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Abstract

We present a method for feature interpreta-
tion that makes use of recent advances in
autoregressive density estimation models to
invert model representations. We train gen-
erative inversion models to express a distri-
bution over input features conditioned on in-
termediate model representations. Insights
into the invariances learned by supervised
models can be gained by viewing samples
from these inversion models. In addition, we
can use these inversion models to estimate
the mutual information between a model’s
inputs and its intermediate representations,
thus quantifying the amount of information
preserved by the network at different stages.
Using this method we examine the types of
information preserved at different layers of
convolutional neural networks, and explore
the invariances induced by different architec-
tural choices. Finally we show that the mu-
tual information between inputs and network
layers initially increases and then decreases
over the course of training, supporting re-
cent work by Shwartz-Ziv and Tishby (2017)
on the information bottleneck theory of deep
learning.

1 Introduction

The representations learned in supervised models are
task specific; they discard irrelevant input information
and preserve features that are useful for characterizing
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their targets. This is the conventional wisdom taken
for granted by many in the machine learning commu-
nity. However the precise nature of what information
is preserved across different layers of a neural network
is generally unknown. A better understanding of this
is desirable both for the interpretability of a particu-
lar network, and for the insights that can be gained
for neural architecture design.

We expect supervised models to be invariant to certain
transformations of the input data. For instance an ef-
fective image classifier should be invariant to transla-
tions of objects in the image, and such behaviour is
encouraged through architectural choices like convo-
lutions and pooling. As such we anticipate that the
mapping from inputs to intermediate representations
discards information, and that perfect recovery of the
inputs is not possible. Recent work by Schwartz-Ziv
and Tishby (2017) argues that compression of input
data in network representations is a central reason for
the success of deep models, particularly with respect
to generalization performance. Despite this, attempts
such as (Dosovitskiy and Brox, 2016b) have been made
to invert representations using reconstructions that
are optimized to minimize pixel losses such as mean
squared error. This leads to blurry reconstructions
from higher-level representations. Perceptual losses
using features from a pretrained convolutional network
or adversarial discriminator networks significantly im-
prove the visual quality of results (Dosovitskiy and
Brox, 2016a; Johnson et al., 2016), but fail to charac-
terize the variability present in the inverse mapping.
We propose instead to express a distribution over the
inputs conditioned on a network representation. By
sampling from this conditional distribution we can vi-
sualize the types of inputs that map to a given repre-
sentation.

In recent years there have been significant advances
in neural generative models of high-dimensional data
(Goodfellow et al., 2014; Kingma and Welling, 2014;
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Rezende et al., 2014). Autoregressive density models
decompose a joint distribution into products of condi-
tionals. By leveraging domain-specific structure, im-
pressive results have been achieved with neural au-
toregressive models of images (van den Oord et al.,
2016c,b) and audio (van den Oord et al., 2016a). Un-
like alternative generative models such as variational
autoencoders (Kingma and Welling, 2014; Rezende
et al., 2014) or generative adversarial networks (Good-
fellow et al., 2014), autoregressive models yield an ex-
act density. We show in Section 4.1 that this density
can be used to estimate a lower bound on the mu-
tual information between inputs and model representa-
tions, which is a useful metric for the analysis of neural
networks. In contrast to other methods for mutual in-
formation estimation this estimate is scalable to high-
dimensionality inputs and network features with com-
plex dependencies. In addition autoregressive mod-
els are straightforward to train in comparison to other
generative models, with a single optimization objective
and none of the instability associated with adversarial
training. Autoregressive density models are therefore
a strong choice for our desired goal of representation
inversion.

In this work we present a method for the inversion
of supervised representations that uses flexible autore-
gressive neural density models to express a distribution
over inputs given an intermediate representation. We
show how such models can be used to help understand
how much and what kind of information is preserved
at different hidden layers on a range of image datasets
(Sec. 5.1). We use inversion models to visualise the
invariances learned by classifiers with different archi-
tectures, and demonstrate advantages in interpretabil-
ity compared to point-estimate approaches (Sec. 5.2).
Finally we demonstrate that the mutual information
between inputs and intermediate representations ini-
tially increases before decreasing over the course of
training, reproducing the results of Schwartz-Ziv and
Tishby (2017) in the context of ReLU-convolutional
networks (Sec. 5.3).

