
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ov2 is a modulator of OvHV-2 RTA mediated gene expression

Citation for published version:
Dry, I, Nightingale, K, Ferguson, J, Hopkins, J & Dalziel, R 2019, 'Ov2 is a modulator of OvHV-2 RTA
mediated gene expression', Veterinary Research Communications. https://doi.org/10.1007/s11259-019-
09748-w

Digital Object Identifier (DOI):
10.1007/s11259-019-09748-w

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Veterinary Research Communications

Publisher Rights Statement:
This article is distributed under the terms of the Creative Commons At tribution 4.0 International License (http:/ /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license, and indicate if changes were made.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322482642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/inga-dry(45d64fcd-2c45-48d3-95aa-02b356d86465).html
https://www.research.ed.ac.uk/portal/en/persons/john-hopkins(34e196ad-b5e9-4eab-be6a-1c42e6bd396c).html
https://www.research.ed.ac.uk/portal/en/persons/robert-dalziel(1e370586-16da-4d78-affc-e1692dda86fd).html
https://www.research.ed.ac.uk/portal/en/publications/ov2-is-a-modulator-of-ovhv2-rta-mediated-gene-expression(06d30367-282a-40f3-a0e9-67781035e1c8).html
https://www.research.ed.ac.uk/portal/en/publications/ov2-is-a-modulator-of-ovhv2-rta-mediated-gene-expression(06d30367-282a-40f3-a0e9-67781035e1c8).html
https://doi.org/10.1007/s11259-019-09748-w
https://doi.org/10.1007/s11259-019-09748-w
https://doi.org/10.1007/s11259-019-09748-w
https://www.research.ed.ac.uk/portal/en/publications/ov2-is-a-modulator-of-ovhv2-rta-mediated-gene-expression(06d30367-282a-40f3-a0e9-67781035e1c8).html


ORIGINAL ARTICLE

Ov2 is a modulator of OvHV-2 RTA mediated gene expression

Inga Dry1 & Katie Nightingale1,2
& Jack Ferguson1,3

& John Hopkins1 & Robert Dalziel1

Received: 28 February 2019 /Accepted: 7 March 2019
# The Author(s) 2019

Abstract
Ovine herpesvirus-2 (OvHV-2) is the causative agent of the sheep-associated form of malignant catarrhal fever, a usually fatal
lymphoproliferative disease of bison, deer and cattle. Malignant catarrhal fever is a major cause of cattle loss in Africa with
approximately 7% affected annually; and in North America has significant impact on bison farming. Research into the mecha-
nisms by which OvHV-2 induces disease in susceptible species has been hampered by a lack of a cell culture system for the virus.
Ov2 is a bZIP protein encoded by OvHV-2. Proteins with bZIP domains in other herpesviruses, such as the Kaposi’s sarcoma-
associated herpesvirus K8 protein and the BZLF1 protein of Epstein-Barr virus are known to play important roles in lytic virus
replication. Using a reporter based system, we demonstrate that Ov2 can modulate the activity of the major virus transactivator
(Replication and Transcriptional Activator protein, RTA) to 1) drive expression of viral genes predicted to be required for efficient
reactivation of the virus, including ORF49; and 2) differentially regulate the expression of the two virus encoded Bcl-2 homo-
logues Ov4.5 and Ov9.

Keywords Ovine herpesvirus-2 . Ov2 . Gene expression

Introduction

Malignant catarrhal fever (MCF) is a usually fatal disease of
cattle, deer, bison and other ruminants caused by viruses in the
genus Macavirus of the subfamily Gammaherpesvirinae
(McGeoch et al. 2006). MCF is characterised by sudden onset
of fever followed by lymphadenopathy, leucocytosis, severe
congestion and necrosis and erosion of the oral, conjunctival
and nasal muscosæ (Russell et al. 2009). The two most com-
mon forms of MCF detected are the sheep associated form of
the disease caused by Ovine herpesvirus 2 (OvHV-2) and the
wildebeest associated form of disease caused by Alcelaphine
herpesvirus 1 (AlHV-1). OvHV-2 and AlHV-1 subclinically-

infect and establish a lifelong latent infection, within lympho-
cytes of sheep or wildebeest, making these species reservoir
hosts. Reactivation of these viruses, and the other
Macaviruses from latency within reservoir populations,
resulting in shedding of the virus in nasal secretions, poses
an infection risk to MCF susceptible species, such as cattle,
bison and deer (O'Toole and Li 2014).

