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Abstract.--- beagle is a high-performance likelihood-calculation library for phylogenetic inference. The beagle
library defines a simple, but flexible, application programming interface (api), and includes a collection of efficient
implementations for calculation under a variety of evolutionary models on different hardware devices. The library
has been integrated into recent versions of popular phylogenetics software packages including beast and mrbayes,
and has been widely used across a diverse range of evolutionary studies. Here we present beagle 3, with new parallel
implementations, increased performance for challenging data sets, improved scalability, and better usability. We have
added new opencl and cpu (central processing unit)-threaded implementations to the library, allowing the effective
utilization of a wider range of modern hardware. Further, we have extended the api and library to support concurrent
computation of independent partial likelihood arrays, for increased performance of nucleotide-model analyses with
greater flexibility of data partitioning. For better scalability and usability, we have improved how phylogenetic
software packages use beagle in multi-gpu (graphics processing unit) and cluster environments, and introduced an
automated method to select the fastest device given the data set, evolutionary model, and hardware. For application
developers who wish to integrate the library, we also have developed an online tutorial. To evaluate the effect of the
improvements, we ran a variety of benchmarks on state-of-the-art hardware. For a partitioned exemplar analysis, we
observe run-time performance improvements as high as 5.9-fold over our previous gpu implementation. beagle 3 is
free, open-source software licensed under the Lesser gpl and available at https://beagle-dev.github.io. [Bayesian
phylogenetics; maximum likelihood; gpu; multicore processing; parallel computing]

Statistical phylogenetic analyses based on maximum
likelihood and Bayesian inference are computationally
challenging because of the intensive nature of the
calculations required. At the core of statistical
phylogenetics is the calculation of the likelihood
(probability) of the observed molecular sequence
character states under a specific model of evolution
using a recursive algorithm (Felsenstein 1981), and the
computation of this calculation comprises most of the
running time for analyses. Decreasing the time (wall
clock) for this computation is the raison d’être for
the beagle library, a parallel computing platform for
high-performance calculation of phylogenetic likelihoods
that makes efficient use of the fine-scale parallelization
capabilities of computer processors, especially graphics
processing units (gpus) (Ayres et al. 2012; Suchard
and Rambaut 2009). Here we describe and evaluate
important changes made to beagle in the time since
we introduced version 1.0 of the library in this journal

in 2012. We also set out general scalability and usability
expectations for users.

KEY IMPROVEMENTS

The most significant improvements to the library
can be broadly divided into two categories: new
implementations that expand the breadth of parallel
computing hardware that can be efficiently exploited,
and parallel-algorithm advances that improve the gpu
implementation for nucleotide-model analyses.

New Implementations for Broader Hardware Support

beagle offers a single application programming
interface (api) backed with a wide range of hardware-
specific implementations that aim to provide efficient
use of available resources. For gpus, previous versions
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2 SYSTEMATIC BIOLOGY VOL. 66

of beagle only used the cuda parallel computing
framework. Although this remains the most efficient
way to target nvidia devices, cuda is proprietary and
incompatible with gpus from other manufacturers. For
the cpu (central processing unit), previous versions of
the library have included single-core implementations
using vectorization intrinsics (e.g., sse) to achieve
efficient performance. (sse (Streaming simd [Single
Instruction, Multiple Data] Extensions) and avx
(Advanced Vector Extensions) are two of several
sets of processor intrinsics for vectorizing numeric
computation.) Additional parallelization across multiple
cores required the calling software to partition data
into multiple data subsets, each of which is computed
in a separate beagle instance executing in separate a
thread. (Threading is a method of achieving concurrent
processing within or among processor cores.) Although
this approach (of cpu-threading at the program level)
is a natural fit for independently modeled subsets, it is
ill-suited for finer-grained paralellization. Moreover, it
places the non-trivial task of managing threads on the
application developer. beagle 3 adds new gpu and cpu
implementations to target a wider range of manycore
processors and to facilitate multicore parallelism.