2 Related work

Our approach is related to many previous works on in-
verting neural networks. Although our approach has
similar goals to optimization-based approaches to net-
work inversion (Linden and Kindermann, 1989; Lee
and Kil, 1994; Lu et al., 1999; Mahendran and Vedaldi,
2015) it is most closely related to methods which make
use of another neural network that is trained to in-
vert the hidden states (Dosovitskiy and Brox, 2016b,a;
Johnson et al., 2016; Huang et al., 2017). In another
related work Zeiler and Fergus (2014) invert individ-
ual features by explicitly reversing the filtering, pool-

ing and rectification operations in convolutional net-
works. Our work is distinct in its use of an autoregres-
sive model to express a distribution over a network’s
inputs.

Dosovitskiy and Brox (2016b) train an up-sampling
convolutional network to map from a representation
layer h to inputs x̂ = f(h), and optimize the mean
squared error with respect to the true inputs Ex||x −
f(h)||2. With this method reconstructions become in-
creasingly blurry as the amount of information pre-
served by the network about the inputs decreases with
successive layers. The level of blurriness is quite use-
ful as an indication of the amount of information pre-
served by the network, however it is a coarse measure
that doesn’t demonstrate the variability of inputs con-
sistent with a given representation. In addition, this
approach is only appropriate for data in continuous
spaces where mean squared error is a meaningful met-
ric. Our method can be applied in any setting in which
a distribution over inputs can be parameterized, such
as language processing.

Johnson et al. (2016) augment a pixel loss with per-
ceptual losses that make use of the feature space of a
pre-trained classifier to invert VGG features. These
additional constraints result in outputs that are vi-
sually appealing in comparison to simple pixel losses.
Dosovitskiy and Brox (2016a) extend this approach
with an adversarial loss that encourages reconstructed
inputs to additionally ”fool” a GAN discriminator. Al-
though these approaches produce high quality outputs
they are limited in that they produce a single image
reconstruction for a given representation, rather than
providing a distribution over plausible inputs consis-
tent with the representation.

Our method is also similar to stacked generative adver-
sarial networks (Huang et al., 2017), in which a series
of GANs are used to map from higher to lower level
representations of a pre-trained classifier. This model
was presented primarily as a way to make use of super-
vised representations in order to improve sample qual-
ity. In order to avoid degenerate samples, an entropy
loss was incorporated that encourages the auxiliary
noise to be recoverable from samples. This loss pro-
vides a lower bound on the entropy of the conditional
distributions, and results in diverse samples. However
entropy maximization is not equivalent to maximiz-
ing the likelihood, and may result in poorly calibrated
distributions.

Van den Oord et al. (2016b) use a conditional Pix-
elCNN to generate images conditioned on portrait
embeddings obtained from the top layer of a face-
detection CNN trained with triplet loss on Flickr im-
ages. This is equivalent to our method, although in
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that case the emphasis was on portrait generation
rather than analysis of the learned representations.

3 Background

3.1 Autoregressive neural density models

Neural density models use neural networks to de-
scribe parametric distributions pθ over random vari-
ables x. Autoregressive models decompose the joint
distribution into a series of D conditionals pθ(x) =∏
i pθ(xi|x1:i−1) where the parameters for the i’th

conditional distribution are the outputs of a network
θi = f(x1:i−1) that takes the preceding variables as
input. Density models are typically trained to maxi-
mize the likelihood with respect to samples from the
true data distribution. Various neural density mod-
els have been proposed; from general purpose mod-
els (Uria et al., 2013; Germain et al., 2015; Papa-
makarios et al., 2017) to domain specific models for
images (van den Oord et al., 2016c,b), text (Sunder-
meyer et al., 2012), and audio (van den Oord et al.,
2016a). Many neural density models make use of ar-
chitectures that parallelize the computation of the D
conditional distributions through a single pass of a
network. This enables efficient computation as well
as parameter sharing across conditional distributions.
In order to ensure that each conditional only depends
on the preceding variables, architectural tools such as
causal convolutions and masking are used.