Lytic replication of OvHV-2 in sheep, the reservoir of the
disease, is reliably detected only in the nasal turbinates and the
lung (Li et al. 2014). Furthermore, shedding of OvHV-2 in
nasal secretions from both adolescent and adult sheep appears
to occur in short, sharp bursts that suggest a relatively tightly
controlled reactivation process (Li et al. 2014).

The regulation of the process of reactivation from latency,
and the viral proteins that drive the lytic cycle of OvHV-2 are
not yet clearly defined. Evidence from the study of Kaposi’s
sarcoma-associated herpesvirus (KSHV) and murine gamma
herpesvirus 68 (MHV-68) has indicated, that for these viruses,
expression of the replication and transcription activator (RTA;
encoded by ORF50), is sufficient to induce lytic replication
(Gradoville et al. 2000; Wu et al. 2000). In contrast, induction
of the Epstein Barr virus (EBV) lytic cycle requires the ex-
pression of BRLF1, the EBV homolog of RTA, and BZLF1, a
virally encoded bZIP domain containing protein (Zalani et al.
1996) (Liu and Speck 2003; Speck et al. 1997). In EBV, a
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further virus protein, BRRF1, has been identified as an en-
hancer of lytic replication (Hong et al. 2004).

Analysis of the genome of OvHV-2 determined that
OvHV-2 encodes homologs of RTA and BRRF1(Hart et al.
2007). Moreover, genomic analysis also identified within the
genome of OvHV-2 the presence of an open reading frame
predicted to code for a basic leucine zipper (bZIP) family
protein homologue (Hart et al. 2007). The function of this
bZIP protein homolog, Ov2, in OvHV-2 biology is not well
understood. The genome of AlHV-1, a related Macavirus,
contains a positional homologue of Ov2, termed A2, that also
contains a bZIP domain (Ensser et al. 1997). In a rabbit model
of MCF, up regulation of cellular apoptosis pathways was
observed following infection with a virus carrying a deletion
of the A2 gene (Parameswaran et al. 2014).

Evidence from MHV-68 and KSHV suggests a role for viral
Bcl-2 homologs in both the establishment of chronic infections
and in reactivation of the virus from latency (Coleman et al.
2014; Hwang et al. 2009; Gelgor et al. 2015). OvHV-2 encodes
two Bcl-2 homologs, ORFs Ov4.5 and Ov9 (Hart et al. 2007)
and in light of the increased level of apoptosis seen inA2 deleted
virus infected cells we hypothesised that Ov2 may influence the
expression of these genes.

This study aimed to investigate the whether Ov2 plays a
role in the control of virus gene expression. Due to the lack of
a productive cell culture system for OvHV-2, a luciferase
reporter-based promoter assay was utilised to demonstrate that
Ov2 is capable of modulating the viral replication and tran-
scription activator (RTA; encoded by ORF50) to repress or
activate expression of virus encoded genes including
ORF49, Ov4.5, Ov9, ORF50 and ORF57.

Methods

Cell culture

Baby hamster kidney cells (BHK-21) were cultured in
Dulbecco’s Modified Eagle Medium (Invitrogen) supple-
mented with 10% (v/v) FCS and 1% (v/v) penicillin-
streptomycin-glutamine (Invitrogen) and incubated at 37 °C,
5% CO2.

Cloning of OvHV-2 gene and promoter sequences

DNA was extracted from OvHV-2 positive BJ1035 cells
(Schock et al. 1998) using the DNA Blood and Tissue kit
(Qiagen, UK).

The OvHV-2 ORF50 gene was cloned in a multi-step pro-
cess. Each PCR reaction contained 1 unit HotStarTaq Plus
DNA polymerase (Qiagen), 50 ng BJ1035 DNA, 200 μM
dNTPS and 12 pmols of each primer in a final reaction volume
of 20 μl . To allow us to confirm expression of the RTA

protein the OvHV-2 ORF50 gene sequence was cloned such
that the RTA was expressed as a fusion protein with a
Haemagglutinin tag. All PCR reactions to amplify the
ORF50 gene were carried out using cycling conditions
consisting of an initial denaturation 5 min at 94 °C, 30 cycles
of 94 °C for 30 s, 50 °C for 1 min and 72 °C for 3 min 15 s and
a final extension of 72 °C for 7 min. The first fragment was
generated using the primer sets ORF50 Fwd and
ORF50R1rev and the second fragment was amplified using
the primers ORF50 R2 and ORF50HA rev. (All primers are
shown in Table 1). Full-length product was generated by an-
nealing and amplifying fragments 1 and 2 in the presence of
ORF50 Fwd and HA rev primers.

