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Conservative Finite Difference Time Domain Schemes for the Prestressed
Timoshenko, shear and Euler-Bernoulli Beam Equations.

Michele Ducceschi and Stefan Bilbao

Acoustics and Audio Group,
James Clerk Maxwell Building,

University of Edinburgh,
EH9 3JZ, Edinburgh UK

Abstract

This paper presents a number of finite difference time domain (FDTD) schemes to simulate the
vibration of prestressed beams to various degrees of accuracy. The Timoshenko, shear and Euler-
Bernoulli models are investigated, with a focus on the numerical modelling for the Timoshenko
system. The conservation of a discrete Hamiltonian to machine accuracy ensures stability and
convergence of the numerical schemes. The difference equations are in the form of theta schemes,
which depend on a number of free parameters that can be tuned in order to reduce numerical
dispersion. Although the schemes are built by means of second-order accurate finite difference
operators only, fully fourth-order accurate schemes may be designed through modified equation
techniques, and wideband-accurate schemes are also possible. The latter are schemes designed to
maximise the resolving power at all wavelengths. Investigation of beams of cross section varying
from from slender to thick allows a thorough comparison between the various schemes, for the three
beam models.

Keywords: Prestressed Beams, Timoshenko Beam, Stiff strings, Numerical Methods

1. Introduction

The vibration of beams is a topic of longstanding and continuing interest for obvious reasons:
beams are among the most common engineering elements found in a variety of machines, and
serve as main structural elements in buildings, bridges and railroads [1, 2]. Though, through finite
element analysis [3], it is possible to simulate 3D beam dynamics resulting from elasticity theory
and appropriate constitutive laws, approximate theories remain a popular choice in the numerical
setting, due primarily to reduced computational cost and ease of implementation. In such theories,
the 3D formulation is reduced to a 1D problem expressed as a system of partial differential equations
(PDEs). Three such 1D beam theories are commonly seen in the literature. In ascending order of
complexity, these are known as the Euler-Bernoulli model, the shear model and the Timoshenko
model [4, 5]. The Timoshenko beam theory (the main subject of this paper) models both flexural
and shear waves, and is an excellent approximation to full 3D theories over a large range of beam
thicknesses [1]. The Timoshenko model results in two distinct dispersion curves and, at high
frequencies, its spectrum is driven by shear motion as well as flexural. At low frequencies, for thin
beams, the three models yield similar modal frequencies and shapes [6].

With regard to numerical simulation, various methods have been proposed for the simulation
of the Timoshenko beam equations. These range from the finite element methods mentioned above
[7, 8, 9, 10, 11, 12, 13, 14, 15], to reduced-order methods (Galerkin [16] and modal methods [17]),
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to pseudospectral methods [18] and specialised methods such as Discrete Singular Convolution [19].
Most of the work cited above deals with the problem of calculating the first few eigenfrequencies of
the Timoshenko system, for engineering purposes. On the other hand, full time domain simulation
has not seen much investigation. Notable exceptions are represented by the work of Sarigül and
Aksu [20], Li and Sun [21] and Almeida Junior [22] using finite difference schemes and by the work
of Chabassier et. al [23, 24]. The latter is an interesting application of the Timoshenko beam
theory used to model a vibrating piano string. In this work, the focus will be on the development
of stable and consistent finite difference schemes. The accuracy of the schemes can be increased
from the natural second-order accuracy originating from the application of second-order accurate
finite difference operators, by means of a number of free parameters. These ideas are borrowed
from the literature on the modified equation methods that first appeared on the study of the wave
equation, see for instance [25, 26, 27, 28, 29]. Two cases of interest will be presented: fourth-order
accurate and wideband accurate schemes. The latter are especially useful when good resolution
at all wavelengths is needed, for a fixed time step or grid spacing, although the formal order of
accuracy in time and space remains 2 [30].

The paper is structured as follows: Section 2 is an overview of the Timoshenko beam theory,
useful in order to discuss the properties of the numerical schemes in section 3. Important aspects
related to numerical dispersion and the modal distribution will be discussed with regard to the
choice of an appropriate time step. The stability of the schemes is deduced from energy conservation
properties. Simulation results are presented in Section 4.

1.1. Case Studies and Physical Parameters

Before introducing the model itself, it is useful to provide physical parameters for particular
cases of beams to be considered here. The beams are assumed made of steel, and of circular cross
section. The following table contains symbols and corresponding numerical values for the defining
parameters of the beam. Three values are given for the beam radius, spanning two orders of
magnitude, and corresponding to the three beams considered in this work (thick, medium, thin).

units symbol value

density kg/m3 ρ 8000
Young’s mod. Pa E 2 · 1011

Poisson’s r. - ν 0.30
tension N T0 1000
length m L0 1
radius m r [10−1, 10−2, 10−3]

Other auxiliary parameters appear in the Timoshenko beam equations, and can be calculated
as follows:

units formula symbol value

shear mod. Pa E/2(1 + ν) G 7.69 · 1010

shear coeff. - 6(1 + ν)/(7 + 6ν) κ 0.89
area m2 πr2 A π · [10−2, 10−4, 10−6]
m. of inertia m4 πr4/4 I π

4 · [10−4, 10−8, 10−12]
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2. Timoshenko’s Beam Theory

Before describing the numerical scheme at the core of this paper, it is worth recalling some
salient aspects of the Timoshenko beam theory. Of prime importance is the presence of two distinct
branches in the dispersion relation, yielding, ultimately, two families of modes below and above the
cutoff. Central to the construction of a finite difference scheme is the notion of a discrete conserved
Hamiltonian, and thus in this section the continuous Hamiltonian will be presented with an eye
towards the construction of its discrete counterpart in 3.5.

2.1. Timoshenko’s Beam Model

The vibration of a beam under tension may be described by the following system of partial
differential equations, known collectively as Timoshenko’s beam equations with tension:

ρA ∂2tw = T0 ∂
2
xw +AκG∂x(∂xw − φ) (1a)

ρI ∂2t φ = EI ∂2xφ+AκG(∂xw − φ). (1b)

In the system above, w(x, t) and φ(x, t) represent, respectively, the transverse displacement and
shear angle for time t ≥ 0 and for axial coordinate x ∈ D , [0, L0], for some length L0, and where
∂t and ∂x represent partial differentiation with respect to t and x.

As a starting point, it is useful to scale the system. To this end, consider the following nondi-
mensional variables denoted by overbars

w̄ =
w

w0
, φ̄ =

φ

φ0
, x̄ =

x

x0
, t̄ =

t

t0
, L̄0 =

L0

x0

under the following choices of scaling coefficients:

x20 =
I

A
, t20 =

ρI

AκG
, φ0 =

w0

x0
, α = 1 +

T0
AκG

, β =
E

κG
.

When rewritten in terms of dimensionless variables (dropping the overbar notation) the Timoshenko
system is as follows

∂2tw = α∂2xw − ∂xφ, (2a)

∂2t φ = β∂2xφ+ ∂xw − φ. (2b)

System (2) requires the specification of two boundary conditions at each end of the domain
D. A variety of choices of the boundary conditions have been discussed in detail in [6]. In this
article, where the focus is on numerical modeling of the dispersive characterstics of the beam,
simply-supported conditions are assumed at the beam ends, i.e.

w = ∂xφ = 0 at x = 0, L0. (3)

System (2) also requires the specification of w, ∂tw, φ and ∂tφ at t = 0, for x ∈ D.

