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ABSTRACT

Exploiting the full statistical power of future cosmic shear surveys will necessitate improvements to the accuracy with
which the gravitational lensing signal is measured. We present a framework for calibrating shear with image simula-
tions that demonstrates the importance of including realistic correlations between galaxy morphology, size, and more
importantly, photometric redshifts. This realism is essential to ensure that selection and shape measurement biases can
be calibrated accurately for a tomographic cosmic shear analysis. We emulate Kilo-Degree Survey (KiDS) observations
of the COSMOS field using morphological information from Hubble Space Telescope imaging, faithfully reproducing
the measured galaxy properties from KiDS observations of the same field. We calibrate our shear measurements from
lensfit, and find through a range of sensitivity tests that lensfit is robust and unbiased within the allowed two per cent
tolerance of our study. Our results show that the calibration has to be performed by selecting the tomographic samples
in the simulations, consistent with the actual cosmic shear analysis, because the joint distributions of galaxy properties
are found to vary with redshift. Ignoring this redshift variation could result in misestimating the shear bias by an
amount that exceeds the allowed tolerance. To improve the calibration for future cosmic shear analyses, it will also
be essential to correctly account for the measurement of photometric redshifts, which requires simulating multi-band
observations.

Key words. Gravitational lensing: weak – Cosmology: observations – large-scale structure of Universe – cosmological
parameters

1. Introduction

The observed distribution of matter in the Universe is de-
termined by the interplay between the expansion history,
its composition, and the laws of gravity that govern the
evolution of cosmic structure. Consequently, the growth of
large-scale structure encodes key information about the ori-
gin and nature of the key ingredients in the Universe. One
complication is that most of the matter is invisible, and can
only be inferred indirectly through its gravitational pull.
One observable consequence is the distortion of space-time,
which results in correlations in the ellipticities of distant
galaxies, a phenomenon called ‘weak gravitational lensing’
(see e.g. Kilbinger 2015; Mandelbaum 2018, for recent re-
views).

The cosmological lensing signal is now routinely mea-
sured (e.g. Heymans et al. 2013; Jee et al. 2013, 2016; Hilde-
brandt et al. 2017; Troxel et al. 2018; Hikage et al. 2018).
Moreover, thanks to the significant increase in survey area
and improvements in the determination of photometric red-

shifts (or photo-zs) of the sources, cosmic shear results are
starting to yield competitive constraints on cosmological
parameters (e.g. Joudaki et al. 2018; van Uitert et al. 2018;
Baxter et al. 2019). The amplitude of the lensing signal is
largely determined by a combination of σ8, the normalisa-
tion of the matter fluctuations, and Ωm, the mean matter
density. Ongoing lensing surveys have therefore reported
the constraints on S8 ≡ σ8

√
Ωm/0.3 as their main result.

Once completed, these surveys will constrain S8 with a pre-
cision that is comparable to the most recent measurements
from the cosmic microwave background (CMB) radiation
(Planck Collaboration et al. 2018).

Compared to the CMB constraints, the weak lensing re-
sults favour somewhat lower values for S8 (Joudaki et al.
2017; Hildebrandt et al. 2017; Leauthaud et al. 2017; Troxel
et al. 2018; Hikage et al. 2018). A relevant question is
whether this could be caused by biases in the estimates of
the shear signal. An important step in shear measurement
is to correct for the blurring by the atmosphere and tele-
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scope optics, which modifies the shapes of the faint galaxies
that are used to infer the lensing signal. In particular, the
finite width of the point spread function (PSF) makes the
images rounder, thus lowering the signal (e.g., Kaiser et al.
1995). If this is not correctly accounted for, the resulting
cosmological parameter estimates will be biased. Moreover,
anisotropy in the PSF introduces alignments in the shapes
that can dwarf the cosmological signal. A straightforward
correction for the blurring by the PSF is not possible be-
cause the images are noisy.

To exploit the full potential of current cosmic shear
surveys such as the Kilo-Degree Survey1 (KiDS; de Jong
et al. 2013), the Dark Energy Survey2 (DES; Diehl et al.
2014; Flaugher et al. 2015), and the Hyper-Suprime Cam
survey3 (HSC; Aihara et al. 2018), the improvements
in the statistical uncertainties are to be matched by a
better understanding of observational and astrophysical
sources of bias. This is even more important for the fu-
ture surveys (Stage IV) such as the Large Synoptic Sur-
vey Telescope4 (LSST; Ivezic et al. 2008), Euclid5 (Lau-
reijs et al. 2011) and the Wide-Field Infra-Red Space Tele-
scope6 (WFIRST; Spergel et al. 2015). Fortunately, the var-
ious sources of observational bias are well understood and
can be characterised using the available data. Importantly,
the resulting (residual) biases can be studied and quanti-
fied by applying the shape measurement algorithm to simu-
lated data, where the galaxy images are sheared by a known
amount.

A number of blind community challenges using galaxy
image simulations (Heymans et al. 2006; Massey et al. 2007;
Bridle et al. 2009; Kitching et al. 2010; Mandelbaum et al.
2014) have compared the performance of algorithms, thus
improving our understanding of the measurement process.
However, with such generic approaches, the complexity and
the level of realism present in the real data is limited and not
all sources of biases can be captured. In order to remove the
biases in the shear estimated from a specific data set, it is es-
sential that the performance of the algorithm is determined
using mock data that are sufficiently realistic (Miller et al.
2013; Hoekstra et al. 2015; Samuroff et al. 2018), such that
the inferred bias is robust against the uncertainties in the
input parameters (e.g. Hoekstra et al. 2017). The fidelity of
the image simulations is therefore crucial, not only to quan-
tify biases in the shape measurements but also to correctly
capture the selection of galaxies. For instance, Fenech Conti
et al. (2017, FC17 hereafter) show that selection biases can
be comparable to other sources of bias.

One approach is to match the observed properties of the
simulated images to those of the real data by modifying the
input distributions in case differences are found (e.g., Brud-
erer et al. 2016). In this case, the bias can be determined
directly from the simulated data. The result, however, de-
pends on the input parameters considered, and different
combinations of input parameters may result in observed
distributions that are difficult to distinguish but yield differ-
ent biases. Alternatively, the simulated output can be used
to account for differences with the actual data by parame-

1 http://kids.strw.leidenuniv.nl/
2 https://www.darkenergysurvey.org/
3 https://hsc.mtk.nao.ac.jp/ssp/
4 https://www.lsst.org/
5 http://sci.esa.int/euclid/
6 https://wfirst.gsfc.nasa.gov/

terising the bias as a function of observed galaxy properties,
provided there is an overall agreement between the data and
the simulations. This approach has been used by a number
of weak lensing studies (e.g., Hoekstra et al. 2015; Hilde-
brandt et al. 2017; Hikage et al. 2018). Another approach
that is gaining traction is metacalibration (Huff & Mandel-
baum 2017; Sheldon & Huff 2017; Zuntz et al. 2018), which
in principle allows any shear measurement method to obtain
an unbiased estimate of shear from the data, without requir-
ing image simulations. As we discuss in more detail in § 2.3,
metacalibration cannot quantify all sources of biases how-
ever, and we argue that it should be considered somewhat
complementary to the image simulations approach we em-
ploy here.