OpenCL Based on our existing cuda implementation
for gpus (Ayres et al. 2012; Suchard and Rambaut
2009), we have added new gpu and cpu implementations
that use the opencl framework, an open standard
for parallel computing devices. We achieved this by
modifying the previous cuda host-side code to a
framework-independent one that is usable for both
cuda or opencl implementations. This generic parallel-
implementation model communicates with the cuda
and opencl apis through a single internal interface
that, in turn, has an implementation available for each
framework. Further significant sharing of code between
cuda and opencl exists at the device kernel level.
There is a single set of kernels for both frameworks,
with keywords for each being defined at the pre-
processor stage. Although there is a common kernel
code-base across frameworks, functions that impart a
crucial effect on performance are differentiated for each
hardware type. This allows for distinctly optimized
parallel implementations: one for cuda gpus, one for
opencl gpus and one for modern x86 devices such as
multicore cpus with vectorization extensions. The level
of specialization among evolutionary models, processors,
and frameworks results in over 1,300 distinctly compiled
device kernels (Ayres and Cummings 2017b).

CPU-threading Despite the open nature and broad
industry support for opencl, we recognize that it is
an external framework that is not always available to
users of the library. Thus we have added a native
threading option to our cpu implementation. This allows
beagle to harness the increasing capability of modern
cpus for parallel processing, in a more portable manner.
Specifically, we have added an implementation for

multicore cpus that uses a pool of c++ threads (C++
Standards Committee and others 2011) to process
independent site patterns concurrently. We found that
this approach, using native functionality in the c++
standard, allowed us to add thread-parallelism to
our existing, low-level, sse vectorization of character
states (Ayres and Cummings 2017b; Ayres et al. 2012) in
an efficient and well-performing manner. The number of
threads created varies automatically with problem size,
up to the core count of the processor. Alternatively, client
programs can set a limit on the number of threads.

Improved GPU Implementation for Nucleotide Analyses

Previously, strong gpu performance (speedup >

2×) for nucleotide-model phylogenetic analyses required
data sets that shared the same evolutionary model
across many (>103) unique site patterns. Due to
the low number of states each nucleotide character
can assume, smaller sequences failed to saturate
the large number of cores available on gpus. This
resulted in poor performance for many analyses. In
order to increase core utilization and improve gpu
performance, we have identified additional opportunities
for parallel computation with nucleotide-model analyses
and implemented them in beagle 3.

Data Partitions Statistical phylogenetic analyses
benefit from increases in modeling flexibility. One
clear way of improving model flexibility is to allow
(conditionally) independent estimation of model
parameters for distinct character data subsets (e.g.,
genes, codon positions). This is typically referred to
as a partitioned model and is a technique available
in all phylogenetic software packages that currently
support beagle. Until version 3, partitioned analyses
with beagle have required the client program to
create multiple instances of the library, one for each
data subset defined by the partitioning scheme.
When beagle instances shared the same gpu, they
were executed in sequence, thus incurring significant
performance and memory inefficiencies, especially for
nucleotide problems with small (<103 unique site
patterns) data subsets.

Tree Traversal Another category of analysis that
performed inefficiently on gpus was that of nucleotide
data sets with many sequences (tips) but without a large
number unique site patterns (<103). The amount of
parallelization afforded by the limited number of unique
sites failed to saturate the hardware capacity of gpus.
The gpu parallelization of the phylogenetic likelihood
function only acted on a fine scale, exploiting parallelism
to accelerate the calculation of partial likelihood arrays
at each internal node in the proposed tree, with the
traversal of the tree itself occurring in a sequential
manner. Thus, problems with few unique site patterns
were always small for parallel processing purposes and
thus not amenable to speedups, independent of tree size.
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Parallel Computation of Partial Likelihood Arrays
What these two previously under-performing categories
of nucleotide-model problems, partitioned data sets
and large trees with shorter sequence lengths, have
in common is that they include many independent
partial likelihood arrays that were being computed
in series. We have augmented the beagle api
(in a backwards-compatible manner) and developed
new parallel implementations for cuda and opencl
frameworks to identify and execute the concurrent
computation of independent partial likelihood arrays.

Our solution for concurrent computation of partial
likelihood arrays involves different approaches depending
on problem size and hardware type. For nucleotide
sequences with more than 103 unique site patterns on
nvidia devices, we use multiple cuda streams, directing
independent computation to separate streams. The use
of cuda streams also benefits analyses that employ
multiple Markov chains, as these can now be more
efficiently computed in parallel on a single gpu. For data
sets with fewer unique site patterns, on both cuda and
opencl, we use newly developed device kernels that can
process multiple partial likelihood arrays concurrently in
a single execution launch (Ayres and Cummings 2017a).
Although the beagle api remains backwards-