2.2. Dispersion Relations

System (2), when examined over the infinite spatial domain x ∈ R, yields a dispersion relation,
obtained under the assumption of monochromatic wavelike solutions of the form(

w
φ

)
=

(
ŵ

φ̂

)
ej(ωt+γx)

3
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Figure 1: (a): Timoshenko dispersion relation for the small-thickness beam (r = 0.001 m). (b): modal distribution.
(c): cutoff frequency ωc as a function of the beam radius; squares indicate the cutoff frequencies for the three beams
under study.

for complex amplitudes ŵ, φ̂, and for real frequencies and wavenumbers ω, γ.
An characteristic equation in γ, ω results:

ω4 − ω2 − γ2 + αγ2 − αγ2ω2 − βγ2ω2 + αβγ4 = 0 (4)

The dispersion relation, composed of two branches written here as ω± (γ), follows as

ω2
± =

(α+ β)γ2 + 1

2
±

((
1 + (β − α) γ2

)2
+ 4γ2

)1/2
2

. (5)

Plots of the dispersion relation, for the beam of radius r = 0.001 m are shown in Fig. 1(a),
where the branches are denoted flexural and shear. This labelling helps convey the idea that the
lower and upper branches correspond mainly to flexural and shear motion, respectively. Notice in
particular that the shear branch does not vanish in the limit of γ → 0. In fact,

lim
γ→0

ω+ , ωc = 1 (6)

In the notation for ωc the subscript c indicates the cutoff. This implies, in particular, that phase
velocities are infinite for these solutions in the limit of low frequencies.

2.3. Modes

The presence of two distinct dispersion relation branches has a consequence on the distribution
of the modes. It is possible to define two sets of modes, one below and one above the cutoff
frequency ωc. Consider the following expressions for wavenumber as a function of frequency

γ2+ =
(βω2 + αω2 − α+ 1) +

[
(βω2 + αω2 − α+ 1)2 − 4αβ(ω4 − ω2)

]1/2
2αβ

γ2− =
(βω2 + αω2 − α+ 1)−

[
(βω2 + αω2 − α+ 1)2 − 4αβ(ω4 − ω2)

]1/2
2αβ

4



Below and above the cutoff, the modal frequencies for the simply-supported end conditions (3) are
obtained by solving

sin(γ+L0) = 0, ω ≤ ωc (7a)

sin(γ−L0) sin(γ+L0) = 0, ω > ωc. (7b)

A picture of the modal distribution is given in Fig.1(b), with the two branches clearly visible.
Fig.1(c) shows cutoff frequency as a function of the beam radius. In physical units, the cutoff is
given by

ω2
c =

AκG

ρI
∝ r−2 (8)

and is thus inversely proportional to the radius. For the thin beam considered here (r = 1 mm),
the cutoff frequency is ωc = 5.8 · 106 rad/s.

2.4. Hamiltonian

The definition of a non-negative Hamiltonian function associated with (2) is central to the
proof of stability for the discrete numerical scheme. A strong solution to the system exists over the
domain x ∈ D (see for instance Chabassier et al. [23]). Hence w, φ and their derivatives up to the
order 2 necessarily belong to a set V : D × R+ such that, for any function v(x, t) ∈ V , v(x, t) is of
class at least C0 and v(x, t) ∈ L2(D). It is then possible to define, for two functions v1, v2 ∈ V , the
following scalar product and norm

〈v1, v2〉 ,
∫ L0

0
v1v2 dx, ‖v1‖2 , 〈v1, v1〉 . (9)

Using this notation, the associated Hamiltonian is [6]

H =
‖∂tw‖2

2
+
‖∂tφ‖2

2
+
β‖∂xφ‖2

2
+
‖φ− ∂xw‖2

2
+

(α− 1)‖∂xw‖2
2

(10)

The Hamiltonian is composed of kinetic terms (proportional to the squared norms of the veloci-
ties) and of potential terms, and is clearly non-negative. Imposing energy conserving end conditions
such as (3), a power balance equation may be written as

d

dt
H = 0. (11)

Under unforced conditions, the power balance is a statement of passivity for the Timoshenko beam
equation—in other words there is no spontaneous creation of energy within the system, or at the
boundaries.

2.5. Other Engineering Models

It is useful to introduce at this stage the other engineering models. The shear model is obtained
from the Timoshenko model by neglecting the inertia of the cross section, leading to

∂2tw = α∂2xw − ∂xφ, (12a)

0 = β∂2xφ+ ∂xw − φ. (12b)

These equations may be coalesced into a single equation, of second order in time differentiation, as

(1− β∂2x)∂2tw = (α− 1)∂2xw − αβ∂4xw (13)

5
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Figure 2: Staggered grids for the grid functions wm, φm+1/2, for scheme (15). The ghost point at −h/2 (needed for
simply supported end conditions) is represented by a square, whereas the actual grid points are drawn as disks. Black
disks are the grid points for wm, grey disks are the grid points for φm+1/2. The vertical axis is time.

The Euler-Bernoulli model is the simplest and perhaps most popular engineering model, and
is obtained from (13) in the limit of low wavenumbers. It may be written as

∂2tw = (α− 1)∂2xw − β∂4xw (14)

Both the shear model and the Euler-Bernoulli model possess a conserved, non-negative Hamil-
tonian; see [6].

3. Finite Difference Schemes

Numerical approximations to the solutions to the Timoshenko system will be developed here
using finite difference schemes, which are a natural choice for 1D systems. The particular struc-
ture of the Timoshenko system suggests spatially interleaved grid functions. Let wnm represent an
approximation to w(x, t) at grid locations x = mh and at times t = nk, for integer m and n, and
where h is the grid spacing and k is the time step. φnm+1/2 is defined over a spatially staggered

grid, representing an approximation to φ(x, t) at x = (m+ 1/2)h and t = nk. See Fig. 2.
The grid spacing h is assumed to divide the domain length L0 evenly, such that L0/h = N for

some integer M . Thus wnm is defined for m = 0, . . . ,M and φnm+1/2 for m = 0, . . . ,M − 1.

3.1. Difference Operators And Finite Fifference Schemes

For the grid function wnm or the interleaved grid function φnm+1/2, the shift operators (in time

and space) are defined as in Table 1. Approximations to partial derivatives and the identity may
be constructed using these basic operations. Basic such finite difference operators are in given in
Table 2. Using the definitions in Tables 1 and 2, three different schemes are now given.

3.2. Second-Order Accurate Scheme

A simple scheme can be obtained immediately by direct substitution of the continuous operators
in (2) with the operators given Table 2. The scheme is

δttw
n
m = αδxxw

n
m − δx−φnm+1/2 m = 1 . . . ,M − 1 (15a)

δttφ
n
m+1/2 = βδxxφ

n
m+1/2 + δx+w

n
m − φnm+1/2 m = 1 . . . ,M (15b)

6



symbol definition

forward time shift et+ et+w
n
m = wn+1

m

backward time shift et− et−wnm = wn−1m

forward space shift ex+ ex+w
n
m = wnm+1 ex+φ

n
m+1/2 = φnm+3/2

backward space shift ex− ex−wnm = wnm−1 ex−φnm+1/2 = φnm−1/2

Table 1: Shift operators

Numerical simply-supported conditions can be given as

w0 = 0, δx−φ1/2 = 0, wM = 0, δx+φM−1/2 = 0. (16)

Imposing such conditions implies settings for the values of the function φm+1/2 at the so-called
ghost points φ−1/2, φM+1/2. The grid function wm is zero at the end points, and thus the values at
such location need not be stored. Hence, at each time-step the grid functions wm, φm+1/2 can be
written as arrays of length M − 1 and M respectively.