In this paper, we revisit the shear calibration for the
cosmic shear analysis of the Kilo-Degree Survey (KiDS; de
Jong et al. 2015; Kuijken et al. 2015), with an emphasis
on creating realistic tomographic samples within the simu-
lations. The cosmological parameter constraints presented
in Hildebrandt et al. (2017) (H17 hereafter) were based on
the first ∼ 450 square degrees of observed data. The biases
in the shape measurements from lensfit (Miller et al. 2007,
2013) were calibrated using image simulations, described in
FC17, where the input galaxy catalogue was constructed to
be consistent with the lensfit priors. The shear biases for the
different tomographic bins were determined by resampling
the simulated catalogues so that the output distributions
matched the observed signal-to-noise ratio and size distri-
butions. FC17 assumed, however, that the galaxy elliptici-
ties do not correlate with other parameters and that those
galaxy parameters do not depend explicitly on redshift.

In this paper, we largely follow FC17, but introduce a
number of (minor) improvements to better reflect the actual
data analysis steps. The main difference is the use of a cat-
alogue of galaxies for which structural parameters were de-
termined from Hubble Space Telescope (HST) imaging, and
for which individual redshifts were measured using multi-
band photometry. Specifically, we use data from the Cosmic
Evolution Survey (COSMOS; Scoville et al. 2007) with the
aim to emulate KiDS observations. Comparison to actual
KiDS observations in the same field not only enables us to
evaluate the fidelity of our simulated data for the different
tomographic bins. In fact, as explained in more detail be-
low, the quality of our simulated data allowed us to identify
errors in the implementation of the weighting schemes used
in both FC17 and H17. Under the reasonable assumption
that the COSMOS galaxy sample is representative of the
full survey, we can construct our mock KiDS lensing survey
by varying the seeing conditions.

This paper is structured as follows: In § 2, we present a
mathematical framework for shear calibration using image
simulations, and discuss the common pitfalls in this con-
text. This motivates several tests carried out throughout
the rest of the paper. In § 3, we describe the data and the
shape measurement algorithm for which we wish to cali-
brate the lensing shear. We also briefly describe our image
simulations setup and highlight the improvements from the
prior work (FC17). In § 4, we describe the input catalogue
for the simulations, which is one of the main focuses of this
paper, and show that the simulations match the data very
well. § 5 deals with the different sources of selection bias.
In § 6, we derive the calibration corrections for shear. The
sensitivity of our main results to various choices made in
our simulations is explored in § 7 and we conclude in § 8.
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2. Theory and overview

2.1. An estimator for shear

The differential deflection of light rays caused by inhomo-
geneities in the intervening mass distribution results in a
distortion in the observed images of distant galaxies. In the
limit of weak gravitational lensing, the quantity of interest
is the lensing shear γ, which can be estimated by averaging
the ellipticities of a sample of galaxies.

If we denote the intrinsic ellipticity of galaxies by a
complex number εint, then the lensed ellipticity (Bartel-
mann & Schneider 2001) is εlens = (εint + γ)/(1 + γ∗εint) ≈
εint +γ−γ∗

(
εint
)2

, where the approximation to first order7

in γ holds for small values of |γ|. If we treat the unknown
intrinsic ellipticity as a source of noise, the value of εlens is
an unbiased8, but a noisy estimate of γ. The challenge for
any weak lensing study is thus to obtain accurate measure-
ments of εlens.

The shear due to the large-scale structure is typically ∼
10−3, while the strength of the shape noise,

〈
|εint|2

〉
∼ 0.3.

To reduce the statistical uncertainty in the shear estimate in
order to be of any use, the (weighted) average ellipticity for
an ensemble of galaxies is used instead. Thus, an estimator
for the gravitational shear is

γ̂ =

∑
g wg ε̂g∑
g wg

, (1)

where g labels the galaxies, ε̂g is the ellipticity measured
by a shape measurement algorithm, and wg is the weight
assigned to the galaxy g, based on its signal-to-noise ratio,
ellipticity, etc.

If γ̂ is an ideal estimator of the lensing shear γ, then, by
definition, E(γ̂) = γ, where E stands for taking the expec-
tation value over all possible noise realisations. However,
simple practical estimators suffer from biases (see Hirata
& Seljak 2003; Viola et al. 2011, for some examples). The
estimator is then not only a function of the shear, but also
depends on the distribution of various intrinsic parameters
pertinent to the sample, which we denote as qobs. In the case
of weak gravitational lensing, one can linearise the estima-
tor in γ to obtain the standard linear bias model (Heymans
et al. 2006) to obtain

E(γ̂|qobs) = γ (1 +m[qobs]) + c[qobs]. (2)

Here, c[qobs] ≡ E(γ = 0 | qobs) is the value of the estima-
tor for zero input and is referred to as additive bias and
m[qobs] is the linear response of the estimator to the shear
and is referred to as multiplicative bias. Strictly speaking,
the multiplicative bias is a 2×2 tensor, but in practice, it is
approximately a scalar matrix and is treated as a scalar. For
simplicity, we will treat m[qobs] as a scalar as well. Thus,
given a biased estimator γ̂, one can construct an ideal esti-
mator ˆ̃γ(γ | qobs) by calibrating out the biases as

ˆ̃γ(γ | qobs) =
γ̂(γ | qobs)− c[qobs]

(1 +m[qobs])
(3)

7 Strictly speaking, the observable is not the shear but another
quantity called as reduced shear, but to first order in the lensing
potential, they are the same.
8 This assumes that the galaxies are randomly oriented. Local
tidal effects are known to cause intrinsic alignments of galaxies
that bias the shear estimate.

such that E(ˆ̃γ) = γ, provided one knows the bias terms
precisely.

The presence of an additive bias can be inferred by
stacking the shear estimates in an appropriate coordinate
frame. For instance, the mean shear across a large survey
should vanish. Moreover, the magnitude of the bias can be
determined directly from such data combinations. In con-
trast, the multiplicative bias cannot be determined directly9

since it requires the knowledge of the magnitude of the
shear.