compatible, programs that use the library will require
adaptation to enable the above improvements. For
partition-defined data subset concurrency, independent
subsets need to share a library instance. For parallel tree
traversal, partial-likelihood operations need to be sent to
beagle in a reverse level-order manner (in contrast to
the typical post-order approach). Further tree traversal
parallelism can be gained by rerooting the proposed tree
when appropriate (Ayres and Cummings 2018).
Enabling this further concurrency of computation in

beagle 3 allows a wider range of phylogenetic inferences
to benefit from parallel computing hardware. Nucleotide-
model analyses with many small data subsets or with
large trees but few site patterns, can now achieve higher
levels of hardware utilization. Additionally, memory
usage for partitioned analyses is significantly reduced
as the overhead imposed by multiple library instances
is eliminated. For data sets with many subsets this
improvement can cut memory usage by more than half
(see scalability section).

PERFORMANCE EVALUATION

Here we explore the performance effect of the key
improvements to the library using a computationally
challenging data set. We compare speedups for the
previous and current versions of beagle on various
parallel hardware resources, using beast (Suchard et al.
2018) (v1.10.5) and mrbayes (Ronquist et al. 2012)
(v3.2.7), two popular programs for Bayesian statistical
phylogenetics.

Benchmark Setup

For these benchmarks, we examine a dengue virus
data set with 997 genomes spanning the global dengue
diversity and a total of 6,869 unique site patterns across
10 gene-based subsets (data set available in source code
repository, see availability section). Although we use
the same data set for both beast and mrbayes analyses,
some model parameters and prior assumptions differ, so
we make no attempt to compare inference across these
software packages.

We specifically choose a data set with a large number
of sequences and with many independent subsets, each
with few unique site patterns, to best showcase the gains
in concurrency achieved in this version of the library.
Previously, data sets with these characteristics have
been the most challenging for effective parallelization.
beagle-enabled peak performance for data sets with
many more patterns and using higher state-count models
are reported in the scalability section below as well
as elsewhere (Ayres and Cummings 2017b; Ayres et al.
2012; Baele et al. 2018). To analyze this data set, we
use a nucleotide-model and assume that each subset
evolves at a different relative rate, according to an
independent hky substitution model (Hasegawa et al.
1985) and with rate variation among sites in each data
subset modeled by a discretized gamma distribution
with four rate categories (Yang 1996). For beast, we
employed a recently developed adaptive multivariate
normal transition kernel that allows the concurrent
estimation of a large number of parameters, split across
partitioned data, by exploiting parallel processing (Baele
et al. 2017).

For each inference benchmark, we run a single Markov
chain for 105 iterations and use the double-precision
floating point format in the beagle-enabled runs.
We assess speedups relative to the double-precision
likelihood calculator for each program. For mrbayes we
also show results for the native, avx+fma vectorized,
implementation in single-precision, which is the default
when not using beagle. For beast the use of beagle is
required and thus we use the default, non-vectorized, cpu
implementation in beagle as the performance baseline.
For the beast benchmarks we use version 1.10.5, for
mrbayes we use version 3.2.7. These versions use the
latest api methods in beagle 3 to improve performance.
As a basis for comparison we include results for

beagle 2, the previous major release of the library.
Version 2 was released in 2014, however there was no
accompanying application note. The main improvement
in version 2 relative to the first release is the addition
of an opencl implementation. Specifically, we compare
versions 2.1.3 and 3.1.2 of beagle and report results
for three implementations of the library, under different
hardware resources on two different systems. The
cpu-sse implementation on system 1 (an hpc [high-
performance computing] platform) runs on two Intel
Xeon E5-2697v4 processors, with a total of 36 cores. On
system 2 (a high-end desktop machine) it uses an Intel
i7-8700K cpu with 6 cores. This implementation uses sse
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FIGURE 1. Relative performance gains (fold-speedup)
for a challenging highly partitioned nucleotide-model analysis
using various combinations of implementations and versions of
the beagle library, and hardware-resources, with beast and with
mrbayes. We report fold-speedup on the log-scale, relative to the
total run time when using the native double-precision likelihood
calculator on the slowest system (denoted with an asterisk) for
each program.

vectorization, and in beagle 3 it additionally uses cpu
threads to parallelize computation. This threading is in
addition to that performed by beast, which by default
employs one thread per partition-defined data subset.
(mrbayes does not natively support multithreading.) We
benchmark the cuda version of beagle on system 1
using the nvidia gp100 gpu. For system 2 we test
on the current state-of-the-art nvidia gpu, the Tesla-
generation Titan V. We test the opencl implementation
on an amd r9 gpu on system 1. On system 2 we
use the top-of-the-line amd gpu, the Radeon Vega
Frontier. We do not include results for our opencl
implementation on the cpus for nucleotide data, as we
have found it to consistently underperform the threaded
version for nucleotide-model analyses. (For codon-model
benchmarks using opencl on the cpu see Fig. 3.)