3.3. Fourth-Order Accurate Scheme

A fourth-order accurate scheme for the Timoshenko system, employing a finite element method,
is given in [23]. Here, a novel scheme, employing only formally second-order accurate finite difference
operators, is derived. It is a modification of (15), making use of five free parameters here denoted
θi, i = 1, ..., 5. The scheme is

s(θ1)δttw
n
m = (α− 1)s(θ2)δxxw

n
m + p(θ3)(δxxw

n
m − δx−φnm+1/2) m = 1 . . . ,M − 1 (17a)

q(θ4)δttφ
n
m+1/2 = (β + 1− q(θ5))δxxφnm+1/2 + p(θ3)(δx+w

n
m − φnm+1/2) m = 1 . . . ,M (17b)

where

s(θ) , 1 +
(1− θ)

2
h2δxx, p(θ) , 1 +

(1− θ)
2

k2δtt, q(θ) , 1 +
(1− θ)

2
h2 (18)

Clearly, this system reduces to (15) under the choice θi = 1 for all i, and is consistent with the
continuous system when k, h tend to zero. For fourth-order accuracy, the free parameters must be
chosen as

θ1 =
2α2 + 14βα+ β + 1

12αβ
(19a)

θ2 =
α− 6β + 8αβ

6αβ − 6β
(19b)

θ3 =
10α+ β + 1

12α
(19c)

θ4 =
12αβ − β − 1

12αβ
(19d)

θ5 =
5αβ − β − 1

6αβ
(19e)

Fourth-order accuracy is achieved as h, k tend to zero along a path in the h, k space dictated by
stability considerations. The order of accuracy is calculated for the dispersion relation, i.e. the

7



symbol definition Taylor exp.

forward time difference δt+
et+ − 1

k

d

dt
+O(k)

backward time difference δt−
1− et−
k

d

dt
+O(k)

centred time difference δt·
et+ − et−

2k

d

dt
+O(k2)

second time difference δtt
et+ − 2 + et−

k2
d2

dt2
+O(k2)

backward time identity µt−
1 + et−

2
1 +O(k)

second order time identity µtt
et+ + 2 + et−

4
1 +O(k2)

forward space difference∗ δx+
ex+ − 1

h

d

dx
+O(h2)

backward space difference∗ δx−
1− ex−

h

d

dx
+O(h2)

second space difference δxx
ex+ − 2 + ex−

h2
d2

dx2
+O(h2)

∗ Acting on an interleaved grid function

Table 2: Time and space difference operators

numerical dispersion relation for scheme (17) is an approximation to (5) to the order of h4, k4.
This will be proven in the following sections. It will be shown that the eigenfrequencies of scheme
(17) also follow the same trend.

Notice that, in (17a), the operator s(θ2) acting on δxxw
n
m generates an operator of width five

in space. Hence, an extra pair of boundary conditions, consitent with (16), must be given. For
simply-supported conditions, these are [6]

δxxw0 = 0, δxxwM = 0. (20)

The set of boundary conditions (16) accompanied by (20) is only second-order accurate: hence, on
the grid, the order of accuracy is valid only for beams defined over an infinite domain (equivalently,
it is valid for disturbances traveling on the grid before reaching either one of the end points).

3.4. Wideband Accurate Scheme

The simulation of many physical phenomena requires the resolution of a large set of wavelengths.
Schemes with a formal order of accuracy, such as (15) and (17), fail at representing smaller wave-
lengths accurately, for given sample rate and grid spacing. finite difference schemes, though, may
be designed so to maximise the resolving power at all scales. Such ideas were introduced by Lele
[30] in the context of fluid dynamics, and have been exploited in numerous other fields, including
vibroacoustics and musical acoustics [23, 31]. One such scheme for the Timoshenko system is here

8



given as

s(θ)δttw
n
m =(α− 1)δxxw

n
m + µtt(δxxw

n
m − δx−φnm+1/2) (21a)

s(θ)δttφ
n
m+1/2 =βµttδxxφ

n
m+1/2 + µtt(δx+w

n
m − φnm+1/2) (21b)

where s(θ) is defined in (18), and where

θ =
1

2
+

(α− 1)k2M2

2L0
(22)

where L0 is the nondimensional beam length, and M is the number of modes (equal to the number
of grid points) of frequency below the Nyquist limit, fs/2 = 1/2k.

Notice that this scheme employs just one free parameter, and is thus considerably simpler than
(17) in terms of analysis. Simply-supported boundary conditions are again of the form (16).

3.5. Energy Considerations And Stability Conditions

Stability conditions for the schemes are now derived. For the sake of conciseness, the results
are here simply stated, but a complete proof can be found in Appendix B. They will follow from
energy considerations, as detailed below. The energy analysis allows for incorporation of boundary
conditions, thus generalising stability results from von Neumann analysis [32]. The idea is that, as
in the continuous case, the conservation of a non-negative discrete function of the state of the finite
difference scheme, which is consistent with the definition of energy in the continuous case, yields a
finite maximum allowable growth of the norms of the grid functions. Thus, such conditions will be
identified here as stability conditions, see also [23, 31].

More specifically, in the following, each discrete Hamiltonian will be bounded from below by a
positive-definite quadratic form. The inequality is expressed as

hn−1/2 = h1/2 ≥ T(un−1/2)G un−1/2 (23)

where hn−1/2 is the Hamiltonian at the given timestep, corresponding to a discrete version of the
continuous Hamiltonian (10), un−1/2 is a vector corresponding to the state, and G is a positive-
definite quadratic form. In the following,

un−1/2 =
δt−√

2
T[wn1 , . . . , w

n
M−1, φ

n
1
2

, . . . , φn
M− 1

2

] (24)

The first equality in (23) expresses conservation of energy over time. Because G is positive-definite,
one may write

λ
(min)
G ‖un−1/2‖2 ≤ T(un−1/2)G un−1/2 (25)

where λ
(min)
G > 0 is the minimum eigenvalue of the matrix G. Hence, owing to (23) and (25), a

bound on the growth of the norm of the state is found as

‖un−1/2‖ ≤
√

h1/2

λ
(min)
G

(26)

The derivation of the discrete Hamiltonians is rather lengthy, and in the following subsections,
the results will be simply stated. The definitions of the matrices appearing below are given in
Appendix A, whilst a complete proof of the non-negativity of the discrete Hamiltonians can be
found in Appendix B.

9



3.5.1. Stability Condition For The Second-Order Accurate Scheme

For scheme (15), non-negativity of the associated discrete Hamiltonian is assured if and only if

k2 < 4 (27a)

h2 ≥ −B +
√

∆

2A
(27b)

where
A = (4− k2), B = k4(α− 1)− 4k2(α+ β), C = 4αβk4, ∆ = B2 − 4AC

Condition (27a) can be best understood by recalling the existence of the cutoff frequency ωc = 1,
as per (6). In practice, there will be oscillating modes of frequency equal or larger then ωc as the
wavenumber tends to zero: the upper bound (27a) reflects this property.