Traditionally, the performance of shape measurement
algorithms has therefore been evaluated using simulated
galaxy images, where the ground truth is known. A series of
blind community challenges have benchmarked the perfor-
mance of various shape measurement methods (Heymans
et al. 2006; Massey et al. 2007; Bridle et al. 2009; Kitching
et al. 2010; Mandelbaum et al. 2014). While such efforts
have helped to improve our understanding of the various
sources of bias, the results cannot be applied directly to the
actual survey data (Hoekstra et al. 2015). Thus, even after
an internal calibration, residual biases may still be present.
The true magnitude of this systematic error depends on
three factors:

1. the difference in the distributions of parameters that
affect the bias between the observations and the simu-
lations (c.f. § 4.3)

2. the selection criterion in the simulations (c.f § 6.1) and
3. the sensitivity of the bias to the galaxy population

(c.f. § 7)

We make this mathematically exact in the following sub-
section. The equations in the following discussion are not
meant to provide a computational advantage in estimat-
ing multiplicative bias for any sample in any observed data
from an arbitrary simulation. Rather, they provide a use-
ful mathematical framework to understand the limitations
of the state-of-the-art shear calibration methods, and high-
light where further work needs to be done. We will occasion-
ally refer back to this framework, placing our calibration
results (c.f. § 6 and § 7) in this context.

2.2. A mathematical framework for calibrating shear with
image simulations

The multiplicative bias in the shear estimator ε̂g for a single
galaxy can be characterised in terms of the various prop-
erties that can be measured; the size and signal-to-noise
ratio (S/N) are generally the most important. The latter
is a measure of the importance of noise, whereas the for-
mer captures how resolved a galaxy is with respect to the
PSF. The shear bias for a sample of galaxies estimated us-
ing Eq. (1) may then taken to be the ensemble weighted
mean of the individual biases. However, in practice, indi-
vidual galaxy properties alone are insufficient to determine
the bias of the sample. Due to observational effects such
as blending with background galaxies, contamination due
to nearby galaxies etc., the true bias in the shear is more
complicated (see Hoekstra et al. 2017, for example) and any
residual biases are estimated using realistic simulations that
mimic the particular survey in hand.

9 See § 2.3 for recent methods that aim to obtain them from
data.
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We denote by S the collection of all the variables that
determine the bias in the measured ellipticity. Some exam-
ples of S are S/N, galaxy size, ellipticity, size and ellip-
ticity of the PSF, and additional parameters as well, such
as galaxy morphology and population dependent proper-
ties such as the distance to the nearest neighbour, size and
the brightness of the nearest object. It is useful to think in
terms of a galaxy population rather than a sample selected
based on some criterion, because this provides a natural
way to account for biases due to blending, selection effects,
etc. The set (continuous) of all such S is denoted by S.
The data (from observations or from simulations) are then
described by a probability distribution function p.We will
denote the function space of such probability distributions
by P.

The observed population of galaxies normally spans a
wide range in the set of observables S. Often, the dimen-
sionality of S is reduced empirically by using a combination
of two or more quantities (e.g., S/N instead of galaxy mag-
nitude and pixel noise and the ratio of galaxy size and PSF
size). We express the collections of variables S as a union of
two mutually exclusive sub-collections, that is, S = (D,h),
where D is the set of observables over which we explicitly
characterise the bias (S/N and resolution in this paper) and
h is the rest of the ‘hidden variables’ (some of which may
still be observables). We know that the bias in the shear es-
timator (ellipticity) depends on many parameters (see for
e.g., Pujol et al. 2017) including the intrinsic ellipticity it-
self (Viola et al. 2014), for which we must not characterise
the bias to avoid selection effects, and hence h is non-empty.
We also know that nearby faint (undetected) galaxies can
affect the bias (see for e.g., Hoekstra et al. 2015; Euclid
Collaboration et al. 2019), and hence h is non-local. The
realism in the image simulations is implicitly expected to
naturally account for the biases that arise from h. By con-
struction, S = (D,h) includes information about adjacent
galaxies as well, and thus completely determines the bias.
We express the exact per-object contribution to the shear
multiplicative bias as b(D,h). This might be thought of as
a per-object responsitivity to shear.

We imagine selecting a sample q from the overall popu-
lation p by means of a selection function s(D,h) which is
binary10 in nature. In practice, the selection function can be
an implicit one, such as objects lying above the detection
threshold, or explicit, for instance resulting from redshift
cuts in cosmic shear tomography. To correct the shear es-
timate obtained from a galaxy sample q ∈ P selected from
p using a selection function s, we treat m[q] ≡ m[p; s] as
a functional that can take in a probability distribution p
and a selection function s. Because the shear estimator γ̂
in Eq. (1) is a linear combination of individual shear esti-
mators (ε̂g; galaxy ellipticities), we can write the bias of the
sample q as

m[q] =

∫ ∫
dD dh q(D,h)b(D,h)

=

∫ ∫
dD dh s(D,h)p(D,h)b(D,h) (4)

for an appropriate measure dD dh in the set S. We assume
without any loss of generality that the measure is separable.

10 Our convention is such that the non-zero value of the selection
function is chosen so that it normalises the distribution, so that∫

dxs(x)p(x) = 1.

We can turn around Eq. (4) and formally define (up to a
constant of integration)

b(D,h) :=
δm[q]

δq(D,h)
(5)

as the sensitivity of the multiplicative bias of a galaxy sam-
ple to a small change in the sample.

Since the bias is characterised only as a function of D
in practice, we marginalise over h as follows. We first ex-
press p(D,h) = p′(D)r(h|D) and the selection function
s(D,h) = s′(D)t(h|D). We note that although t is not a
(conditional) probability distribution, we choose to denote
the argument of the function as h|D for convenience. The
bias of the sample after marginalising over h is

m[p; s] =

∫
dDs′(D)p′(D)

∫
dht(h|D)r(h|D)b(D,h)

(6)

=

∫
dDw(D) b[r; t](D), (7)

where

w(D) = s′(D)p′(D) =

∫
dhs(D,h)p(D,h) (8)

and

b[r; t](D) :=

∫
dh t(h|D)r(h|D)b(D,h), (9)

with b[r; t](D) to be interpreted as the (mean) bias11 of the
sub-sample of the galaxies that lie at D. The multiplicative
bias of the sample is expressed as the average over the sub-
samples.

We specifically draw the reader’s attention to the fact
that the bias surface depends on both the selection func-
tion and on the overall population of the galaxies. Because
of this dependence of the population, it is incorrect to think
of the shear bias b[r, t](D) estimated for the sub-population
of galaxies as something that can be associated with the
individual galaxies without any reference to the sample of
galaxies. We therefore advise against splitting a galaxy sam-
ple after having calibrated the shear from the sample. The
dependence on the selection function in the bias surface will
turn out to be crucial in our analysis, and we will show its
importance in § 6.