Benchmark Results

Figure 1 shows that for both beast and mrbayes,
and for all hardware resources and corresponding
implementations, total run time for this challenging
data set improves when using beagle 3. The biggest
improvement we observe is for the nvidia Titan V
gpu under cuda on system 2, where the speedup over
the baseline likelihood calculator went from 1.4-fold to
8.2-fold when using beast. This corresponds to a 5.9-
fold increase in performance due to the improvements
in beagle 3. For this same gpu with mrbayes, we
observe an improvement from 7.5-fold to 15-fold, which
represents a 2-fold gain from using version 3 of the
library.

For the opencl implementation in beagle, running
on the amd r9 and Vega gpus, we also observe clear
performance gains from version 3 of the library. We
note, however, that in our experience the current version
of the amd opencl platform is less mature than the
cuda platform from nvidia and we have observed
inconsistent performance with the amd solution. This
issue is especially notable for the beast result on system
2 under beagle 3, where we expected better than the
observed 1.1-fold improvement over the previous version
of the library.
Another notable result is the performance

improvement for the cpu implementation of beagle
when using the multicore processor on system 1. For
both beast and mrbayes, we observe gains on the order
of 2-fold when using version 3 of the library. Despite
the fact that gpus can achieve significantly better
performance, cpu performance remains highly relevant.
Many systems do not have a high-end gpu or might
have compatibility issues with the external frameworks
required for gpu computing (i.e., cuda and opencl).
The cpu implementation in beagle 3 remains highly
portable and provides a reliable, yet well-optimized level
of performance.

SCALABILITY

Phylogenetic analysis problems span a range of sizes
with dimensions quantified in numbers of characters
(e.g., nucleotides, amino acids, codons) and number of
otus. Therefore it is pertinent to know if any specific
analysis problem fits within available memory, how it
might scale across hardware devices, and what are
the expectations for performance for the problem size
and type. These issues are explicitly addressed in the
following subsections.

Scaling Memory

Memory usage is a relevant concern when evaluating
the suitability of gpu acceleration for a phylogenetic
analysis. Typically gpus have less memory than what is
available to cpus, and the high cost of transferring data
between cpu and gpumemory prevents direct use of cpu
memory for gpu acceleration. Thus it can be important
to consider if the gpu being used has sufficient on-board
memory.
beagle memory usage depends on the data type (e.g.,

nucleotide, codon), evolutionary model characteristics
(e.g., number of rate categories), computational precision
(i.e., single or double floating-point format), and data
set size. Here we provide some precise estimates of gpu
memory requirement for beast and mrbayes nucleotide
model analyses with four rate categories and double
precision floating-point arithmetic, over a range of
problem sizes in terms of number of otus and of unique
site patterns (Fig. 2).
For perspective, a current model single gpu designed

for high-performance computing can have as much as 32
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FIGURE 2. Log-log contour plot depicting beagle-gpu
memory usage for beast and mrbayes nucleotide model analyses
with four rate categories and double precision floating-point
arithmetic, over a range of problem sizes in terms of number of
otus and of unique site patterns. The amount of memory depicted
as values below the dashed isolines convey the upper boundary for
the memory size indicated.

gb of memory (e.g., amd FirePro S9170, nvidia Tesla
V100), a single node on the Comet Supercomputer with
four nvidia Tesla P100 gpus has 4×16 gb for 64 gb
of total gpu memory, and single chassis-multiple gpu
systems are available currently with up to 512 gb of total
gpu memory. We also note that beast can distribute
data sets across multiple gpus; thus, each gpu will only
require as much memory as necessary for the data subset
assigned to it (Fig. 3 shows results for a benchmark that
makes use of this feature).

Data Partitioning Memory requirements shown in
Fig. 2 assume an unpartitioned data set. Precise
requirements for multiple data subsets depend on many
factors, and involve additional memory for independent
modeling of each subset, as well as an overhead factor.
Compared to previous versions, beagle 3 is more
memory efficient and significantly decreases the memory
overhead requirement for multiple data subsets. As
an example, for the previously-described dengue virus
data set with ten partition-defined data subsets (see
performance evaluation) beagle 2 requires 7.2 gb,
version 3 requires 3.3 gb. An unpartitioned version of
the same data set requires 3.0 gb with beagle 3 and
3.7 gb with version 2.