3.5.2. Stability Condition For The Fourth-Order Accurate Scheme

Given the matrix

A(4) = 1w +

[
(1− θ1)h2

2
+
k2

4
(α− 2(1− θ3))

]
Dw
xx +

(α− 1)(1− θ2)h2k2
8

Dw
xxxx (28)

the non-negativity of the Hamiltonian associated with scheme (17) can be assured if and only if

A(4) > 0 (29a)

β − (1− θ5)h2
2

≥ 0 (29b)

1 +
(1− θ4)h2

2
+
k2

4
(1− 2θ3)−

k2

h2

(
β − (1− θ5)h2

2

)
− 4

h2λ
(min)
A(4)

(
k2

4
− (1− θ3)k2

2

)2

≥ 0 (29c)

where λ
(min)
A(4)

is the minimum eigenvalue of the matrix A(4), provided that it is positive definite

from condition (29a).

3.5.3. Stability Condition For The Wideband Accurate Scheme

For scheme (21), a condition on the non-negativity of the associated Hamiltonian is

h2 ≥ (α− 1)k2

2θ − 1
, θ >

1

2
(30)

Notice that the condition on θ is certainly satisfied by (22) and, under this particular choice, the
number of grid intervals is equal to half the number of modes N below 1/2k.

3.6. Numerical dispersion relation

The continuous dispersion relations derived in Section 2.2 have a numerical counterpart which
is obtained through a transformation of the difference operators in the frequency domain [31].

In particular, the second time and space operators transform as

δtt → −
4

k2
sin2(ωk/2)︸ ︷︷ ︸

sω

, δxx → −
4

h2
sin2(γh/2)︸ ︷︷ ︸

sγ

, (31)

In the frequency domain, an equation for sω is obtained as

As2ω +Bsω + C = 0, (32)
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where the coefficients A,B,C depend on h, k, θi as well as sγ . For schemes (15), (17) and (21),
they have rather lengthy expressions and are not reported here. Hence

s±ω =
−B ±

√
B2 − 4AC

2A

Numerical dispersion relations are obtained as

ω± =
2

k
arcsin(

√
s±ω ) (33)

If the wavenumber γ is restricted to take on values such that 0 ≤ γ ≤ π/h, and h is chosen so as
to satisfy the stability conditions, then s±ω is guaranteed to lie in the range 0 ≤ s±ω ≤ 1. It is useful
to obtain the values of the dispersion relations in the limit of small wavenumbers, i.e. for γ → 0.
These are:

lim
γ→0

ω− = 0, (34a)

lim
γ→0

ω+ =
2

k
arcsin

√
k2

k2 + 4
. (34b)

Notice in particular that, in the limit of small k, ω+ → ωc, which is consistent with (6). A plot of
the numerical dispersion relations is shown in Figure 3.

3.6.1. Proof Of Fourth-Order Accuracy Of Scheme (17)

Scheme (17), under choice (19), leads to fourth-order accuracy in the numerical dispersion
relation, in the limit of h, k going to zero. In order to prove this, one must first reduce the order
of (29c), assuming that both h, k are small: hence, all quantities of order higher than four are
removed, and the resulting inequality reads

Ah4 +Bh2 + C ≥ 0 (35)

with

A = 48α3β + 192α2β2 + 24αβ2 + 24αβ (36a)

B = (−288α3β2 − 48α3β − 192α2β3 + 48α2β2 − 48αβ3 − 48αβ2)k2 (36b)

C = 24αβ2k4(10α2β + 2α2 − 2αβ + β2 + β) (36c)

Inequality (35) is solved analytically by

h2 ≥ βk2, if β ≥ α (37)

and it is possibile to verify that conditions (29a) and (29b) are indeed satisfied when h is chosen
as close to the stability limit as possible, and when k is small enough. The condition β ≥ α is also
satisfied in general, for values of the tension of practical use.

The Taylor series of the difference operators in (17) is

δx± = ∂x +
h2

24
∂3x (38a)

δxx = ∂2x +
h2

12
∂4x (38b)

δxxδxx = ∂4x +
h2

6
∂6x (38c)

δtt = ∂2t +
k2

12
∂4t (38d)

11



Figure 3: Dispersion relations of the numerical schemes. Solid black lines are the continuous model, blue lines are
the second-order accurate scheme, red lines are the fourth-order accurate scheme, and green lines are the wideband
accurate scheme. The picture is obtained for the thick beam, using a timestep k = 1/8ωc

where (38a) is valid when δx± are acting on an interleaved grid.
The Taylor-expanded discrete operators are now substituted in (17), and it is assumed that

h, k approach zero while satisfying h2 ≈ βk2. Under these assumptions, one may verify that the
dispersion relation of (17) is such that

0 =

(
1 +

γ2 − 2ω2

12β
h2
)(

ω4 − ω2 − γ2 + αγ2 − αγ2ω2 − βγ2ω2 + αβγ4
)

+O(h4) (39)

and hence, recalling (4), the discrete dispersion relation approximates the continuous dispersion
relation to fourth-order in h.

3.7. Matrix-Vector Form And Modes

It is useful to think of the space operators as matrices acting on column vectors wn = [wn1 , . . . , w
n
M−1]

T

and φn = [φn1
2

, . . . , φn
M− 1

2

]T . Schemes (15), (17), (21) can be written as

M

(
δttw

n

δttφ
n

)
= −K

(
wn

φn

)
(40)

The matrices for the second-order, fourth-order and wideband accurate schemes are given as

M(2) =

(
1w 0φ

0w 1φ

)
K(2) =

(
−αDw

xx Dφ
x−

−Dw
x+ 1φ − βDφ

xx

)
.

M(4) =

1w +
(
(1−θ1)h2

2 − (1−θ3)k2
2

)
Dw
xx

(1−θ3)k2
2 Dφ

x−

− (1−θ3)k2
2 Dw

x+

(
1 + (1−θ4)h2

2 + (1−θ3)k2
2

)
1φ


K(4) =

(
−αDw

xx + (1− α) (1−θ2)h
2

2 Dw
xxxx Dφ

x−
−Dw

x+ 1φ −
(
β − (1−θ5)h2

2

)
Dφ
xx

)
.

12



Figure 4: Convergence of the first four eigenfrequencies of the thick beam, for scheme (15) (blue) and (17) (red).
Black dashed lines of slope 2 and 4 are also drawn, for reference.

M(W ) =

1w +
(
(1−θ)h2

2 − k2

4

)
Dw
xx

k2

4 Dφ
x−

−k2

4 Dw
x+

(
1 + k2

4

)
1φ + (1−θ)h2

2 Dφ
xx


K(W ) =

(
−αDw

xx Dφ
x−

−Dw
x+ 1φ − βDφ

xx

)
.

In order to obtain the numerical modal frequencies, (40) is transformed into an eigenvalue
problem. Recalling the z-transform of δtt as per (31), one may obtain the numerical eigenfrequencies
as

ω =
2

k
arcsin

k
√

eig(M−1K)

2
(41)

Figure 4 shows the convergence of the first four eigenfrequencies, for the second-order accurate
and fourth-order accurate schemes, highlighting the expected convergence trend.