PCR products were purified using a QIAquick PCR puri-
fication kit (Qiagen) and cloned into PCR®2.1 TOPO vector
(Life Technologies, UK). Sequencing by GATC (Cologne,
Germany) confirmed the absence of any additional mutations
to ORF50. The ORF50 open reading frame was subcloned in
frame into the expression vector pcDNA3.1+ (Life
Technologies) using BamH1 and EcoR1. The cloning of
Ov2 into pcDNA3.1+ is described in detail in the accompa-
nying paper (Nightingale et al. 2019).

OvHv-2 gene promotor sequences primers were designed
to amplify approximately 1000 bp upstream and 50 bp down-
stream of the initiation codon of each gene of interest as
marked on the published OvHv-2 genome (Genbank acces-
sion: AY839756.1). Promoters were amplified from BJ1035
DNA. Each PCR reaction contained 1 unit HotStarTaq Plus
DNA polymerase (Qiagen), 8 pmols of primers, 50 ng DNA
and 200 μM dNTPS in a final reaction volume of 20 μl.The
cycling conditions used for amplification were an initial dena-
turation of 5 mins at 95 °C, followed by 30 cycles of 95 °C for
30 s, 58 °C for 1 min and 72 °C for 1 min, with a final
extension of 72 °C for 7 min. Each putative promoter was
cloned into pGL3basic (Promega) using Kpn1 and Mlu1 re-
striction sites. Promoter constructs are named ORFXXp: e.g.
ORF50p. All primers were synthesised by Sigma-Aldrich.

Luciferase promoter assays

DNAwas transfected, using Lipofectamine 2000 (Invitrogen),
into BHK21 cells seeded at a density of 2 × 105 cells per well
24 h prior to transfection. For each promoter assay 40 ng pRL-
SV40 (Renilla luciferase (RL) transfection control) was
transfected alongside 820 ng of the specific promoter con-
struct expressing Firefly luciferase (FL). Equivalent amounts
of expression constructs were used per transfection and empty
pcDNA3.1+ was used as carrier DNA, where necessary to
take the final DNA concentration per transfection to 2.5 μg.
Cells were washed once in PBS 48 h after transfection, and
lysed with 1 x Passive Lysis Buffer (Promega). Luciferase
signals were detected using a 96 Microplate Glomax
Luminometer, in conjunction with the Dual-Luciferase
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Reporter Assay system (both Promega). Relative light units
for each promoter tested was calculated by: firefly luciferase
(FL) reading/Renilla luciferase (RL) reading. Where stated in
the text fold change was calculated ([FL/RL] plus expression
construct/ [FL/RL] with empty vector).

Statistical analysis

Statistical analysis was performed using Minitab 17 software.
Differences between groups were analysed using a general
linear model followed by Tukey’s post-hoc test. P-values rep-
resent results from the post-hoc test.

Illustrations

Illustrations were generated using GraphPad Prism.

Results

Regulation of viral gene expression by Ov2 protein

No tissue culture system is available to study the role of spe-
cific virus encoded proteins in OvHV-2 replication therefore
to investigate if Ov2 either alone, or in concert with the
OvHV-2 RTA, could activate or repress transcription from a
variety of viral promoters, a luciferase based reporter gene
system was utilised. This approach was used successfully to

characterise the transcriptional control of the AlHV-1 RTA
(Frame and Dalziel 2008).

Expression of Ov2 protein and RTA, from our constructs,
was confirmed by Immunofluorescence using a custom OV2
specific Ab (see accompanying paper; Nightingale et al. 2019)
or a commercial antibody to the HA tag expressed on the RTA
construct (data not shown). Cell viability assays confirmed
that there was no differences in viability between cells that
were single or double-transfected (data not shown). The abil-
ity of Ov2 protein and RTA to stimulate transcription from
each promoter independently and co-operatively was tested.
Individually, Ov2 protein showed no ability to stimulate or
repress any of the promoters tested (p ≤ 0.32 to 0.99). In con-
trast, the presence of RTA alone was found to be sufficient to
stimulate transcription from ORF25p, ORF6p, ORF50p
(RTA), ORF57p (Fig. 1) and Ov4.5p (Fig. 2). However it
was also noted that RTA, by itself, was unable to stimulate
transcription from either ORF49p (p ≤ 0.06; Fig. 1) or Ov9p
(p ≤ 0.80; Fig. 2) above basal levels.