Scaling Computation

beagle has been designed so that a library instance
efficiently uses the computing potential of a single
hardware resource (i.e., a gpu, or set of cpus on a single
system). In this way the library makes use of up to tens of

1 4 16 64 256 1024
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● ●
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FIGURE 3. Relative performance gains (fold-speedup) on two
systems for analysis with beast v1.10.5 and beagle v3.1.2 for an
unpartitioned codon analysis of the previously-described dengue
virus data set (see performance evaluation), comprising 3,330
codons. For the beagle gpu implementation, this data set requires
21.5 gb of memory and thus we scale computation by pattern
block across two library instances, each running on a separate gpu.
Benchmarks are for 10,000 iterations, and the single-threaded, non-
vectorized, version of beagle cpu running on system 1 is used as
a reference.

cores available in or among cpu(s) or up to thousands of
cores available from a gpu within a chassis. Phylogenetic
analyses with small and intermediate-sized data sets fit
within the memory capacity of a single device (Fig. 2)
and can achieve decreased time to results by using a
single library instance, when compared to distributed
computing approaches. For analyses that benefit from
additional computational capacity (from a memory usage
or performance standpoint), it is necessary to consider
how computation can be distributed and how it scales
(over multiple gpus or over multiple nodes). Here we
explore two approaches to distributing the likelihood
computation at the core of phylogenetic analyses.

By Pattern Block Data sets with a sufficiently high
number of unique site patterns may saturate the many
cores on a gpu or its memory capacity (see Figs. 2 and 5
for nucleotide-model examples). A natural approach to
distributing the likelihood calculation is to break up the
site patterns into blocks or subsets and to compute these
independently. With beagle, pattern blocks can be
computed on distinct devices by creating multiple library
instances, one for each block. This method is available
in beast and allows for data sets to be distributed for
computation on multiple gpus.

Figure 3 shows relative performance results for a
codon-model analysis with beast on a variety of beagle
implementations and serves as an example of pattern
block scaling. For the benchmarks running on the gpu-
cuda implementation, the required memory exceeded
the capacity of a single gpu on either of the two
systems tested. Thus we distributed the computation
across two gpus by splitting the data set into two pattern
blocks, each running on a separate library instance (and
under a separate thread in beast). On both systems,
we observe strong performance for the distributed test
on two gpus. On system 1, which has 36 cpu cores,
the dual-gpu speedup over the best-performing cpu
implementation is 4.7×. On system 2, which has a latest-
generation 6-core Intel processor, this speedup is 21×.
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FIGURE 4. Relative performance gains (fold-speedup) for
analysis with mrbayes v3.2.7 and beagle v3.1.2, demonstrating the
scalability across a range of mpi processes and hardware devices on
nodes of the Comet Supercomputer available via cipres. Results
denoted with a (+) were benchmarked on nodes with a newer-
specification cpu and gpu (the cpu executed non-beagle code). As
reference, we use the double-precision mrbayes calculator, running
as a single cpu process. We use the same dengue virus data set
as before (see performance evaluation), with an increase in the
number of Markov chains to four and replicate runs to two.

We also highlight the significant performance advantage
of the cpu-based opencl implementation available in
beagle 3 over other cpu approaches. In contrast to
traditional implementations, the opencl version also
parallelizes the character state-count dimension (see key
improvements), enabling concurrent computation of
the distinct states each sequence character can assume
(61 for this codon-based analysis).

By Markov Chain or Run Replicate For Bayesian
inference programs that support Metropolis-coupled
Markov chain Monte Carlo (mcmcmc) (Geyer 1991)
or multiple runs, another approach to distribute
computation is through parallel Markov chains or
replicate runs. mrbayes employs this method via mpi to
distribute computation over multiple processes running
on a multicore cpu or more widely on a computer
cluster (Altekar et al. 2004). This mpi-based approach
can be combined with beagle such that each process
can use separate library instances and can run on a
different device or node, increasing scale in terms of both
computation and memory.
To demonstrate the use of the beagle library with mpi