Figure 5(a) shows the modal distributions of the three schemes, and Figure 5(b) is the percentage
error. The second and fourth-order accurate schemes, despite providing convergence with a known
trend, are poorly behaved at higher frequencies: the minimum grid size for both schemes is too
large to account for all the modes falling within the Nyquist range, and the modal distribution gets
highly distorted above the cutoff frequency. The wideband accurate scheme, on the other hand,
makes use of the free parameters to accomodate for all the modes, shrinking the grid spacing.
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Figure 5: Numerical modes of the Timoshenko scheme. For the two figures, solid black is the continuous model,
blue is the second-order accurate scheme, red is the fourth-order accurate scheme, and green line is the wideband
accurate scheme. The figures are obtained for the thick beam, using a timestep k = 1/8ωc(a): modal frequencies.
(b): percentage error of the modal frequencies

Indeed, the wideband accurate scheme may be employed anytime a high resolution is required at
all scales, and especially at smaller wavelengths: for example, in resolving transients.

3.8. The Euler-Bernoulli And Shear Models

Now that the schemes for the Timoshenko system have been optimised and validated, the finite
difference schemes used for the shear and Euler-Bernoulli models are now given. The treatment here
will be rather quick, as the mechanics of the proofs for order accuracy and stability mimic those
already given for the Timoshenko schemes. Thus, many of the following results are stated without
a proof, but these schemes are conservative, and the non-negativity of the associated Hamiltonians
are sufficient and necessary conditons for numerical stability.

3.8.1. Second-Order Accurate Scheme For The Shear Beam

A second-order accurate scheme for the shear model can be obtained by direct substitution of
the discrete difference operators of Table 2 into (13). This gives

(1− βδxx)δttw
n
m = (α− 1)δxxw

n
m − αβδxxδxxwnm (42)

Simply-supported end condititions are derived as

wn0 = δxxw
n
0 = wnM = δxxw

n
M = 0 (43)

von Neumann analysis yields the following stability condition

h2 ≥ −B +
√
B2 − 4C

2
, (44)

where
B = 4β − (α− 1)k2, C = −4αβk2.

3.8.2. Fourth-Order Accurate Scheme For The Shear Beam

A parameterized scheme for the shear model is given here as

(1− βq(θ1)δxx)δttw
n
m = (α− 1)s(θ2)δxxw

n
m − αβδxxδxxwnm (45)

14



Figure 6: Convergence of the first four eigenfrequencies of the medium beam, for scheme (42) (blue) and (45) (red).
Black dashed lines of slope 2 and 4 are also drawn, for reference.
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where s(θ), q(θ) are as per (18). Simply-supported end conditions are of the form (43).
For fourth-order accuracy, the free parameters must be chosen as

θ1 =
α+ 6αβ + 1

6αβ
, θ2 =

5

6
(46)

Von Neumann analysis on this scheme yields

h2 ≥ −B +
√
B2 − 4AC

2A
(47)

where
A = (1 + 2β(1− θ1)), B = 4β − (α− 1)k2(2θ2 − 1), C = −4αβk2

Fourth-order accuracy is given in terms of the dispersion relation, as for the Timoshenko system.
In the limit of small h, k, the grid spacing in (47), chosen as close to the stability limit as possible,
becomes

h2 ≈ αk2

2θ2 − 1
(48)

When the Taylor-expanded difference operators (38) are substituted into (45), one obtains the
following numerical dispersion relation

0 =

(
1− ω2 + 2αγ2

12α
h2
)(
−ω2(βγ2 + 1) + γ2(α− 1) + αβγ4

)
+O(h4) (49)

which is a fourth-order accurate approximation to the continuous dispersion relation [6]. Fig. 6
illustrates the convergence of the second-order and of the fourth-order accurate schemes, for the
first four eigenfrequencies, highlighting the expected trend as the the time step becomes small.
Fig. 7 depicts the modal distributions of the three schemes, as well as the associated error, for a
reference time step k = 2/ωc.

3.8.3. Wideband Accurate Scheme For The Shear Beam

A wideband accurate finite difference scheme for the shear model (13) is given as

(1− βδxx)s(θ)δttw
n
m = (α− 1)δxxw

n
m − αβδxxδxxwnm (50)

with s(θ) given in (18). The value for θ is given as

θ =
1

2
+

(α− 1)k2h̄2 + 4αβk2

2h̄2(h̄2 + 4β)
, (51)

where

h̄ =
L0

M
.

This value for θ is analogous to the one used for the wideband Timoshenko scheme, (22): the
number of grid spacings matches the number of modes M falling within the Nyquist limit 1/2k.
The stability conditions for this scheme can be given as

h2 ≥ −B +
√
B2 − 4(2θ − 1)C

2(2θ − 1)
, (52)

where
B = 4β(2θ − 1)− (α− 1)k2, C = −4αβk2.
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Figure 7: Numerical modes of the shear scheme. For the two figures, solid black is the continuous model, blue is
the second-order accurate scheme, red is the fourth-order accurate scheme, and green line is the wideband accurate
scheme. The figures are obtained for the medium beam, using a timestep k = 2/ωc(a): modal frequencies. (b):
percentage error of the modal frequencies

3.8.4. Second-Order Accurate Scheme For The Euler-Bernoulli Beam

A second-order accurate scheme for the Euler-Bernoulli beam is obtained by direct substitution
of the difference operators of Table (2) into (14). This gives

δttw
n
m = (α− 1)δxxw

n
m − βδxxδxxwnm (53)

with simply-supported end conditions of the form (43). von Neumann analysis yields the following
stability condition

h2 ≥ k2(α− 1) +
√
k4(α− 1)2 + 16βk2

2
(54)

3.8.5. Fourth-Order Accurate Scheme For The Euler-Bernoulli Beam

Fourth-order accuracy may be achieved by employing two free parameters, in the following way

s(θ1)δttw
n
m = αs(θ2)δxxw

n
m − βδxxδxxwnm, θ1 =

2

3
, θ2 =

5

6
(55)

where s(θ) is defined in (18). The stability condition, derived from von Neumann analysis,
yields

h2 ≥ k2(α− 1)(2θ2 − 1) +
√
k4(α− 1)2(2θ2 − 1)2 + 16βk2(2θ1 − 1)

2(2θ1 − 1)
(56)

In the limit as h, k become small, the stability limit is approximately

h2 ≈ 2β1/2k

(2θ1 − 1)1/2
(57)

Calculating the numerical dispersion relation of (55), and Taylor-expanding the difference operators
according to (38), one gets

0 =

(
1− γ2h2

6

)(
βγ2 + (α− 1)γ2 − ω2

)
+O(h4) (58)

which is a fourth-order accurate approximation to the continuous dispersion relation [6]. Fig. 8
shows the convergence of the eigenfrequencies for the second-order and the fourth-order accurate
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Figure 8: Convergence of the first four eigenfrequencies of the thin beam, for scheme (53) (blue) and (55) (red). Black
dashed lines of slope 1 and 2 are also drawn, for reference.

schemes. Notice that, the slopes are only half of those obtained for the shear and for the Timoshenko
schemes. However, slopes of two and four are recovered in the grid spacing, as per (57). Fig. 9
depicts the distribution of the modal frequencies, and related errors, for the three schemes, using a
reference time step k = 1/44100.