Co-expression of Ov2 protein and RTA resulted in approx-
imately 50 and 90% reductions in the expression of the lucif-
erase reporter gene observed from ORF50p (RTA) and
ORF57p driven constructs respectively, compared with ex-
pression of RTA alone (p ≤ 0.001; Fig. 1). No significant dif-
ference was observed on the expression from ORF6p (p ≤
0.99) or ORF25p (p ≤ 0.84), compared to RTA alone, when
Ov2 was co-expressed with RTA (Fig. 1). In contrast, co-
expression of Ov2 protein and RTA led to an approximately

Table 1 Oligonucleotide primers used to amplify and clone genes encodingOv2 and RTA and viral promoters. OvHV-2 RTA is encoded by the ORF50
gene

Primer name Primer Sequence Use

ORF50 Fwd GGATCCACCATGAGTGGCAAAAGACCCTC For cloning into pcDNA3.1+

ORF50HA rev AGCGTAATCTGGAACATCGTATGGGTACTGAAACCCTGAGGAGTTG Amplification of ORF50 to delete ORF49

ORF50R1 TCGTCTAGGCATATTACCTTGGAAATACTCTTCTTCTTTGGGGGTCCAT Amplification of ORF50 to delete ORF49

ORF50 R2 CATGGACCCCCAAAGAAGAAGAGTATTTCCAGGTAATATGC For cloning into pcDNA3.1+

HA rev TTAAGCGTAATCTGGAACATCGTATGGGTA Amplifying a HA tag + addition of a stop codon

ORF57pS GGTACCCACTAGCTTCCCCGCCGG Cloning into pGL3basic

ORF57pAS ACGCGTCCTTCAACGGTCCGGTTC Cloning into pGL3basic

ORF50pS GGTACCTGTAGATCTCTTACTGAGTG Cloning into pGL3basic

ORF50pAS ACGCGTGGTCCATGCTGACTGTGGTC Cloning into pGL3basic

ORF49pS GGTACCTAC AAA CAG GAT GGG AAG Cloning into pGL3basic

ORF49pAS ACG CGT TTG TCT GGG TGC TCG TCG Cloning into pGL3basic

ORF6pS GGTACCCAACGAGGAGGTCCGC Cloning into pGL3basic

ORF6pAS ACGCGTGCCTTGGACCCGATATTATC Cloning into pGL3basic

ORF25pS GGTACC GCAGTTCTTGGGGCTCC Cloning into pGL3basic

ORF25pAS ACGCGTTCTACGGCTGTGTGGGGAAG Cloning into pGL3basic

Ov9pS GGTACCGGTATAAGGGTGCTTTAAG Cloning into pGL3basic

Ov9pAS ACGCGTGTCCAGTGGCTCCCAGTG Cloning into pGL3basic

Ov4.5pS GGTACCAGTCCCGACGCCCTCCTG Cloning into pGL3basic

Ov4.5pAS ACGCGTGGCCGCATACTGTGTGGTAG Cloning into pGL3basic
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8 fold stimulation of transcription from the ORF49 promoter
(p ≤ 0.0001; Fig. 1) and an approximately 5 fold stimulation of
transcription of the Ov9 promoter (p ≤ 0.0001; Fig. 2).