If preal is the galaxy population corresponding to the
real Universe, and qreal is a sample selected from it us-
ing a selection function sreal, we would like to evaluate
m[preal; sreal] := mreal to provide an accurate estimate
of the bias. The goal of image simulations is to esti-
mate the multiplicative bias using a simulated population
psims. Unfortunately, psims, and therefore the correspond-
ing sample qsims, obtained from simulations with a selec-
tion function ssims generally do not match those of the ob-
servations perfectly, even if ssims ≡ sreal. Therefore, while
b[rsims, tsims](D) may be used to correct for raw biases of a
sub-population of galaxies, msims estimated from the sim-
ulations alone is often not a good estimate of mreal. The

11 This term is the generalisation of bias as a function of
log(S/N) and resolution parameter R.
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difference between the two is then given by

∆m :=mreal −msims

=

∫
dDdh b(D,h) ×

[wreal(D)treal(h|D)rreal(h|D)

− wsims(D)tsims(h|D)rsims(h|D)]. (10)

We have considered b(D,h) to be the same since the same
shape measurement algorithm is executed on both simula-
tions and the real data. Defining ∆w = wreal − wsim and
with similar definitions for ∆t and ∆r, we can expand mreal

as (with the arguments suppressed)

mreal =

∫
dDdh b(D,h)(wsims + ∆w)(tsimsrsims + ∆(tr)),

(11)

where

∆(tr)(h|D) =rsims(h|D)∆t(h|D) + tsims(h|D)∆r(h|D)

+ ∆t(h|D)∆r(h|D).

(12)

The term involving wsimstsimsrsims is the same as msims by
definition. If the simulations were statistically identical to
the real data in all aspects, then the correction term ∆m
would be zero. Another guaranteed way to ensure ∆m = 0
would be to have b(D,h) ≡ 0 in the range of interest; in
fact, it would guarantee mreal = msims = 0. So far, no
method has been demonstrated to achieve this in practice,
especially on the measured quantities (D,h). Methods with
small bias b(D,h)∀(D,h) are preferable as they help in
keeping all the correction terms small, providing robust cal-
ibration. For a given function b(D,h), we must aim to keep
the differences between the simulations and the real data
as small as possible to estimate accurate bias values.

Since the simulations and the real data will inevitably
differ from each other, the correction ∆m is estimated by
post-processing the simulations. Although the correction to
the bias has many terms, the term that has received the
most attention in the literature so far is the one involv-
ing ∆wtsimsrsims. This term is estimated by re-weighting
the simulations as in FC17; M18a; Z18 or by resampling,
as in FC17. So far, the other terms contributing to ∆m
have been assumed to be negligible and hence ignored. A
proper marginalisation over these terms must lead to an in-
creased systematic uncertainty, as it does in this work. We
will return to these other terms after discussing how the
∆wtsimsrsims term is evaluated in practice.

In order to evaluate the ∆wrsimstsims, the set of ob-
servables is partitioned (or binned) arbitrarily into several
subsets Di such that D =

⋃
i

Di and Di ∩ Dj = 0 if i 6= j.

As mentioned in the beginning of this sub-section, a typical
choice for D in practice is a measure of the signal-to-noise
ratio and a resolution parameter. A practical estimator (see
Appendix A for a full derivation) for the bias term is

m[preal; sreal] ≈
∫

dDwreal(D)b[rsims; tsims](D)

=
∑
i

∫
Di

dDwsims(D)b[rsims; tsims](D)
wreal(D)

wsims(D)

−→
∑
i

〈bi[rsims; tsims]〉
wi,real
wi,sims

,

(13)

where

〈bi[rsims; tsims]〉 :=

∫
Di

dDwsims(D)b[rsims; tsims](D), (14)

is the average value of b[rsims; tsims](D) in the ith partition,
and

wi,real :=

∫
Di

dDwreal(D), (15)

is the number (or total weight) of galaxies in the ith parti-
tion in the observed data and wi,sims is defined similarly for
the simulated data. The division by wsims(D), or equiva-
lently by wi,sims assumes that the simulations have covered
all the regions of interest in the parameter space of observ-
ables D sufficiently.

We refer to the ratio of the two as the re-weighting fac-
tor. For a pre-defined set of partitions, the averaged quan-
tities in Eq. (13) are themselves noisy; in particular, wi,sims

is. As this term appears in the denominator, the estimator
itself may be slightly biased. Thus, the bias in the estimator
is present even if wsims = wreal, and arises because the simu-
lations represent a different sample from the observations. If
we instead define the partitions such that wi,sims is the same
in each of the partitions, the bias in the estimator may be
partly mitigated, but not completely eliminated, since the
partitions themselves are correlated with wsims. The bias in
the estimator depends on the actual distributions, but as
long as the partitions (bins) contain fairly large numbers of
galaxies, the bias in the estimator must be small, and may
be neglected compared to the uncertainty in the estimate
itself (c.f. appendix A).

FC17 show that the shear bias for a sub-population of
galaxies defined by their noisy observables is different from
that for a sub-population of galaxies defined by their intrin-
sic parameters (see Fig. 6 of FC17 for example), and that
the shear bias is more sensitive to the observed parameters.
This was referred to as ‘calibration selection bias’ in FC17.
This makes b(D,h) and b[r; t](D) steeper functions when
based on the observed parameters, which increase the sen-
sitivity to the simulated population of galaxies. Moreover,
the practical estimator is an approximation to the integral,
whose validity relies crucially on the smoothness assump-
tion of the integrand within the partitions. As we know
from FC17, Z18 and Samuroff et al. (2018), b[rsims; tsims] for
lensfit and im3shape does not appear to be smooth enough
to lend itself amenable to even fairly sophisticated interpo-
lation schemes. To circumvent the difficulty of calibrating
shear robustly when b[rsims; tsims] is noisy or not smooth
enough, FC17 suggested using a resampling approach (see
Sect. 5 of FC17) to obtain a resampling weight wres based on
the number of times a galaxy in the simulation is matched to
galaxies in the observed data in a ‘nearest-neighbour’ sense.
The resampling weights, along with the lensing weights, are
used to obtain a shear estimate for the desired sample, and
the bias in that estimate is then the bias assigned to the
sample. Within our framework, it corresponds to inducing
the notion of a metric in the parameter space of observables
and then partitioning D into Voronoi tessellations instead
of regularly spaced bins. Each tessellation by construction
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contains ‘one’ galaxy (wi,sims = 1) and wi,real is the ‘num-
ber’ of the galaxies in the observed data that occupy the
ith region, which is also the resampling weight for those ob-
served galaxies. One could consider replacing the number
by their lensing weights, but FC17 chose to use the number
of galaxies instead for practical reasons. This is therefore
mathematically equivalent to Eq. (13), with the advantage
that it avoids having to calculate the bias surface explicitly
for each of the sub-samples. This description is strictly true
for the nearest neighbour matching alone, and for a generic
k-nearest neighbour search as used by FC17, it amounts to
repeating this procedure k-number of times, with previously
assigned matches discarded. If the simulations are a good
representation of the observed data, the re-weighting fac-
tor is close to unity and the resampling factor is the same
for all partitions. In such a case, we expect the inferred
bias to be insensitive to the calibration methodology and
hence expect both the re-weighting and resampling methods
to give identical results. FC17 also demonstrated that the
resampling approach and the re-weighting approach yield
consistent bias values within their statistical uncertainty.