3.8.6. Wideband Accurate Scheme For The Euler-Bernoulli Beam

A wideband accurate scheme for the Euler-Bernoulli beam can be given as

s(θ)δttw
n
m = (α− 1)δxxw

n
m − βδxxδxxwnm (59)

with s(θ) given in (18). The value for θ is given as

θ =
1

2
+

(α− 1)k2h̄2 + 4βk2

2h̄4
. (60)

where

h̄ =
L0

M
.

This value for θ guarantees that the number of grid spacings matches the number of modes M
falling within the Nyquist limit, 1/2k.

The stability conditions for this scheme, derived from von Neumann analysis, is

h2 ≥ −B +
√
B2 − 4(2θ − 1)C

2(2θ − 1)
, (61)

where
B = −(α− 1)k2, C = −4βk2.
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Figure 9: Numerical modes of the Euler-Bernoulli schemes. For the two figures, solid black is the continuous model,
blue is the second-order accurate scheme, red is the fourth-order accurate scheme, and green line is the wideband
accurate scheme. The figures are obtained for the medium beam, using a timestep k = 1/44100(a): modal frequencies.
(b): percentage error of the modal frequencies

4. Numerical Results

In this section, the simulations of the three case studies (thick beam, medium beam, thin beam)
are analysed. It is useful to introduce a dimensionless parameter s, called the slenderness ratio and
defined as

s = L0

√
A

I
. (62)

This parameter is useful when comparing the three models. As this parameter gets large, the cutoff
frequency ωc tends to infinity, meaning that the motion is almost entirely flexural. For the three
beams under consideration, s is

s = 2000 for the thin beam, s = 200 for the medium beam, s = 20 for the thick beam.

This parameter indicates which model to use, given the beam radius [4]. For small values (s < 100)
the Timoshenko model should be used, and for large values (s > 1000) Euler-Bernoulli can be safely
employed. For intermediate values, the shear model can be used.

The second-order, fourth-order and wideband schemes are compared in each case. The initial
conditions for the simulations are in the form of a centered raised cosine function, with zero velocity.
Thus, at the time t = 0 the displacement w is of the form

w(x, 0) =

{
0.5
((

1 + cos(π x−0.5L0
0.3

))
if |x− 0.5L0| ≤ 0.3

0 if |x− 0.5L0| > 0.3

whilst for the shear angle the initial conditions are such that φ(x, 0) = 0. Output is extracted at
mO, i.e. the nearest grid point to the left of xO = 0.23L0.

4.1. Thick Beam

Fig. 10 shows a few snapshots of the thick beam at the initial and later instants. A scheme
with time step refinement factor of 10 yields effectively converged solutions for the second-order,
fourth-order, and wideband schemes, used here for benchmarking. When the schemes are run with
a larger timestep, divergence from the benchmark is apparent, as expected. Fig. 11(a) shows a plot
of the waveform at the output for the oversampled schemes: the three schemes yield a converged
solution. Fig. 11(b) shows the solutions produced by the schemes using a larger timestep. Fig.
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Figure 10: Snapshots of the thick beam simulated via the Timoshenko schemes. Blue: second-order, red: fourth-
order, green: wideband. The snapshots on the left and on the right are obtained using, respectively, a timestep
k = 1/64ωc, and a timestep k = 1/6.4ωc

11(c) is a representation of the time domain error of the schemes of Fig. 11(b), compared against
the converged solution. The error is caculated on a per-sample basis, using a downsampled version
of the converged solution. A low-pass filter is applied to the waveforms so obtained, to display the
envelope of the error over time. In Fig. 11(c), the error of the wideband scheme is the smallest up
to about 4 ms, before being overtaken by the fourth-order accurate scheme. The interpretation of
this result is best understood by considering the higher resolving power of the wideband scheme
for short wavelengths: in the initial instants, shorter wavelengths dominate the dynamics. After a
few cycles, the overall envelope of the vibration will be dictated by longer wavelengths, which are
best resolved by the fourth-order accurate scheme.

4.2. Medium Beam

Snapshots of the medium beam, simulated via the shear schemes, are depicted in Fig. 12. The
snapshots compare the simulations obtained using oversampled schemes, with an oversampling
factor of 20, and the simulations obtained using reference value for the timestep, k = 1/0.3ωc.
As for the thick beam, the oversampled schemes yield a converged solution, visible both in the
snapshots of Fig. 12, and in Fig. 13(a). Fig. 13(c) is again a representation of the envelope of the
time domain error of the schemes run using the reference time step, versus the converged solution.
In this case, the error of the wideband scheme remains below the error of the fourth-order schemes,
for the times indicated.

4.3. Thin Beam

The snapshots for the thin beam are plotted in Fig. 14. The reference timestep is in this
case k = 1/44100s, and the oversampled schemes are run with a timestep k = 1/882000s (thus
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Figure 11: Time domain waveforms of the thick beam, obtained using the Timoshenko schemes. Blue: second-order,
red: fourth-order, green: wideband. (a): oversampled simulations, using k = 1/64ωc. (b): k = 1/6.4ωc. (c): absolute
error |w − w̃|, where w̃ is the downsampled congerged solution drawn in panel (a)

wiht an oversampling factor of 20). As for the Timoshenko and for the shear schemes, during the
initial instants the wideband scheme overperforms the fourth-order accurate scheme, because of the
increased resolving power at small scales. As time passes, larger wavelengths dictate the overall
envelope of the motion, and the fourth-order accurate scheme overtakes the wideband scheme.

5. Conclusions

In this work, finite difference time domain schemes with various degrees of accuracy have been
proposed for the simulation of the most widely used engineering beam models: Timoshenko, shear,
and Euler-Bernoulli. For each of the three models, three schemes have been proposed, with second-
order, fourth-order, and wideband accuracy. The schemes have been constructed by means of
second-order accurate finite difference operators, as well as a number of free parameters, tuned
so to achieve the desired accuracy. The order of accuracy is understood to be in terms of the
dispersion relation, i.e. the numerical dispersion relations approximate the continuous ones at the
given degree. Moreover, in order to obtained the desired order of accuracy, appropriate relations
between the timestep k and the grid spacing h must be fulfilled in the limit as k, h become small.
Such relations have been derived from stability analysis, and in particular via Hamiltonian methods
(detailed in Appendix B). Settings for the free parameters have been given for the fourth-order
accurate schemes. The accuracy of the scheme is valid in the time domain over infinite grids, as
the boundary conditions remain second-order accurate. The fourth-order scheme presented here
has an implicit character, and it requires the inversion of a matrix at each time-step. Another
type of scheme, here called wideband, has been presented: this scheme is best suited to reduce
the error at all wavelengths, despite a low formal order of accuracy. The wideband schemes are
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Figure 12: Snapshots of the medium beam simulated via the shear schemes. Blue: second-order, red: fourth-order,
green: wideband. The snapshots on the left and on the right are obtained using, respectively, a timestep k = 1/6ωc,
and a timestep k = 1/0.3ωc

able to calculate the eigenfrequencies of a given beam within small error bounds (about 2%) across
the whole spectrum, using reference time steps. In the time domain, they are best suited to
represent transients, i.e. portions of the waveform where small wavelengths dominate the dynamics.
Over longer periods, the fourth-order accurate schemes give the smallest error with respect to the
converged solution, on a per-sample basis. Analytic results have been given in order to tune the
θ-parameters for the wideband schemes: essentially, the free parameters adjust the number of grid
points so to match the number of analytic modes within the Nyquist limit. This has a prominent
beneficial effect for the Timoshenko model: the second-order and the fourth-order schemes fail
dramatically at representing small wavelengths. The wideband schemes employed in this work have
a simpler form than the fourth-order accurate schemes, and stability conditions can be deduced
with much less analytical work. However, refined schemes making use of more free parameters
could be designed, so to improve accuracy at larger scales. This particular aspect has not been
investigated here, but is left as future work. In this way, finite difference wideband schemes could
be desinged, so to give spectral-like spatial resolution, yet retaining the two-step temporal form.
Inclusion of losses, as well as source terms, may be realised in a straightforward manner from the
templates given here.
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Figure 13: Time domain waveforms of the medium beam, obtained using the shear schemes. Blue: second-order, red:
fourth-order, green: wideband. (a): oversampled simulations, using k = 1/6ωc. (b): k = 1/0.3ωc. (c): absolute error
|w − w̃|, where w̃ is the downsampled congerged solution drawn in panel (a)