Moreover, co-expression of Ov2 protein with RTAwas found
to inhibit RTA-mediated stimulation of transcription from the
Ov4.5 promoter by approximately 70% (p ≤ 0.0001; Fig. 2).
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Fig. 1 Response of OvHv-2
promoters to Ov2 protein alone,
RTA alone or Ov2 and RTA in
combination. BHK cells were
transfected with promoter
constructs (a) ORF50p (b)
ORF57p (c) ORF6p (d) ORF25p
(e) ORF49p, along with Ov2 or
RTA expression constructs as
indicated. All samples were also
transfected with the pRLSV40
plasmid as an internal control.
Expression of luciferase activity
was detected 48 h post
transfection. The graph represents
the results from three independent
experiments. Transfections were
carried out in quadruplicate. Each
bar represents the average fold
change over basal promoter
activity. NS; not significant * =
p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤
0.0001

Ov2 RTA Ov2/RTA

0

5

10

15

F
o
ld

c
h
a
n
g
e

Ov2 RTA Ov2/RTA

0

2

4

6

F
o
ld

c
h
a
n
g
e

***

***

*

a b

NS NS

NS

Fig. 2 Ov2 differentially regulates Ov9 and Ov4.5. BHK cells were
transfected with promoter constructs (a) Ov9p (b) Ov4.5p. Along with
Ov2 or RTA expression constructs indicated. All samples were also
transfected with the pRLSV40 plasmid as an internal control.
Expression of luciferase activity was detected 48 h post transfection.

The graph represents the results from three independent experiments.
Transfections were performed in quadruplicate. Each bar represents the
average fold change over basal promoter activity. NS;not significant* =
p ≤ 0.05, *** = p ≤ 0.0001
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Discussion

Herpesviruses have evolved to establish a life-long latency in
their hosts, characterised by periodic reactivations resulting in
the production of infectious virus. In the latent state, the virus
genome exists as an episome, and expresses only a few genes.
Initiation of the productive cycle is associated with an alteration
in the genomic architecture that is accompanied by the induction
of a temporal cascade of viral gene transcription, promoting viral
genome replication and particle formation (Poudyal et al. 2017).

In vivo, shedding of OvHV-2 in nasal secretions from both
adolescent and adult sheep occurs in short, sharp bursts (Li et al.
2004). Results of analysing the structure of the OvHV-2 genome
in lymphoblasts derived from sheep are consistent with the virus
being in a latent state; the genome was found to be episomal and
a restricted pattern of viral gene expression was observed in these
cells, with only ORF73 and Ov3.5 reliably detected (Thonur
et al. 2006). Thus, in vivo and in vitro evidence suggests that
OvHV-2 within the reservoir species exhibits tight control of
latency and the reactivation process. In contrast, to the reservoir
species, OvHV-2 structural proteins have been detected within
lesions of SA-MCF affected animals, suggesting some level of
lytic replication, aberrant or otherwise, occurs in the tissues of
SA-MCF affected animals (Cunha et al. 2012). Moreover, lym-
phoblasts, derived from infected cattle, show the conformation of
the OvHV-2 genome to be a mixture of linear and circular, with a
wide range of genes detectable (Thonur et al. 2006). These ob-
servations, indicate that regulation of the OvHV-2 lytic and latent
replication cycles may be less stringent in MCF susceptible an-
imals compared to that which occurs in sheep, the natural host.

In EBV, expression of the virally encoded b-ZIP protein
BZLF1 is sufficient to reactivate the virus from latency, by stim-
ulating expression of BRLF1, the EBV homolog of RTA
(reviewed by (Murata 2014)). In addition, a further virus protein,
BRRF1, has been shown to function, in conjunction with
BRLF1, to stimulate the lytic cycle (Hong et al. 2004). In this
study, we examined the ability of the bZIP protein encoded by
OvHV-2, Ov2, to stimulate expression of RTA, encoded by
ORF50, and of the BRRF1 homolog ORF49. In the reporter
system we used, Ov2 was unable to stimulate transcription from
either the ORF50 or ORF49 promoters. It is therefore unlikely
that by itself, Ov2,would be sufficient to reactivateOvHV-2 from
latency and is therefore not a functional homolog of BZLF1.

In contrast, to Ov2, the OvHV-2 RTA in our reporter sys-
tem was able to stimulate itself (ORF50) and viral genes as-
sociated with DNA replication (ORF6) and particle formation
(ORF25). These results suggest that the RTA of OvHV-2
may,like those of MHV-68 (Wu et al. 2000) and KSHV
(Gradoville et al. 2000), be sufficient, by itself, to drive entry
of the virus into the lytic cycle.