In the first year HSC shape catalogue (HSC-DR1; Man-
delbaum et al. 2018a, M18a hereafter), galaxies are as-
signed baseline multiplicative (and additive) bias correc-
tions12 based on the simulations using a somewhat sophis-
ticated interpolation of b[rsims; tsims](D). The multiplicative
bias for a sample, m[qreal] is then calculated as the weighted
average of the per-object multiplicative bias (Hikage et al.
2018). For the im3shape catalogue of first year results of
DES (DESy1 Zuntz et al. 2018, Z18 hereafter) and KiDS-
450 (FC17) as well, a grid-based scheme is implemented
owing to slightly better performance, compared to fitting
an analytical function to b[rsims; tsims](D). Galaxies are as-
signed a multiplicative bias depending on which bin in the
grid they belong to. In all three analyses, the sample selec-
tion was made after the per-object multiplicative bias were
calculated.

We now return to the other correction terms. If the selec-
tion function on the real data and simulations are the same,
then the terms involving ∆t vanish. If object detection, star-
galaxy separation and shape measurements are carried out
on the simulations as done for the data, we expect the ∆t
term to be small. However, there is an additional selection
function based on galaxy colours introduced in cosmic shear
tomography through photometric redshifts. Such selection
cuts have not been applied explicitly to the simulations
in FC17, M18a, and Z18. The correction terms involving
tsimsrsims ∆w were computed for each tomographic sample,
but the contributions from ∆t terms were ignored. In this
work, we explicitly apply redshift cuts on the simulations
as we do in the data, and therefore assume that the terms
involving ∆t are truly negligible. The importance of includ-
ing redshift information in the simulations for calibrating
shear were highlighted in Z18 and we demonstrate it in this
paper as well (c.f. § 6).

If the simulations are representative of the real data,
in terms of image quality, galaxy populations etc., then we
can expect ∆r (and ∆w) to be small. The difference be-
tween the two populations may be bridged either through a
Monte-Carlo control loop as in Bruderer et al. (2016) on the
joint probability distribution or by starting with a deep cat-

12 The multiplicative bias was offset by an undisclosed constant
to aid blinded analysis.

alogue from a space-based telescope as in this work, M18a
and Z18. We note that r(h|D) is a conditional probabil-
ity distribution, implying that correlations between D and
h (for example, between size and ellipticity; c.f. § 4.2 and
Fig. 8) have to be captured correctly. It may not suffice for
the simulations to match only the marginal distributions
of parameters in the real data, as ∆w = 0 does not guar-
antee that ∆m = 0. We explicitly show the importance of
capturing these correlations in this paper (c.f. § 7.3). The
error introduced by neglecting any residuals in these terms
are quantified approximately by performing various sensi-
tivity tests, which place an upper bound on the terms that
are ignored (see Sec. 6 of FC17, for example). For instance,
Hoekstra et al. (2017) studied the sensitivity of the bias
with Euclid -like simulations for the classic KSB shape mea-
surement algorithm (Kaiser et al. 1995; Luppino & Kaiser
1997; Hoekstra et al. 1998) to various parameters such as
the distribution of the galaxy sizes and ellipticities, galaxy
density, limiting magnitude, etc.

To summarise our framework, we argue that the im-
age simulations used to calibrate the shear must mimic
the observed data as closely as possible to avoid any de-
viation from the required m[preal; sreal]. The necessity for
good agreements also holds true for sub-samples of galaxies
for which we wish to estimate the shear bias, as in galax-
ies within a redshift bin for cosmic shear tomography. If
preal varies significantly among the different sub-samples,
then re-weighting the simulations to match the distribu-
tion of the sub-samples is not guaranteed to obtain accu-
rate calibration for shear estimated from that sub-sample.
The other terms may no longer be negligible when psims

is substantially different from preal. The selection function
used on the data must also be applied to the simulations
to match the population, and for cosmic shear tomography,
this implies that the simulations must include photometric
redshifts for galaxies explicitly.

As an application of this mathematical framework, we
propose a test that can verify the validity of the image sim-
ulations. Although it is possible in principle to tune the in-
put parameters of the simulations to match some of the ob-
served data wreal(D), as in Bruderer et al. (2016), the shear
biases may still depend on other variables, h, that are inac-
cessible to us. As we show later in this work (c.f. § 7), the
shear biases depend on several assumptions we make about
the Universe through the input catalogue, although their
observed distributions look similar. A consistency check to
validate the simulations would then be useful, especially
for future surveys, where accurate shear calibration is re-
quired. One such consistency check is to deploy two different
shape measurement algorithms on the same data, and cal-
ibrate them using the same image simulations. Two shape
measurements methods with different biases (m[preal; sreal],
b[rsims; tsims](D,h) and hence m[psims; ssims]) that are cali-
brated using the same image simulations can only arrive at
consistent cosmological results, when applied to the data,
if the ∆ terms are sufficiently small. Such an approach not
only boosts the confidence in the methodology and in the
estimated cosmological parameters, but could possibly help
identify and eliminate other potentially unknown sources of
biases.
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2.3. Calibrating shear without image simulations

So far we have examined how limitations in the simulated
data may result in biases in the estimate of the multiplica-
tive bias. To circumvent the need for image simulations,
a different approach, called metacalibration, has been pro-
posed recently (Huff & Mandelbaum 2017; Sheldon & Huff
2017). The basic idea behind metacalibration is to find
the shear response of each galaxy using the observed data.
This is achieved by deconvolving the PSF first, shearing
the galaxy and reconvolving it with a (slightly larger) PSF
model and measuring the galaxy shape. This approach has
been used to calibrate the ngmix13 algorithm and was ap-
plied to the DESy1 shape catalogues (Z18).