Conditional density models aim to model a condi-
tional distribution p(x|h) of data variables x given
context h. Typical examples include models of im-
ages conditioned on object classes, or speech models
conditioned on speaker identity. Usually each condi-
tional is allowed to depend on the context such that
pθ(x|h) =

∏
i pθ(xi|x1:i−1,h). We make use of condi-

tional density models in order to model the distribu-
tion over input data conditioned on supervised repre-
sentations.

3.2 PixelCNN

The PixelCNN (van den Oord et al., 2016c) is an au-
toregressive neural density model for images that uses
a convolutional neural network to parameterize con-
ditional distributions for each sub-pixel in an image.
Pixel values are sampled one at a time: from left to
right and from top to bottom. Causality in the condi-
tional distributions is maintained using masked convo-
lutions that only allow connections from previously ob-
served pixels. The PixelCNN and its variants (van den
Oord et al., 2016c,b; Salimans et al., 2017) are pow-
erful models of images, and currently are the state of
the art with respect to log-likelihood scores on natural

images. In our experiments we make use of the Pix-
elCNN++ (Salimans et al., 2017), which incorporates
a number of changes to the original model including
the use of an alternative mixture-based pixel likeli-
hood, downsampling to increase receptive field sizes
and short-cut connections. Conditioning information
is incorporated by regressing a context vector to biases
which are added to intermediate feature maps. For full
details see Salimans et al., (2017) and the implemen-
tation at https://github.com/openai/pixel-cnn.

3.3 Mutual information estimation in neural
networks

A quantity of particular interest in the analysis of net-
work representations is the mutual information I(x; h)
between inputs x and a model representation h:

I(x; h) = H(x)−H(x|h) = H(h)−H(h|x), (1)

where H(x) denotes the entropy of x. The mutual
information represents the reduction in uncertainty
about x that we obtain if we know h, and can be
thought of in this context as the amount of information
preserved in the transformation x→ h. In general we
are unable to obtain this quantity as we don’t have
access to the true distributions p(x), p(h), p(x|h) or
p(h|x). However, the mutual information can be ap-
proximated in various ways. In this section we focus
on mutual information estimation via density estima-
tion. For more details on alternative approaches see
Appendix B. It is important to first consider the im-
plications of working with discrete vs continuous prob-
ability distributions.

Discrete vs continuous entropy. For determinis-
tic functions of continuous inputs the conditional dis-
tribution p(h|x) is degenerate and so the differential
entropy H(h|x) is negative infinity. For finite H(h)
this implies that the mutual information is infinite.
This poses a problem for the analysis of neural net-
works with continuous inputs, as network represen-
tations are typically a deterministic function of the
inputs. In this work we deal exclusively with discrete
image inputs, and can avoid this issue by using discrete
entropy for which H(h|x) is zero rather than infinite.
However, for models with continuous inputs care must
be taken to either add noise or to discretize the contin-
uous space. For a more detailed discussion of related
issues see Saxe et al. (2018).

Density estimation. For networks operating with
continuous input spaces one method for mutual in-
formation estimation is to add noise to network ac-
tivations hε = h + ε and use a parametric or non-
parametric model p∗ to estimate p(hε). As h is a deter-
ministic function of x the conditional entropy H(h|x)
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is simply equal to the entropy of the Gaussian noise
H(ε). The approximate model can then be used to es-
timate the cross entropy H(p(hε), p∗(hε)). An upper
bound on the mutual information can then be estab-
lished as follows:

I(x; hε) = H(hε)−H(ε) ≤ H(p(hε), p∗(hε))− c,
(2)

where c = H(ε), and we use the fact that
H(p(hε), p∗(hε)) ≥ H(hε). Kolchinksy & Tracey
(2017); Kolchinksy et al. (2017) use a kernel density
estimate (KDE) of p(hε) to obtain a bound on the
mutual information as above. We note that the per-
formance of kernel density estimates deteriorate sig-
nificantly in higher dimensions. Theis et al. (2016)
show that even for a very large number of samples,
kernel density methods greatly underestimate the true
log-likelihood of simple models trained on 6× 6 image
patches. As such these methods are not appropriate
for large networks. A parametric estimate pθ(h

ε) us-
ing e.g. neural autoregressive density models would
potentially scale better to higher dimensions, although
to our knowledge this hasn’t been explored in previous
work.

