at the geometry-optimized
value of Ryg = 0.7439 A. The calculations agree
well with previous results shown in Fig. 2, both
experimental elastic>® and inelastic’’ scattering?
and calculated total ! and elastic.3! The small dif-
ference between our present calculations and those
performed by Bentley er al. is likely to be at-
tributed to the lack of dynamical correlation in the

4Note that while the elastic component is taken from x-
ray scattering, the inelastic component comes from high-
energy electron scattering experiments.

|%A1{total/elas/inel}(C[)l dq.



" [—Total - MRCI (2,7)/AVTZ
—Elastic - MRCI (2,7)/AVTZ
—Inelastic - MRCI (2,7)/AVTZ
P Total - Bentley et al.

@Elastic - Liu et al.

'« Inelastic - Ulsh et al.
Total - IAM

- Elastic - JAM

Inelastic - JAM

4
q (A
Figure 2: Total, elastic and inelastic scatter-
ing for the H, molecule, showing experimen-
tal results for elastic®® and inelastic,”’ our own
MRCI(2,7)/aug-cc-pVTZ-level calculations, pre-
vious ab-initio calculations of elastic’! and to-

tal scattering, ' and the independent atom model
(IAM) results.

latter. The results shown in Fig. 2 also confirm
the limiting behaviour of the total scattering S,
the elastic scattering S a5 = |F |2, and the inelas-
tic scattering Sjpe] With respect to the momentum
transfer g, as discussed in Section 2,

S = 4 (=N?
g=0 IF? = 4 (=N%)
Sinet = 0
S = 2 (=N)
g — IF? = 0 (29)
Sinel = 2 (:N)

where N is the number of electrons as before.

In agreement with previous studies,>! the elas-
tic scattering predicted by the independent atom
model (IAM) deviates significantly from the cor-
rect result. This relates directly to the fact that all
electrons in H, are valence electrons, since IAM
performs better for molecules consisting of atoms
with a larger number of core electrons.3° It is no-
table, however, that the error in the inelastic com-
ponent is even greater than the error in the elastic
scattering. This in turn relates to the exceptionally
poor description of electron correlation effects in
IAM.

" |—Total - MRCI (6,6)/AVTZ
—Elastic - MRCI (6,6)/AVTZ
400 | —Inelastic - MRCI (6,6)/AVTZ|
P Total - Hoffmeyer et al.

@ Elastic- Hoffmeyer et al.

| 4 Inelastic Hoffmeyer et al.
— 300 Total - IAM
g - Elastic - IAM
- Inelastic - JAM

[~ 2001} nelasti

100+

0
0 2 6 8

4
q (A1)

Figure 3: Total, elastic and inelastic scattering
cross-sections for the CO, molecule in the ground
state calculated at a MRCI(6,6)/AVTZ level of the-
ory. Previous calculations by Hoffmeyer et al.®3
are also shown for comparison.

412 CO,

Next we consider the significantly more challeng-
ing molecule CO,. In Fig. 3 we show rotation-
ally averaged total, elastic, and inelastic scatter-
ing cross sections (as in the case of H, above, the
Thompson cross section is not included) for CO,
in the ground state. The geometry is optimized
at MRCI(6,6)/aug-cc-PVTZ¢ level of theory, with
the C-O distance Rco = 1.07 A and the molecule
linear (®pco = 0°). The calculated elastic, inelas-
tic and total scattering are compared to previous
MRCI results, obtained numerically by Hoffmeyer
and coworkers. % The agreement is almost perfect.
As before, the g = 0 and ¢ — oo limiting values
follow the expectations summarized by Eq. (29).
It is interesting to note that the IAM results show
better agreement for CO, than H,. The higher
number of core electrons in CO, compensate to
some extent for the poor description of the valence
electrons in IAM. Having established in two dif-
ferent molecules that our method yields correct re-
sults, we now move on to investigate the conver-
gence behaviour of the scattering calculation and,
later, how the scattering cross sections depend on
molecular geometry.
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Figure 4: Calculated total and inelastic scattering patterns from H, (top row) and CO, (bottom row) at
different levels of ab-initio theory, with total scattering in the left column and inelastic in the right. The
signals are shown as the direct difference defined in Eq. (26), with MRCI(2,7)/AVTZ used as reference
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4.1.3 Convergence and method comparison

Using the reference calculations for the two
molecules H, and CO, in Sections 4.1.1 and 4.1.2
above, we proceed to examine the convergence
of the total and inelastic scattering with respect
to the level of ab-initio theory, notably the size
of the active space and the basis set when us-
ing MRCI, and contrast MRCI with Hartree-Fock
(HF) level calculations and the independent atom
model (IAM). The active spaces chosen are bal-
anced to correctly account for static and dynamic
electron correlation. In Fig. 4, we consider the di-
rect difference (as defined by Eq. 26) for the total
and inelastic scattering for a number of different
model chemistries.