As the biases are derived from the actual data, one can
treat the observed data as the simulation equivalent and
treat the ∆w, ∆r and ∆t terms to be almost zero, al-
lowing for a more robust calibration than what may ever
be possible with image simulations. The use of the actual
catalogued data, however, naturally leads to a situation in
which at least some selections have been applied at the de-
tection step. The detection selection acts in one direction
with only the detected galaxies being sheared. These galax-
ies may not be detected after shearing but galaxies previ-
ously undetected before shearing, that may be detected af-
terwards, are not included in the metacalibration analysis.
This will lead to a small, but non-zero ∆t term. The lim-
itation of working with only the detected galaxies may be
partly circumvented by injecting synthetic galaxies in real
images (Suchyta et al. 2016; Huang et al. 2018). At a more
fundamental level, the algorithm requires that the sources
of degradation in image acquisition, such as pixelisation,
noise and other detector imperfections, which may also be
stochastic in nature, be reversible so as to be able to shear
the intrinsic galaxy. In the case of a wavelength-dependent
PSF, the spatial variation of the colour across a galaxy pro-
file leads to multiplicative bias (Semboloni et al. 2013; Er
et al. 2018), which cannot be determined using metacalibra-
tion. This holds true for errors in PSF modelling as well,
as is also the case with image simulations. For space-based
surveys such as Euclid and WFIRST, as a result of the PSF
not being Nyquist-sampled, metacalibration cannot capture
the biases accurately (Rosenberg et al., in prep). Whether
or not these limitations can be ignored will depend on the
desired level of accuracy, but it is not evident that such
an approach would be able to account for biases arising at
the object detection stage. Moreover, any residual effects
after the images have been corrected for detector imper-
fections (see Mandelbaum 2015, for a general discussion)
such as Charge Transfer Inefficiency (CTI), brighter-fatter
effect (Antilogus et al. 2014; Guyonnet et al. 2015; Coulton
et al. 2018), and read-out effects such as binary offset ef-
fect (Boone et al. 2018) may introduce residual biases that
are captured better through image simulations. Such resid-
ual biases will definitely be significant for the next gener-
ation of cosmic shear surveys. Hence it seems likely that a
forward-modelling approach using image simulations, per-
haps using metacalibration to minimise raw biases at the
first step, may be the best way forward for accurate and
robust shear calibration.

Another approach to calibrate shear without using im-
age simulations was suggested by Zhang et al. (2018) using

13 http://github.com/esheldon/ngmix

field distortion introduced by the optical setup of the tele-
scope. As a result, galaxies on average have a preferred ori-
entation depending on their position on the detectors. By
evaluating a so-called field distortion shear as a function of
the CCD position from the astrometric solution and com-
paring it with the local shear measured using any method,
one can obtain the multiplicative and additive biases from
the data itself. In a way, this approach is not fundamentally
different from the metacalibration approach, in that, the ar-
tificial shear that we apply in the metacalibration is applied
naturally by the telescope, albeit after the PSF convolu-
tion step. Zhang et al. (2018) demonstrated this approach
on the publicly available data from the Canada-France-
Hawaii Telescope Lensing Survey (CFHTLenS; Heymans
et al. 2012; Erben et al. 2013) for two shape measurement
methods and estimated their multiplicative biases to within
4 per cent (limited by survey volume). Although that is a
commendable achievement, this is well above the require-
ments needed for the ongoing surveys. Moreover, the field
distortion shear in KiDS is expected to be tiny, due to the
modified Ritchey-Chrétien design of the VLT Survey Tele-
scope (VST) (Arnaboldi et al. 1998). Therefore, while the
larger volume of data in KiDS compared to CFHTLenS
implies that the constraint on the multiplicative bias could
become tighter in principle, the low amount of camera dis-
tortion on the VST compared to the Canada-France-Hawaii
Telescope (CFHT) means that it would be much harder to
estimate the multiplicative bias robustly using camera dis-
tortions.

Finally, lensing of the CMB by foreground mass, also
known as CMB lensing, can also help constrain a combina-
tion of shear estimation and photo-z biases. Current studies
yield uncertainties on the shear calibration at the 10 per
cent level (Baxter et al. 2016; Harnois-Déraps et al. 2017;
Singh et al. 2017). However, Schaan et al. (2017) predict
that even with the Stage 4 CMB experiments, shear cali-
bration biases can be at best be constrained to within 0.5
per cent for future surveys. In particular, CMB lensing en-
ables robust calibration at high redshifts, where our knowl-
edge about the galaxy population is the poorest to include
them correctly in our simulations and where the galaxies are
typically fainter and noisier to reliably calibrate with meta-
calibration. CMB lensing can therefore potentially act as
an independent way to validate shear measurement biases
estimated with simulations and metacalibration. Realistic
image simulations are nevertheless required to verify the
validity of these approaches. We defer the exploration of
metacalibration in combination with simulations to future
studies and use realistic image simulations in this work to
calibrate shear for KiDS.

3. Simulating KiDS+VIKING-450

The first cosmic shear constraints from KiDS, presented in
H17 used data from the third data release (DR3), described
in de Jong et al. (2017). Further details about the survey
can be found in de Jong et al. (2015) and Kuijken et al.
(2015). DR3 comprises 454 deg2 of imaging data in the
ugri filters obtained with OmegaCAM on the VST. The
shapes were measured from the r-band images using an
updated version of lensfit described and tested in FC17.
The multi-band data allowed H17 to divide the sources into
four tomographic bins using point estimates of the photo-z,
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zB, obtained with the Bayesian Photometric Redshift code
(BPZ; Beńıtez 2000).

The area surveyed by KiDS is complemented by
ZY JHKs observations from the VISTA14 Kilo-degree IN-
frared Galaxy survey (VIKING; Edge et al. 2013). We refer
to the combination of the ∼ 450 deg2 from KiDS-DR3 (de
Jong et al. 2017) and the overlapping VIKING data (Wright
et al. 2018) as KiDS+VIKING-450, or KV-450 for short.
The improved wavelength coverage reduces the outlier rate
in the photo-zs and improves the overall precision, resulting
in an improvement in the tomographic bin selection. Fur-
thermore, dedicated observations of fields with extensive
spectroscopy provide a more robust training set for the cal-
ibration of the underlying source redshift distribution. As a
consequence the analysis can be extended to include sources
with zB > 0.9, provided we can also improve the calibration
of the shape measurements for these distant galaxies.