4 Inverting Supervised
Representations

Previous approaches to representation inversion
(Dosovitskiy and Brox, 2016a) optimize a parameter-
ized inversion function fθ with respect to the mean
squared error of an image and its reconstruction:

LMSE
θ = Ep(x,h)||x− fθ(h)||2. (3)

This use of a point estimate in order to invert an
information-lossy transformation results in blurry re-
constructions and does not provide information about
the variability inherent in the inverse mapping. Our
method instead minimizes the negative log-likelihood
of a parameterized inversion model:

LNLL
θ = −Ep(x,h)[log pθ(x|h)]. (4)

This enables us to query whether a given input is a
good match for a particular representation. In addi-
tion we can sample our trained model to get a sense
of the degree of constraint present in h. Optimiza-
tion of Equation 3 is equivalent to our proposed max-
imum likelihood criterion if the conditional distribu-
tion pθ is a Gaussian with spherical covariance. As
such our method simply extends Equation 3 by using
a more flexible class of conditional probability mod-
els. As we have chosen to focus on supervised models
of images, we use a conditional variant of the Pixel-
CNN++ as our inversion model. Although we do not

explore it here, we note that our method is not tied
to any particular density model, and that equivalent
domain-appropriate models could be used for e.g. text
classification or speech recognition.

4.1 Bounding the mutual information

Inversion models can be used to compute an upper
bound on H(x|h) using the conditional cross entropy
between p(x|h) and the inversion model distribution
pθ(x|h):

H(p(x|h), pθ(x|h)) = −Ep(x,h) [log pθ(x|h)] (5)

= H(x|h) + Ep(h)[DKL[p(x|h)||pθ(x|h)]] (6)

≥ H(x|h). (7)

This enables us to bound the mutual information as
follows:

I(x; h) = H(x)−H(x|h) (8)

≥ H(x)−H (p(x|h), pθ(x|h)) . (9)

This is similar to the density estimation approach de-
scribed in Section 3.3, however instead of estimating
p(hε) we are estimating p(x|h). The gap between the
true conditional entropy and the conditional cross en-
tropy is given by the KL divergence between the true
conditional distribution p(x|h) and our approximat-
ing distribution pθ(x|h) averaged over h. Therefore
the stronger our density model, the better the approx-
imation to the conditional entropy will be. The Pixel-
CNN++ architecture we use incorporates conditioning
information in a large number of convolutional layers,
at a range of spatial scales, and is therefore expected
to have the expressive capacity to capture dependen-
cies if they exist. This architecture has previously been
shown to be effective for learning distributions over im-
ages conditioned on object classes, and so we expect
it to be similarly effective in this setting.

In practice we use an empirical estimate of the condi-
tional cross entropy by averaging across T , a held-out
test set of (x,h) pairs, :

H∗(x|h) = H∗ (p(x|h), pθ(x|h)) (10)

= − 1

|T |
∑

(x,h)∈T
log pθ(x|h) (11)

We could take this a step further, and directly es-
timate the mutual information by using an uncondi-
tional model pθ(x) to estimate the marginal data dis-
tribution p(x) and hence the entropy H(x). However,
we don’t typically need the absolute value of the mu-
tual information for our analyses, but just the trends
in how the mutual information changes between dif-
ferent network layers and settings. Thus, we directly
report the estimated negative cross entropy (NCE),
−H∗(x|h), which is equivalent to the mutual informa-
tion bound, up to the constant H(x).
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(a) Input (b) CONV1 (c) CONV2 (d) FC3 (e) LOGITS

Figure 1: Inverting network layers: We compare both inversion model samples and MSE reconstructions
across different layers of the neural network. For MNIST, even the logits retain much of the information about
the original inputs. For SVHN and CIFAR the CONV1 and CONV2 layers appear to retain most of the
information in the original images, while the FC3 layer becomes invariant to many low and mid-level changes.

5 Experiments

5.1 Inverting the layers of image classifiers

We first explore the use of inversion models to explore
the invariances and abstractions learned at each layer
in a convolutional neural network.