for distributing computation we here provide an example
of multi-node benchmarks, performed by Dr. Wayne
Pfeiffer of the San Diego Supercomputer Center, on the
Comet supercomputer available via cipres. Figure 4
shows mpi scalability available with mrbayes v3.2.7
and beagle 3 for Markov chains and run replicates
on an increasing number of mpi processes. For the
gpu implementation, we contributed improvements to
mrbayes so that each process ran on a separate device
(an nvidia k80 gpu is seen as two devices) and up to 8
gpus were used simultaneously (over two nodes). For the
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FIGURE 5. Absolute (throughput in billions of partial
likelihood calculations per second) and relative (fold-speedup
relative to the slowest performance observed at any number of
unique site patterns) performance scaling with problem size for
implementations of the beagle library version 3.1.2 and the
Phylogenetics Likelihood Library version 2 on nodes of the Comet
Supercomputer available via cipres. The data are simulated
nucleotide sequences for a tree of 128 otus.

cpu-based implementations, each mrbayes process ran on
a separate core on a single node. For all implementations
tested, we observe that performance scales similarly as
we increase the number of mpi processes from 1 to 8 and
that the relative performance advantage of using beagle
is retained, independent of the number of processes used.

Scaling Performance

Relative performance for the different likelihood-
calculation implementations available in beagle varies
significantly with data set size and evolutionary model
employed. In this section we focus on how performance
scales with the number of unique site patterns, the
primary dimension of independent likelihood-calculation
that is parallelized by all implementations in beagle.
Version 3 of the library also parallelizes likelihood
computation on the tree toplogy on gpus (see key
improvements) and we have found performance to scale
strongly with tree size, resulting in speedups of up to
∼8× for trees with over 1,000 tips (Ayres and Cummings
2017a).

Nucleotide Models We have conducted tests to evaluate
how likelihood-calculation performance in beagle scales
with the number of unique site patterns for a
typical nucleotide-model analysis. For comparison, we
also include results using the Phylogenetic Likelihood
Library (pll) (Flouri et al. 2015) version 2 (commit
eda16a6). Currently there are no phylogenetic analysis
programs that can use both beagle and the pll,
and comparing across different programs would involve
confounding factors and impacts of the phylogenetic
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software integrating the library. Thus, performance
evaluations were done using a dedicated testing
program (synthetictest) that generates synthetic data
and exercises the core functions of the libraries. This
test program is available with the beagle source code
and comparison to the pll can be replicated by setting
the with-pll compilation option. The evaluations
performed here were facilitated because recent versions
of the pll have an api that is similarly modeled to the
one in the beagle library. For double-gpu benchmarks,
we used recently added functionality in beagle that
enables asynchronous api calls to the library, thus
allowing concurrent computation on two devices from a
single-threaded program. This approach is less efficient
than using multithreading to manage multiple library
instances (as is done with beast) but avoids complexities
associated with threading.

The pll does not support single-precision arithmetic,
whereas the beagle library supports both single and
double-precision arithmetic, hence all tests used double-
precision floating point arithmetic. (Single-precision
arithmetic is used, often optionally, by some Bayesian
analysis programs.) The tests also did not perform
numerical value rescaling, as there are numerous ways
such rescaling procedures can be effected, and this
is a design feature that differs among phylogenetics
programs. Rescaling is often necessary as the likelihood
values for many data sets lead to arithmetic underflow, a
state where floating point numbers are smaller than the
limit of what is representable by the processor, and hence
have to be rescaled to maintain necessary precision.
With beagle we typically observe an 8% cost on overall
performance when using numerical rescaling factors for
likelihood evaluation.

Dr. Wayne Pfeiffer of the San Diego Supercomputer
Center independently executed the benchmark tests on
the Comet supercomputer, which is among the resources
backing the cipres Science Gateway (Miller et al. 2010),
and thus available to the broader systematics community.
He employed a Comet node with dual Intel Xeon E5-
2690v4 processors and four nvidia Tesla P100 gpus
(only two gpus were used in the tests shown). We make
the benchmark scripts used available in the beagle
source code repository (see availability).
The tests first simulated nucleotide data for a tree of

128 otus using an evolutionary model with 4 (arbitrary-
value) rate categories and then computed the likelihood
for 10 variations of the tree and model parameters
(specifically, the tests varied topology, branch lengths,
category rates, category weights, and pattern weights).
The tests did not include branch-length optimization,
a maximum-likelihood specific operation. beagle can
compute first and second branch-length derivatives (at
a performance cost of ∼4% for a data set with 128
otus running on the gpu implementation), however
the numerical optimization procedure to propose new
branch-lengths needs to be carried out by the client
program and thus would not be a measure of library
performance. The tests replicated each run 10 times with
different starting random seeds and reported the mean

performance across the replicates. The number of unique
site patterns ranged from 1×102 to 1×106. Note that for
most data sets the number of unique sites is substantially
less than the aligned sequence length, and hence these
values correspond to larger data sets of actual nucleotide
sequences.