To measure the cosmic shear signal, galaxy shapes are
determined using the same version of lensfit (Miller et al.
2007, 2013) that was used in H17. Here we revisit the cal-
ibration of the shear measurement pipeline by increasing
the realism of the image simulations, so that an updated
cosmic shear analysis (Hildebrandt et al. 2018, H18 here-
after) can take advantage of the KV-450 data set. We also
improve the analysis of the simulated data to better reflect
the steps in the data analysis pipeline.

To do so, we create simulated KiDS-like observations
of the COSMOS field in the r-band using a publicly avail-
able catalogue of galaxies with structural parameters de-
termined from images taken with the Advanced Camera
for Surveys (ACS) on-board HST (Griffith et al. 2012, see
§ 4.1 for more details). We also make use of VST and VISTA
observations of the COSMOS field, which were taken in the
same way as the nominal survey15. This allows us to deter-
mine photo-z estimates and shapes using the same pipeline
used for the cosmic shear analysis. We use the same tomo-
graphic bin definitions as H18, namely, 0.1 < zB ≤ 0.3,
0.3 < zB ≤ 0.5, 0.5 < zB ≤ 0.7, 0.7 < zB ≤ 0.9 and
0.9 < zB ≤ 1.2, where zB is the peak of the posterior
distribution from BPZ (Beńıtez 2000) using the available
photometry in the nine bands. We label the tomographic
bins, starting from low redshift as B1 through B5 for con-
venience.

Our new simulation setup is based on that used in FC17.
The main difference is that by basing the input catalogue on
actual multi-wavelength observations, we can assign photo-
zs to the sources, thus reproducing the definition of the
tomographic bins. Moreover, the HST observations allow
us to naturally include correlations between the key input
galaxy parameters. Another benefit is that we can compare
the output directly to actual VST r-band observations of
the same field, because the image simulations are based on
real data.

14 VISTA is short for Visible and Infrared Survey Telescope for
Astronomy
15 The COSMOS field is not part of the nominal area covered
by VIKING, and thus lacks the Z-band imaging. It has however
been observed in the other filters by VISTA. Instead, we use
the z-band data from CFHT as a proxy to obtain the equivalent
nine-band zB estimate.

3.1. Simulation setup

The basic simulation setup is similar to the FC17 SCHOol
pipeline (Simulations Code for Heuristic Optimization of
lensfit). The most important change is that the simula-
tions are made to match the observed COSMOS field as
observed by the VST in the r-band, by using input param-
eters based on HST observations (see § 4.1 for more detail).
To reflect the higher level of sophistication, we refer to the
new pipeline as the COllege pipeline (COSMOS-like lensing
emulation of ground experiments). We describe the image
simulation pipeline only briefly in order to highlight the im-
provements made, and their significance. For more details,
we refer the interested reader to FC17.

For the simulated images to be realistic, in addition to a
realistic galaxy catalogue, the simulations must reflect the
instrumental setup of the KiDS r-band data and follow the
same data acquisition procedure. The camera consists of 32
e2v CCDs that are arranged in four rows of eight chips,
each with 2048× 4080 pixels sampling the focal plane at a
uniform pixel scale of 0.′′213 per 15µm pixel. The field-of-
view covers approximately 1 deg2, but the chips have gaps
(up to 1.35 mm) between them. To ensure that the gaps are
exposed in any given pointing, five dithers are taken in a
staircase pattern, with dither steps of 25′′ and 85′′ along
right ascension and declination respectively (de Jong et al.
2013). The five exposures in a single tile are taken in succes-
sion, so that the seeing conditions are fairly homogeneous.
The PSF is robust and its position-dependent ellipticity can
be modelled well by cubic polynomials (see Fig. 5 of Kuijken
et al. 2015).

The KiDS-450 data are analysed tile-by-tile, meaning
that the data from the overlap of tiles is ignored. It is thus
sufficient to simulate individual tiles as opposed to contin-
uous patches obtained from multiple pointings. The galaxy
surface brightness profiles are assumed to be given by Sér-
sic profiles and are simulated using GalSim16 (Rowe et al.
2015). A significant improvement from FC17 is the input
galaxy catalogue. We use morphological parameters based
on HST observations that are described in detail in § 4.1.
Within each tile, a constant shear γtrue is applied to all
galaxies. To minimise the contribution of shape noise to
the bias estimates, three additional tiles are generated per
galaxy for each applied shear and PSF, where the galax-
ies are rotated by 45◦ (prior to the shearing operation) in
successive tiles. The applied shear values γtrue are equally
spaced on a ring corresponding to |γtrue| = 0.04, with
γ1 = 0.04 being one of them.

We assign a PSF set containing five different spatially-
constant PSFs for the five subsequent exposures for a given
tile. We consider 13 such unique PSF sets in total. We de-
scribe the PSFs using Moffat profiles. Our choice of Mof-
fat parameters is the same as those used in FC17. In Ap-
pendix C, we show how the simulated PSF parameters com-
pare to the KV-450 dataset.

The sheared galaxies are convolved with the five PSFs
(corresponding to five exposures) and are rendered with
the sub-pixel offsets that the dither pattern introduces,
thereby closely mimicking the survey specifications. The
stellar magnitude distribution is obtained from the Be-
sançon model17 (Robin et al. 2003; Czekaj et al. 2014) cor-
responding to right ascension α of 175◦ and declination δ

16 https://github.com/GalSim-developers/GalSim
17 http://model.obs-besancon.fr/
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of 0◦. The stars in the simulations are PSF images, also
rendered with the appropriate sub-pixel offsets. The galaxy
catalogue is the same for each tile, but the locations of
the stars are varied randomly from one tile to another.
The background noise is assumed to be Gaussian, whose
strength is adjusted to correspond to a magnitude limit
mlim = 26 as in FC17.

Each of the simulated exposures is chopped into 32
pieces, each of size 2048 × 4080 pixels, corresponding to
the 8 × 4 CCD chips in the VST/OmegaCam, with a gap
of 70 pixels between them. Based on the dither offsets of
the exposures and chip positions, a flat WCS is assigned to
the chopped images and a co-added image is obtained using
SWarp (Bertin 2010). SExtractor (Bertin & Arnouts
1996) is run on the co-added image with the same parame-
ter settings as those used for the analysis of the KiDS data.
The co-added image is only used to detect galaxies using
SExtractor, and not for measuring galaxy shapes.

A small region of the observed (left) and simulated co-
added image (right) is shown in Fig. 1. The images agree
well, with the main differences caused by bright stars; galax-
ies are simulated at their observed location, but stars are
placed at random positions. More specifically, we highlight
with green circles, some distinctive patterns on the sky and
show our ability to replicate them. We also indicate objects
missing from the simulations with yellow circles.