Figure 14: Snapshots of the thin beam simulated via the Euler-Bernoulli schemes. Blue: second-order, red: fourth-
order, green: wideband. The snapshots on the left and on the right are obtained using, respectively, a timestep
k = 1/882000s, and a timestep k = 1/44100s
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Figure 15: Time domain waveforms of the thin beam, obtained using the Euler-Bernoulli schemes. Blue: second-
order, red: fourth-order, green: wideband. (a): oversampled simulations, using k = 1/882000. (b): k = 1/44100. (c):
absolute error |w − w̃|, where w̃ is the downsampled congerged solution drawn in panel (a)
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Appendix A. Matrix Notation

In the text, extensive use of matrix notation is used. The explicit forms of the matrices are
given here below. The grid spacing h is assumed to divide the domain length L0 evenly, such
that L0/h = N for some integer M . Under simply supported conditions, wnm is defined for m =
1, . . . ,M − 1 and φnm+1/2 for m = 0, . . . ,M − 1.

0w =


0 0

0 0
. . .

. . .
. . . 0
0 0

 , is M × (M − 1) 0φ =


0 0

0 0
. . .

. . .
. . . 0
0 0

 , is (M − 1)×M.

1w =


1 0

0 1
. . .

. . .
. . . 0
0 1

 , is (M − 1)× (M − 1) 1φ =


1 0

0 1
. . .

. . .
. . . 0
0 1

 , is M ×M.

Dw
x+ =

1

h


1 0 0 0
−1 1 0 0
0 −1 1 0

. . .
. . .

−1

 , is M × (M − 1), Dφ
x− = −TDw

x+.

Dw
xx =

1

h2



−1 1 0
1 −2 1 0
0 1 −2 1 0

. . .
. . .

. . .
. . . 0

0 1 −2 1
0 1 −1


, is (M − 1)× (M − 1), Dw

xxxx = (Dw
xx)2.

Dφ
xx =

1

h2



−2 1 0
1 −2 1 0
0 1 −2 1 0

. . .
. . .

. . .
. . . 0

0 1 −2 1
0 1 −2


, is M ×M.

Appendix B. Discrete Hamiltonians For The Timsohenko Schemes

Section 3.5 contains the sufficient and necessary conditions for the non-negativity of the discrete
Hamiltonians. Here the Hamiltonians are derived, and conditions on their non-negativity are dis-
cussed. Before proceeding, it is worth introducing some notation, along with some useful identities.
Summation by parts and related techniques are borrowed from [32, 33], and appear as well in [31].
The definitions of the finite difference operators are given in Table 2.
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Appendix B.1. Discrete Inner Product And Norm

Much as for the continuous case in Section 2.4, for two grid functions fm, gm, where m ∈M ,
[0, . . . ,M ], it is possible to define an inner product and associated norm, in the following way

〈f, g〉M ,
M∑
m=0

hfmgm, ‖f‖2M , 〈f, f〉M . (B.1)

In the following, other subdomains of M, lacking at least one end point, will be used. These are

M , [0 : M − 1], M , [1 : M ], M , [1 : M − 1]

Appendix B.2. Identities And Summation By Parts

The following identities hold for generic grid functions fnm, gnm, and can be verified easily by
direct calculation.

(δttf
n
m) (δt·fnm) = δt+

(δt−fnm)2

2
(B.2a)

(µttf
n
m) (δt·fnm) = δt+

(µt−fnm)2

2
(B.2b)

fnm (δt·fnm) = δt+
(fnm et−f

n
m)

2
(B.2c)

(fnm et−f
n
m) = (µt−fnm)2 − k2

4
(δt−fnm)2 (B.2d)

Another useful identity involves summation by parts, and the spatial difference operators. This is
given as

〈δxxfn, gn〉M = −〈δx+fn, δx+gn〉M + (δx+f
n
M )gnM − (δx−fn0 )gn0

= −〈δx−fn, δx−gn〉M + (δx+f
n
M )gnM − (δx−fn0 )gn0 (B.3)

Appendix B.3. Discrete Hamiltonian For The Second-Order Accurate Scheme

An inner product of (15a) with δt·wn is taken over M. This gives

〈δttwn, δt·wn〉M = (α− 1) 〈δxxwn, δt·wn〉M + 〈δxxwn − δx−φn, δt·wnm〉M
Using identities (B.2a), (B.2c), (B.3) and end conditions (16), one gets from the above

δt+

(
‖δt−wn‖2M

2
+

(α− 1)
〈
δx+w

n, δx+w
n−1〉

M

2

)
=

−
〈
δx+w

n
m − φnm+1/2, δt·(δx+w

n
m)
〉
M

+ bw (B.4)

Similarly, one takes an inner product of (15) with δt·φn over M, to get

δt+

(
‖δt−φn‖2M

2
+
β
〈
δx−φn, δx−φn−1

〉
M

2

)
=
〈
δx+w

n
m − φnm+1/2, δt·(φ

n
m+1/2)

〉
M

+ bφ (B.5)

Adding (B.4) and (B.5), and using (B.2b) gives

δt+h
n−1/2
(2) = bw + bφ, (B.6)
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where

h
n−1/2
(2) =

‖δt−wn‖2M
2

+
‖δt−φn‖2M

2
+

(α− 1)
〈
δx+w

n, δx+w
n−1〉

M

2

+
β
〈
δx−φn, δx−φn−1

〉
M

2
+

〈
(δx+w

n − φn), (δx+w
n−1 − φn−1)

〉
M

2
(B.7)

and where bw, bφ are boundary terms of the form

bw = (αδx+w
n
M − φnM−1/2)δt·wnM − (αδx−wn0 − φn−1/2)δt·wn0

bφ = β(δx+φM−1/2)(δt·φM−1/2)− β(δx−φ1/2)(δt·φ1/2)

(B.8)

Clearly hn−1/2 is the discrete counterpart to (11), and the boundary terms vanish under numerical
simply-supported conditions (16).