We collected performance results for the two best-
performing implementations of the pll and for all
implementations of beagle that are appropriate for
the cipres hardware. These comprised the following
implementations: the pll cpu with avx2; the pll cpu
with avx2, and using a novel algorithm to reduce
computation associated with repeated site states (Kobert
et al. 2017); the beagle library cpu with sse; the
beagle library cpu with sse and threading; and
the beagle library gpu with cuda, a programming
framework for computing on nvidia gpus. We note
that the pll version 2 does not include multi-core
implementations (e.g., via multithreading or mpi).

We measured both absolute performance, defined
as throughput in units of billions of partial likelihood
calculations per second, and relative performance,
defined as fold-speedup relative to the slowest
performance observed for the beagle library cpu
with sse at any number of unique site patterns. The
comparative performance results for the beagle library
and the pll are presented in Figure 5.

For problem sizes greater than 102 site patterns,
best performance is achieved with the beagle cuda
implementation running on one or two nvidia p100
gpus. With a single gpu, performance increases until
104 patterns, where the hardware reaches a saturation
point at ∼25.6 B partial-likelihood operations per
second (representing a speedup of ∼32× over single-
threaded cpu implementations). When using two gpus
(in asynchronous mode with our single-threaded test
program), this saturation point is shifted further
towards larger problem sizes. On the cpu, we find
the beagle-sse implementation with threading achieves
best performance at any problem size, with the
relative gain increasing with problem size. For single-
threaded cpu implementations, beagle-sse is fastest
up to 103 patterns, and the pll avx-2 site-repeats
implementation performs best for problems above 103

patterns (up to a peak of ∼2× over other single-threaded
implementations, for very large problems).
In order to more comprehensively assess the

performance of the pll site-repeats implementation,
we repeat the comparative benchmarks described in
this section on a sample of empirical multiple sequence
alignments with corresponding parsimony trees, each
with a high proportion of repeated sites (>90%) (Kobert
et al. 2017). Table 1 shows fold-speedups for each of
these data sets, defined relative to the performance
observed for beagle cpu with sse. We find that the
beagle gpu implementation is fastest at any problem
size, with speedups of up to 37× over the reference
serial implementation. On the cpu, the multithreaded
approach in beagle is fastest for all but the smallest
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TABLE 1. Relative performance for implementations
of beagle version 3.1.2 and the pll version 2 for a sample of
empirical data sets with an increasing number of unique site
patterns and a high percentage of repeated sites.

Unique site patterns 348 3,224 7,418 19,437
otus (sequences) 354 59 404 128
Repeated sites (%)1 94.65 92.04 96.49 91.78

S
p
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b
e
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e

pll avx2-pattern-tip 0.88 0.92 0.96 0.98
pll avx2-site-repeats 2.28 1.85 3.10 2.31
beagle sse-threaded 1.63 5.72 5.24 5.23
beagle gpu-cuda 3.36 21.82 35.49 37.06

Notes: Benchmarks performed on an Intel Xeon E5-2697v4 cpu
and on an nvidia gp100 gpu. All implementations use a single
cpu thread except for the beagle sse-threaded implementation
that uses up to 8 threads. Data sets are a sample of those used in
Kobert et al. (2017). We generated trees by running a parsimony
tree search with Parsimonator (Stamatakis 2014) with arbitrary
rooting.
1Repeated sites denote the number of sites over all nodes
that are repeats of another site at the same node, and thus
depends on the tree topology, the selected root, and the data
set. As an approximate reference, we reproduce the percentage
of repeated sites for each data set that Kobert et al. (2017)
report, where they used an independently generated parsimony
tree and indeterminate random rooting.

data set (measured by number of unique site patterns).
If we only consider single-threaded cpu approaches,
the pll solution using site-repeats performs best, with
speedups of up to 3.1× over the single-threaded beagle
implementation.