We trained classifiers on three image datasets: MNIST
(LeCun et al., 1998), SVHN (Netzer et al., 2011) and
CIFAR-10 (Krizhevsky and Hinton, 2009) achieving
test accuracies of 99.6%, 93.3% and 81.6% respec-
tively. Following Huang et al. (2017) we used ReLU-
convolutional networks consisting of two convolutional
layers with max pooling, one fully connected layer, and
a linear layer that outputs the predicted logits for each
class. We refer to these layers as CONV1, CONV2,
FC3 and LOGITS respectively. For each dataset and
each classifier layer we trained separate PixelCNN++
inversion models. The architectural and training de-
tails are described in appendix A.

Samples. Figure 1 shows samples from trained in-
version models along with reconstructions from mod-
els trained using the MSE loss from Equation 3. For
SVHN and CIFAR the sample variability increases sig-
nificantly from lower to higher layers. This is con-
sistent with the increasing blurriness of the MSE re-
constructions and confirms the expectation that input
information is increasingly discarded in successive net-
work layers. For MNIST the reconstructions are visu-

ally similar right up to the output layer, indicating
that strong invariance in intermediate layers is not a
requirement for good performance on this dataset.

For all datasets, CONV1 samples are almost indistin-
guishable from the inputs. CONV2 reconstructions
also preserve information about the locations, styles
and colors of objects and digits, but are more variable
with respect to finer details. There is a distinct in-
crease in reconstruction variability from CONV2 to
FC3, particularly on the CIFAR dataset. However
color information is preserved in FC3, along with
object structures and scene textures. A surprising
amount of information is retained even in the net-
works’ logit predictions; this is particularly evident in
the MNIST reconstructions for which style and orien-
tation information is preserved. This is consistent with
the dark knowledge hypothesis described by Hinton et
al. (2015) that suggests that the particular output
probabilities that a model assigns to its inputs pro-
vides a rich characterization of the similarity between
examples.

Mutual information. Figure 5a shows lower
bounds on the negative cross entropy at the differ-
ent layers in the neural network, as discussed in sec-
tion 4.1. In general, the mutual information bounds
decrease through successive layers of the network, in-
dicating a general loss of information about the input.
The biggest reduction in mutual information by far is
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(a) Inputs (b) Top-k inversion model samples (c) Nearest neighbor training examples

Figure 2: Comparing inversion model samples to nearest neighbors: For each input image we sample
1024 images using an FC3 inversion model, and show the top-k by L1 distance. We compare these to the top-k
nearest neighbors from the training set calculated in the same way.

(a) MNIST (b) SVHN (c) CIFAR

Figure 3: SGAN samples conditioned on FC3: The SGAN samples are less diverse than the inversion model
samples and the nearest neighbors shown in Figure 2. In the SGAN model, this diversity is controlled by an
entropy loss term with a tunable weight, making it difficult to calibrate it in a principled way.

MNIST SVHN CIFAR

CONV1 CONV2 FC3 CONV1 CONV2 FC3 CONV1 CONV2 FC3

1NN 1.25e-2 4.95e-2 1.22e-1 5.35e-2 6.74e-2 2.92e-1 4.11e-2 9.56e-2 5.28e-1
IM-S 7.68e-4 1.65e-2 1.35e-1 1.02e-3 2.80e-2 3.22e-1 4.02e-3 6.43e-2 7.39e-1
IM-NN 6.29e-4 1.40e-2 9.52e-2 9.40e-4 2.43e-2 2.50e-1 3.47e-3 5.73e-2 5.79e-1

Table 1: Comparing images in representation space: For 500 test samples from each dataset we compute
the average L1 distance at various network layers between the input image and: (1NN) the nearest neighbor
training set example, (IM-S) a random inversion sample or (IM-NN) the closest of 10 inversion model samples.
We can see that the IM-NN distance is the closest for all datasets and layers except the FC3 layer of CIFAR10.

between CONV1 and CONV2, which is surprising as
the biggest jump in variability for samples from the
inversion models appears to occur in later layers. It is
possible that our intuitions about visual information
are poorly calibrated, and that we underestimate the
amount of information present in high-frequency pixel
detail. This is supported by the popularity of per-
ceptual loss metrics in generative vision applications
(Johnson et al., 2016; Dosovitskiy and Brox, 2016a),
that aim to characterize the differences between im-
ages in a feature space better aligned with human per-
ception.