Owing to (B.2d), the Hamiltonian may be bounded from below, as

2h
n−1/2
(2) ≥ ‖δt−wn‖2M + ‖δt−φn‖2M −

(α− 1)k2

4
‖δx+δt−wn‖2M

−βk
2

4
‖δx−δt−φn‖2M −

k2

4
‖(δx+δt−wn − δt−φn)‖2M , g

n−1/2
(2) (B.9)

By expanding out the last term, and after summation by parts under the choice of the simply
supported numerical end conditions (16), this bound may be expressed as

g
n−1/2
(2) = ‖δt−wn‖2M +

(
1− k2

4

)
‖δt−φn‖2M +

αk2

4
〈δt−wn, δxxδt−wn〉M

+
βk2

4
〈δt−φn, δxxδt−φ〉M +

k2

4
〈δx+δt−wn, δt−φn〉M −

k2

4
〈δt−wn, δx−δt−φn〉M (B.10)

This bound is a quadratic form. Let

un−1/2 , T[δt−wn, δt−φn]

then
g
n−1/2
(2) = T(un−1/2)G(2) un−1/2

where G(2) is a time-independent block matrix, of the form

G(2) =

1w + αk
2

4 Dw
xx −k2

4 Dφ
x−

k2

4 Dw
x+

(
1− k2

4

)
1φ + β k

2

4 Dφ
xx

 . (B.11)

A condition on the non-negativity of the eigenvalues of G(2) will result in the non-negativity of the

Hamiltonian h
n−1/2
(2) , for all n. Because the diagonal terms are symmetric, and the non-diagonal

terms are the transpose of each other, one such condition may be extracted by assuring

1w + α
k2

4
Dw
xx ≥0 (B.12a)(

1− k2

4

)
1φ + β

k2

4
Dφ
xx +

k4

16
Dw
x+

[
1φ + α

k2

4
Dw
xx

]−1
Dφ
x− ≥0 (B.12b)
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Because the matrix Dw
xx is negative definite, and bounded from below by −4/h2, one may go on

and extract the following conditions for k and h.

k2 ≤4 (B.13a)

h2 ≥−B +
√

∆

2A
(B.13b)

where
A = (4− k2), B = k4(α− 1)− 4k2(α+ β), C = 4αβk4, ∆ = B2 − 4AC

Appendix B.4. Discrete Hamiltonian For The Fourth-Order Accurate Scheme

Taking again an inner product of δt·wn with (17a), and of δt·φn with (17b), using the same
energetic manipulations as for the second-order accurate scheme, it is possible to show that a
discrete Hamiltonian associated with the fourth-order accurate scheme is

h
n−1/2
(4) = h

n−1/2
(2) − (1− θ1)h2

2

‖δt−δx+wn‖2M
2

− (α− 1)(1− θ2)h2
2

〈
δxxw

n, δxxw
n−1〉

M

2

+
(1− θ3)h2

2

‖δx+δt−wn − δt−φn‖2M
2

+
(1− θ4)h2

2

‖δt−φn‖2M
2

−(1− θ5)h2
2

〈
δx−φn, δx−φn−1

〉
M

2
(B.14)

where h
n−1/2
(2) is given by (B.19)

By means of (B.2d), the discrete Hamiltonian can be bounded from below, giving

2h
n−1/2
(4) ≥ g

n−1/2
(2) − (1− θ1)h2

2
‖δt−δx+wn‖2M +

(α− 1)(1− θ2)h2k2
8

‖δt−δxxwn‖2M

+
(1− θ3)h2

2
‖δx+δt−wn − δt−φn‖2M +

(1− θ4)h2
2

‖δt−φn‖2M

+
(1− θ5)h2k2

8
‖δt−δx−φn‖2M , g

n−1/2
(4) (B.15)

where g
n−1/2
(2) is given in (B.10). Using again summation by parts, under the choice of numerical

boundary conditions (16) and (20), one may write down g
n−1/2
(4) as a quadratic form, in the same

way that (B.9) was ported to the form (B.10).
Thus, let again

un−1/2 , T[δt−wn, δt−φn]

then
g
n−1/2
(4) = T(un−1/2)G(4) un−1/2

where G(4) is a time-independent block matrix, of the form

G(4) =

 A(4) B(4)

TB(4) C(4)

 .
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where

A(4) = 1w +

[
(1− θ1)h2

2
+
k2

4
(α− 2(1− θ3))

]
Dw
xx +

(α− 1)(1− θ2)h2k2
8

Dw
xxxx (B.16a)

B(4) =

[
k2

4
− (1− θ3)k2

2

]
Dφ
x− (B.16b)

C(4) =

[
1 +

(1− θ4)h2
2

+
k2

4
(1− 2θ3)

]
1φ +

k2

4

[
β − (1− θ5)h2

2

]
Dφ
xx (B.16c)

This is a generalised form for the Hamiltonian, depending on the five free parameters. Notice that,
as expected, this form reduces to (B.11) when θi = 1 for all i. From block matrix theory, G(4) is
positive definite if and only if

A(4) > 0 (B.17a)

C(4) − TB(4)A
−1
(4)B(4) ≥ 0 (B.17b)

It is possible to show that the above condition are equivalent to

A(4) > 0 (B.18a)

β − (1− θ5)h2
2

≥ 0 (B.18b)

1 +
(1− θ4)h2

2
+
k2

4
(1− 2θ3)−

k2

h2

(
β − (1− θ5)h2

2

)
− 4

h2λ
(min)
A(4)

(
k2

4
− (1− θ3)k2

2

)2

≥ 0

(B.18c)

Equation (B.18c) corresponds to condition (B.17b), under the assumptions that A(4) > 0 and that,

in (B.16c), the matrix
[
β − (1−θ5)h2

2

]
Dφ
xx is negative definite, and hence bounded from below.

Notice that the left hand side of (B.18c) is a cubic polinomial in h2, whose roots can only be found
via an iterative root finding algorithm (such as Newton-Raphson).

Appendix B.5. Discrete Hamiltonan For The Wideband Accurate Scheme

Taking again an inner product of δt·wn with (21a), and of δt·φn with (21b), using the same
energetic manipulations as for the second-order accurate scheme, it is possible to show that a
discrete Hamiltonian associated with the fourth-order accurate scheme is

h
n−1/2
(W ) =

‖δt−wn‖2M
2

+
‖δt−φn‖2M

2
+
h2(θ − 1)‖δt−δx+wn‖2M

4
+
h2(θ − 1)‖δt−δx−φn‖2M

4

+
(α− 1)

〈
δx+w

n, δx+w
n−1〉

M

2
+
β‖µt−(δx−φn)‖2M

2
+
‖µt−(δx+w

n − φn)‖2M
2

(B.19)

By means of (B.2d), and using integration by parts under end conditions (16), the Hamiltonian
can be bounded from below, as

2h
n−1/2
(W ) ≥ ‖δt−wn‖2M + ‖δt−φn‖2M −

(α− 1)k2

4
〈δt−wn, δxxδt−wn〉2M

−
h2(θ − 1) 〈δt−wn, δt−δxxwn〉2M

2
−
h2(θ − 1) 〈δt−φn, δt−δxxφn〉2M

2
, g

n−1/2
(W ) (B.20)
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where g
n−1/2
(W ) can be written as a quadratic form. Thus, let again

un−1/2 , T[δt−wn, δt−φn]

then
g
n−1/2
(W ) = T(un−1/2)G(W ) un−1/2

where G(W ) is a time-independent block matrix, of the form

G(W ) =

1w −
(
(α−1)k2

4 + (θ−1)h2
2

)
Dw
xx 0φ

0w 1φ − (θ−1)h2
2 Dφ

xx

 . (B.21)

which is positive-definite if and only if

θ >
1

2
(B.22a)

h2 ≥ (α− 1)k2

2θ − 1
(B.22b)
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