Other Models For amino acid and codon-based models,
we observe gpu performance to be less sensitive to the
number of unique site patterns (Ayres and Cummings
2017b; Baele et al. 2018). This is due to the better
parallelization opportunity afforded by the increased
number of states that can be encoded by an amino
acid or codon. The higher state count of these data
types compared to nucleotide data increases the ratio
of computation to data transfer, resulting in increased
gpu performance (Fig. 3).

USABILITY

Since the first release of beagle, we have received
occasional feedback from researchers performing analyses
where use of the library did not meet performance
expectations or that it failed to work at all. In general,
such issues occur due to the use of under-powered gpus,
such as those found on notebook computers, or due to
incorrect or missing installation of the necessary cuda
or opencl frameworks. For guidance, users can refer
to the online documentation (see availability section)
for the library and to the specific instructions for each
application.

Automatic Resource Selection

Beyond the issues described above, which relate
to the configuration of the system being used,
the characteristics of the data set and evolutionary
model employed can also have a significant impact
on performance or even preclude the use of a
gpu (see scalability). Choosing the best-performing
implementation across various hardware devices has
previously required the user to evaluate available
resources (e.g., cpu, gpu) with analysis parameters and
data set characteristics specific to the problem at hand.
To eliminate this additional level of complexity for the
user, we have extended the beagle library api so that
it now supports benchmarking that provides a ranking
of available hardware resource and implementation
combinations for the analysis parameters to be used in
the target analysis. Furthermore, we have added this
automatic resource selection feature to beast (version
1.10.5) and mrbayes (version 3.2.7).

Support in Phylogenetic Software Packages

The current extent and status of beagle integration
with different phylogenetic software packages is
varied. The latest versions of Bayesian-inference
programs beast (Suchard et al. 2018) (v1.10.5) and
mrbayes (Ronquist et al. 2012) (v3.2.7) feature the
most complete support for the library and for the
improvements here described. beast2 (Bouckaert et al.
2014), an independent project to beast, also features
extensive support for the library but does not make use
of the latest advances such as increased parallelism for
nucleotide-model analyses on gpus. Specific advice on
how to use beagle with these programs is available
through their documentation (online and at runtime).
The beagle api and library implementations (cpu

and gpu-based) also provide support for maximum-
likelihood (ml) programs via methods specific to this
approach (such as branch-length derivative calculation).
These methods have been available since the first
release of the library and significant speedups have been
observed with a development-version of garli (Ayres
et al. 2012; Zwickl 2006). At present, support for
beagle in ml-based programs remains experimental
or in-development. Development branches supporting
the library are publicly available in the garli and
phyml (Guindon et al. 2010) source code repositories,
and work is in-progress for paup* (Swofford 2003). The
considerable performance benefits of using the beagle
library on even desktop computers provide an incentive
for continued development of these projects and for other
software developers to explore doing so.

DOCUMENTATION FOR DEVELOPERS

Creating software that uses any library can be
challenging without sufficient documentation, and the
complexity of both the beagle library itself and
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the phylogenetic applications for which it is designed
can make entry difficult for beginning users. An
online tutorial (see availability section) shows how
to use the beagle library to greatly simplify the
efficient calculation of the likelihood of sequences on a
phylogenetic tree. The tutorial explains how to 1) set
up a project that links the beagle library under
two common freely-available integrated development
environments, 2) construct c++ classes that manipulate
trees and process data, and 3) use the beagle library to
calculate the likelihood under the gtr+g (Tavaré 1986;
Yang 1996) substitution model as well as arbitrary rate
matrices. This tutorial serves to augment the beagle
library api documentation with an extensive example
application in c++. The same principles can also be
applied to write applications in other languages for which
beagle includes wrappers (currently Java, and Python
with partial functionality).

CONCLUSION

The beagle library addresses a common bottleneck
across phylogenetic inference programs by accelerating
likelihood computation. Among other improvements,
version 3 of the library includes additional parallel
computing advances and combines cuda, opencl,
and native cpu-threading implementations in a single
codebase to address a wider-range of hardware resources.
Additionally, increased concurrency of computation for
large trees and partitioned data sets allows a wider
range of phylogenetic inferences to benefit from gpu
acceleration. These advances serve as an important step
in combining the capabilities of increasingly parallel
hardware with the demands of progressively more
sophisticated phylogenetic analyses.

AVAILABILITY

The beagle library is free, open-source software
licensed under the Lesser gpl. The source code,
benchmark files, documentation, as well as binary
installers for macos and Windows, are available
at https://beagle-dev.github.io. An online
tutorial for application developers is available at
https://stromtutorial.github.io.
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