Comparison to nearest neighbors and SGAN.
In order to evaluate how well the inversion models
capture the distribution p(x|h) we pass the generated
inversion samples, x̂, back through the image classifier
to generate the hidden states ĥ for these generated
images. Table 1 shows the results of doing this for
500 test set images and computing the average L1 dis-
tance between h and ĥ. We also perform the same

calculation using the nearest neighbor images in the
training set, instead of generated samples. We report
the distances for a single random sample from an inver-
sion model (IM-S) as well as for the closest of 10 ran-
dom samples (IM-NN). We find that for a single ran-
dom sample, the FC3 L1 distance is smaller than the
that of the nearest training set example for CONV1
and CONV2, but not for FC3. However the IM-NN
distances is smaller for all layers on the MNIST and
SVHN datasets, but not on the CIFAR dataset. Fig-
ure 2 shows the 6 nearest training examples, and the
6 closest inversion model samples from a collection of
1024, for a selection of input images.

For comparison, in Figure 3 we also show samples from
an SGAN conditioned on the FC3 layer of an equiva-
lent CNN (reproduced from (Huang et al., 2017)). We
can see that the variability of these samples is much
lower than both the samples from our model and from
the nearest neighbors in Figure 2c. In fact, in order to
prevent the SGAN from collapsing to a deterministic
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(a) Input (b) Fully connected (c) Conv (no Global Pooling) (d) Conv (with Global Pooling)

Figure 4: Architecture comparison: Inversion model samples and MSE reconstructions from the FC3 layers of
three network architectures trained on affNIST. The network with global pooling learns translational invariance,
while the others do not. Furthermore, the inversion samples indicate that the style and orientation of the digits
are retained in the global pooling network, an observation that cannot be gleaned from the MSE reconstructions.

function, the authors added an explicit entropy term
to the loss function. As the weight on this loss term is a
tunable hyperparameter, there’s no principled way to
set this to ensure that the variability is well calibrated.
In contrast, since we are using an autoregressive model
which is trained directly to maximize the likelihood of
the data, we need no such tunable hyperparameter,
and can expect the variance to be better calibrated.
It’s also worth noting the our use of the autoregressive
model enables estimation of the mutual information,
as discussed above, a capability not provided by the
SGAN model.

5.2 Comparing network architectures using
inversion models

Another practical application of inversion models is to
facilitate analysis of network architectures by reveal-
ing the invariances present in network layers. If we
know that our networks are not learning the desired
invariances, we can take steps to modify our architec-
ture. As a case study, we analyze a design choice for
convolutional architectures that has become increas-
ingly popular: global spatial pooling. Global pooling
layers aggregate information from all spatial locations,
greatly reducing the number of parameters in network
architectures. They have been found to help reduce
overfitting, and have largely replaced fully connected
layers in the final processing steps in modern image
architectures (Lin et al., 2014; He et al., 2016). As an
additional comparison we include a network that re-
places convolutional layers with fully connected layers.

We train supervised models on the affNIST dataset1.
affNIST consists of MNIST digits with random affine
transformations on a 40 × 40 canvas. These trans-
formations increase the need for invariance in network
representations in comparison to standard MNIST. We
trained three supervised networks: the first is identi-
cal to that used on MNIST in Section 5.1, the sec-

1Available at https://www.cs.toronto.edu/~tijmen/
affNIST/

ond applies global max pooling to the CONV2 feature
maps and passes the resulting vector to FC3. The
final network replaces convolutional layers with fully
connected layers with 2048 units. The network with
global pooling performs best, achieving 98.9% accu-
racy compared to 98.7% for the version without global
pooling and 95.0% for the fully connected network. We
trained PixelCNN++ inversion models to invert FC3
representations for the supervised networks, using the
same architecture as the MNIST model described in
Section 5.1.

For the fully connected network we obtain a relative
mutual information lower bound of −715.17 nats. For
the convolutional networks with and without global
pooling we obtain −704.01 and −699.55 nats respec-
tively. This indicates that more input information is
preserved in the layers of the convolutional networks
than the fully-connected network, and that the global
pooling layer discards an estimated ∼ 4.5 nats of in-
formation about the inputs.