Our results did provide evidence that Ov2 functions as a
modulator of RTA, and our observations that Ov2 modulates
RTA activity to repress transcriptional activation of the

ORF57 and ORF50 promoters are consistent with those pre-
viously observed for the b-ZIP protein of KSHV, K8 (Izumiya
et al. 2003; Lefort and Flamand 2009).Moreover, inMHV-68,
the homolog of BRRF1 is a constituent part of the MHV-68
virion, and has been demonstrated to be required for optimal
lytic replication of the virus in vitro and in vivo (Noh et al.
2012). The requirement of Ov2, in our system, to induce RTA
into stimulating transcription of ORF49, the OvHV-2 homo-
log of BRRF1 (Hart et al. 2007), suggests that in vivo expres-
sion of Ov2 may be required for optimal OvHV-2 lytic
replication. That Ov2 does not alter RTA-mediated expression
of the early gene ORF6 or the late gene ORF25 supports the
argument that the observed modulations of RTA, within our
system, are specific and that Ov2 functions early in infection.

Evidence from other gamma herpesviruses suggests that vBcl-
2 proteins have a role to play in maintaining the chronic infection
of hosts (Coleman et al. 2014; E et al., 2009). OvHV-2, like EBV,
encodes two Bcl-2 gene homologs (Hart et al. 2007) and we
show that Ov2 coordinates with RTA to differentially regulate
expression of these encoded viral Bcl-2 homologs, Ov4.5 and
Ov9. The observation of differential regulation of the OvHV-2
Bcl-2 gene homologs is consistent with a previous observation
that showed differential effects on the levels of expression of
Ov4.5 and Ov9 in latently infected LGLs derived from SA-
MCF affected cattle, when these cells were treated in vitro with
5-Azacytidine, a hypomethylating agent (Thonur et al. 2006).
Ov9 contains a solitary Bcl-2 Homology 1 (BH1) domain with
an NWGR motif shown to be important for protecting cells
against apoptosis (Yin et al. 1994), suggesting it functions as an
antagonist of apoptosis. Further support for this view, comes from
the observation that A9 of AlHV-1, which shares significant ho-
mology with Ov9 at the amino acid level, protects cells against
cisplatin induced apoptosis in vitro (Stowe 2005).

Ov2 shares significant homology, around the b-ZIP domain
with A2, its positional homolog in AlHV-1 (Parameswaran et al.
2014). The observation made by Parameswaran et al that apo-
ptotic pathways are upregulated in rabbit LGL cells derived from
rabbits infected with an A2 deletant virus, compared to controls
is consistent with a model in which A9 expression is regulated
through A2 (Parameswaran et al. 2014). The availability of a
bacterial artificial chromosome of AlHV-1, may prove a valuable
tool in delineating to what extent the functions of Ov2/A2, and
those of Ov9/A9, are conserved (Dewals et al. 2006).

Transcription of the Ov2 promoter is upregulated less than
two fold in the presence of the OvHV-2 RTA. In addition, at least
in the BHK21 cell-line used in this study, no positive feedback
loop mediated via RTA, in conjunction with either ORF49 or
Ov2, could be detected (data not shown). This may indicate that
Ov2 is only required at low levels to fulfil its function within
OvHV-2 biology or it may suggest that optimal Ov2 expression
occurs in response to cellular signals and/or requires a cellular
factor or factors expressed only in specific cell-types, for example
in T cells that were absent from this experimental system. This
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would reflect the situation in KSHV where, activation of the B
cell receptor has been demonstrated to trigger virus reactivation
(Kati et al. 2013) and also MAPK cascade regulation of c-Jun
and c-Fos expression (Reviewed by (Whitmarsh 2007). we have
previously shown that OvHV-2 encodes a miRNA, ovhv2-miR-
5, which functions to regulate the expression of RTA (Riaz et al.
2014). The accompanying paper (Nightingale et al. 2019) reports
that two OvHV-2 encoded miRNAs can regulate expression of
Ov2, adding a further layer of complexity to control of OvHV-2
gene expression. Further research into the different cellularmech-
anisms which trigger/repress the expression of the viral
transactivators, such as Ov2, between SA-MCF susceptible ani-
mals and the reservoir host may offer significant insight into
observed dysregulation in OvHV-2 replication seen in MCF af-
fected animals, and the lymphoblasts derived from them.

Conclusion

In this study, Ov2 is shown to act both as a transactivator and
transrepressor of RTA-mediated virus gene expression. In par-
ticular, Ov2 induces expression of ORF49 and Ov9 that are
likely candidates for proteins required for reactivation of the
virus. It is therefore likely that Ov2 acts as a functional homo-
log to KSHV K8.
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