Starting with H,, the results are shown in the top
row of Fig. 4. Throughout, the MRCI(2,7)/AVTZ
calculations are used as reference. We see in Fig.
4a that the total scattering is strongly influenced
by the level of theory. As expected, the mean-field
HF calculations show the greatest deviation from
the reference total scattering curve. Introducing
MRCI with the same basis as the HF calculations
but with increasing active spaces (2,2) — (2,3) —
(2,4), improves electron correlation and we see
that the signal improves as the active space in-
creases, although the difference between the (2,3)
and (2,4) active spaces is minimal. Strikingly, re-
ducing the size of the basis to 6-311G in the refer-
ence MRCI(2,7) calculations yields results that are
still quite good. At small g, which is dominated
by the elastic scattering, the smaller basis yields a
cross section almost as good as the larger AVTZ
basis. At intermediate g the signal deteriorates,
presumably due to a poorer description of corre-
lation, but remains only slightly worse than the
MRCI(2,3)/AVTZ and MRCI(2,4)/AVTZ results.

To shed further light on this, we examine the in-
elastic scattering, obtained by subtracting the elas-
tic scattering from the total. This isolates the ef-
fect of electron correlation since the elastic com-
ponent depends on the electron density and is thus
a one-electron property. The direct differences rel-
ative to the reference calculations for the inelastic
scattering are shown in Fig. 4b. The mean-field
HF has the worst performance, as expected, and

“In the remainder of the article we use AVTZ for aug-cc-
PVTZ, AVDZ for aug-cc-PVDZ, etc.

MRCI with increasing active space improves the
results, although as before the difference between
the (2,3) and (2,4) active spaces is slight. Reduc-
ing the size of the basis from AVTZ to 6-311G
at the reference level of theory yields a more no-
table deterioration of the inelastic scattering than
in the total scattering, with the result more or less
on par with the smallest MRCI(2,2)/AVTZ calcu-
lation. This further emphasizes that the compara-
tive overperformance of the 6-311G basis at small
q for the total scattering shown in Fig. 4a is related
to the electron density and the elastic scattering.
On the other hand, the reduction in the number of
Gaussian-type orbitals when going from AVTZ to
6-311G has a clear negative impact on the inelastic
term.

Moving on to the CO, molecule, we see very
similar trends as in H,. The calculations from Sec-
tion 4.1.2 are used as reference. The difference
curves between the reference MRCI(6,6)/AVTZ
calculations and the other model chemistries are
shown in the bottom row of Fig. 4. The to-
tal scattering differences in Fig. 4c show the ex-
pected behaviour with HF performing on par with
MRCI(6,4), which is not surprising given that the
(6,4) active space is only a slight improvement on
HF. Increasing the active space to (6,5) makes a
significant improvement. Reducing the basis set in
the reference MRCI(6,6) calculation from AVTZ
to AVDZ reduced the accuracy about as much
as reducing the active space from (6,6) to (6,5).
Moving on the the inelastic scattering shown in
Fig. 4d, we see HF perform almost identically to
MRCI(6,4) at small and intermediate g, but de-
grades at larger ¢g. Interestingly, the effect of re-
ducing the basis set in the reference calculation
from AVTZ to AVDZ is quite small, indicating that
the reduction in basis size affects the elastic com-
ponent more strongly in CO, than H,.

Performing the same comparison as in Fig. 4, but
now with respect to the independent atom model
(IAM), we show in Fig. 5 the performance of
IAM versus the reference calculations, with the
MRCI(2,7)/6-311G (H,) and MRCI(6,6)/AVDZ
(CO,) results from Fig. 4 included as a point of
reference. As before, the top row shows the total
and inelastic scattering differences calculated ac-
cording to Eq. (26) for H, and likewise for CO,
in the bottom row. The poor IAM results for the
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Figure 5: Comparison of the independent atom model (IAM) to the ab-initio cross sections for total (left
column) and inelastic (right column) scattering, with H, in the top row and CO, in the bottom. The
direct differences shown are calculated by Eq. (26) with MRCI(2,7)/AVTZ used as reference for H, and
MRCI(6,6)/AVTZ for CO,. The best-performing non-reference MRCI results from Fig. 4 are included for




Figure 6: Isosurfaces (red negative, blue positive)
for the electron density difference, Ap = piam —
Pab-initio» Detween the IAM and the ab-initio elec-
tronic density calculated at the MRCI(6,6)/AVTZ
level in the molecule CO,.

total scattering is evident for both H, and CO, and
relates to the poor description of the valence-bond
electrons inherent in IAM (Figs. 5a and 5¢). <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>