Figure 4 shows samples from the inversion models
along with MSE reconstructions. The samples indicate
that for the network with global pooling the trans-
lation of the digit is not preserved in FC3, whereas
for the network without global pooling and the fully
connected network the digit’s location is preserved.
These results are reinforced by the MSE reconstruc-
tions, which are very blurry for the network with
global-pooling. It should be noted that it is not pos-
sible to tell from the MSE reconstructions that the
global-pooling network preserves style and rotation in-
formation about the digit, whereas samples from the
inversion model indicate that this is the case. It is
surprising that the models without global pooling do
not achieve translation invariance by FC3, and it may
explain their relatively worse performance, as the net-
works must learn this invariance in the final linear
layer.
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(a) All Datasets (b) MNIST across training steps

Figure 5: Mutual information analysis: (a) Negative Cross Entropy (NCE) across datasets and layers,
expressed relative to the magnitude of the CONV1 cross entropy. (b) Absolute NCE in nats for network layers
over the course of training for regular (blue) and intentionally overfitted (red) classifiers on MNIST. The initial
increase and subsequent decrease in NCE over the course of training for the regular model is consistent with the
expansion and compression phases predicted in previous work (Shwartz-Ziv and Tishby, 2017).

5.3 Training dynamics

Inversion models can also be used to better understand
the compression dynamics of neural network training.
These dynamics were recently studied by Schwartz-Ziv
and Tishby (2017) who examined the mutual informa-
tion between inputs and intermediate layers over the
course of SGD optimization. Their findings suggested
that there exist two distinct phases of training: an ex-
pansion phase in which networks increase the mutual
information between inputs and hidden layers and a
compression phase in which the mutual information is
reduced as information is filtered out. More recently
Saxe et al. (2018) provided evidence that the compres-
sion phase only occurs when saturating non-linearities
such as tanh’s are used, and that no compression is
present for ReLU networks. In both cases, the mutual
information was estimated using either discretization
or non-parametric methods, each of which have issues
in terms of scalability to high dimensionality features
as discussed in Section 3.3. Instead, we can use in-
version models to examine these claims for the larger
networks that we employ.

Using the MNIST classifier described in Section 5.1
we trained inversion models on representations estab-
lished after 0, 102, 103, 104 and 105 weight updates.
We use this relatively coarse view due to the compu-
tational expense of training inversion models. For the
MNIST network, which takes about 5 × 104 weight
updates to converge, this range is fairly representa-
tive of the training process. In order to investigate
the connections between mutual information and gen-
eralization we additionally trained an overfitted net-
work by using only 100 training examples and remov-
ing dropout from the the classifier. We use equivalent
inversion models to the ones described in section 5.1.

Figure 5b shows the negative cross entropy of inver-

sion models trained at different network layers over
the course of training. As discussed in Section 4.1
this is equal to a lower bound on the mutual informa-
tion up to a constant. The results for normal training
are shown in blue, and the results for the overfitted
network are shown in red. Our main observation is
that in the normal training regime for all layers of the
network the lower bound on the mutual information
initially increases, and the decreases significantly over
the course of training. We therefore see a reproduc-
tion of the main findings of Schwartz-Ziv and Tishby
for ReLU-convolutional networks. This apparent con-
tradiction of the findings of Saxe et al. (2018) can po-
tentially be explained by their use of non-parametric
methods to estimate the mutual information. Our re-
sults additionally indicate that the mutual information
is considerably higher for the overfitted network than
for the well-regularized network, which supports the
notion that compression in network layers has an im-
portant role in a model’s generalization performance.

6 Discussion

We present a method for the inversion of supervised
representations that uses flexible autoregressive neu-
ral density models to express a distribution over inputs
given an intermediate representation. Our method has
two benefits: it facilitates visualisation of model invari-
ances, thus enabling analysis of architectural choices.
Secondly it provides a scalable quantitative estimate
of the amount of information preserved by a network.
One difficulty is that density estimation is challeng-
ing in higher dimensions, and that we don’t know how
well a given model represents the true density. How-
ever, as neural density models improve, so too does our
method, and we will be able to achieve tighter mutual
information bounds and more representative samples.
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