By using 13 realisations of observing conditions (13 PSF
sets), each with four rotations for shape noise cancellation
and eight lensing shears, we simulate a total of 416 square
degrees of the survey which, due to the shape noise cancel-
lation, is equivalent to 3750 square degrees, which is more
than eight times the size of KV-450 footprint (see section
3.2 of FC17 for this calculation).

In this work, we ignore instrumental effects, such as the
brighter-fatter effect (e.g. Antilogus et al. 2014). Although
we have detected this and other low-level detector effects
during the course of this work, their impact on multiplica-
tive bias appears to be minimal for the current cosmic shear
analysis (Hoekstra et al., in prep.).

3.2. Shape measurements with lensfit

The shapes of the galaxies detected by SExtractor are
measured using the self-calibrating version of lensfit that
was used in FC17 and in H17. It is a likelihood-based model-
fitting algorithm that describes galaxies as the sum of an
exponential disc (Sérsic n = 1) and a bulge component
(Sérsic n = 4). The model parameters are determined by
lensfit from a joint fit of the PSF-convolved galaxy model
to the individual exposures. To reduce the model complex-
ity, the ratio of disc and bulge scale-lengths is a fixed pa-
rameter and the ellipticities of the disc and bulge are set
equal, resulting in seven free parameters (flux, size, com-
plex ellipticity, 2D position and bulge-to-total flux ratio).
The resulting ellipticity parameters are deduced from the
likelihood-weighted mean parameter value, marginalised
over the other parameters, adopting priors for their distri-
butions. To counter the bias in the ellipticities introduced
by noise in the images, lensfit employs a self-calibration
scheme, which was described in detail in FC17. Metacali-
bration, discussed in § 2.3, may be seen as a generalisation
of this self-calibration approach, and performs better than
self-calibration. A lensfit version with built-in metacalibra-
tion is currently under development. We use the version

that was described in FC17 for the KV-450 dataset and refer
the interested reader to this paper for details on the overall
performance of the self-calibrating lensfit (also see Man-
delbaum et al. 2015, for its performance on the GREAT3
challenge).

To estimate the shear, the ellipticities of the galaxy
models are combined with a weight that accounts for the
uncertainty in the ellipticity measurement. Galaxies with
intermediate ellipticities exhibit a tendency to have larger
weights compared to galaxies with either low or high el-
lipticities, but with similar sizes and signal-to-noise ratios.
This leads to a bias in the shear estimate that is sensitive to
the distribution of galaxy ellipticities. To reduce the bias in
the shear estimate, the weights are therefore re-calibrated
at the catalogue level. FC17 determined this correction to
the weights from the catalogues of each pointing, which ex-
hibit a coherent shear. During the course of this work, we
realised that this approach was in fact incorrect because
the adjusted weights account for the shear as well, leading
to increased multiplicative bias. Here we derive this correc-
tion using a combined catalogue for each PSF set (so that
the net shear is zero). This change from FC17 alters the
shear calibration, and we refer to the corrected catalogues
from FC17 as ‘FC17cor’. Comparing the simulated data to
the actual observations revealed that the final weight recal-
ibration procedure was also done incorrectly in the KiDS-
450 analysis (H17), due to a different error. This has been
rectified for KV-450 and the impact of this error appears
to be minimal for the overall cosmic shear signal (H18). It
was, however, the origin of the low-level detection (2.7σ)
of non-cosmological B-modes (Asgari et al. 2018). In the
corrected KV-450 cosmic shear analysis (H18), we find the
B-modes to be consistent with zero.

Following the shape measurement step, we determine
the multiplicative and additive biases. To do so, we use
Eq. (1) to compute the average (reduced) shear γ̂i for a
given selection of galaxies from the catalogue of lensfit ellip-
ticities and re-calibrated weights. We adopt a linear model
as in Heymans et al. (2006) to relate the true (reduced)
shear γtrue and the measured value γ̂ for each component
separately. The slope of the best-fit line yields the multi-
plicative bias18 and the offset is the additive bias. The bias
parameters are obtained by a simple linear regression to
each component of the shear. We have explicitly verified
the validity of this linear model by simulating images with
|γtrue| = 0.04 and with |γtrue| = 0.03 and found no differ-
ence in the bias values, indicating that the linear model is
adequate.

During the course of this work, inspired by the meta-
calibration approach, Pujol et al. (2019) proposed an alter-
native way of precisely estimating the bias in shear from
simulations, devoid of any shape noise. We note that the
uncertainties in our final calibration are driven by system-
atic errors and not by statistical errors, and therefore, the
increased precision obtained by adopting this alternative
approach does not add much value at this stage. It remains
to be seen if this method can capture the detection bias,
as is the case for metacalibration. Moreover, as we men-
tion later in § 4.1, our input catalogue happens to have a

18 We assume that the multiplicative biasm1 does not depend on
γ2, and vice versa. Moreover, we find consistent values for both
multiplicative bias estimates, and thus take the mean when we
report the final multiplicative bias estimates.
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Fig. 1: Left: Cutout from the co-add of the COSMOS field observed with VST in the r-band as a part of KiDS. Right: The
corresponding region, but now simulated under similar seeing conditions with morphological parameters of the galaxies
taken from the HST COSMOS catalogue described in § 4, simulated using the setup described in § 3.1. The images are
1200 pixels, roughly equivalent to 4′.28, on the side and are rendered in ds9 with zscale colour scale. We do not simulate
the bright saturated stars that can be seen in the VST image, and choose to place additional stars at random locations.
The position angles of the galaxies, as measured by GalFit are noisy, which can be seen from the differences between the
galaxy orientations in the left and right panels. The solid green circles indicate some examples of regions with distinctive
patterns on the sky involving close pairs of galaxies, which we are able to replicate fairly well. The broken circles in yellow
and cyan respectively highlight some objects that are not included in our simulations or not present in the original data.

preferred orientation that is not due to a coherent lensing
shear. If the galaxies are not isotropic in the absence of
shear, the lensfit weights themselves will be biased. Rather
than randomising the galaxy orientations to eliminate this
source of bias, we prefer to rotate all galaxies to achieve
isotropy, while preserving the relative orientations between
any pair of galaxies.

3.3. Improvements since FC17

Although our basic setup is largely unchanged with respect
to FC17, there are a number of important differences. In
this section we therefore highlight the main differences be-
tween the SCHOol and COllege pipelines. Apart from the
change in the input catalogues, which are discussed in § 4.1,
several improvements have been implemented. We detail
only some of those that require a description below and
provide a more exhaustive list in Table 1.

Firstly, the two pipelines use different parameterisations
of the galaxy surface brightness to generate the galaxy im-
ages. The SCHOol pipeline in FC17 used bulge+disc mod-
els, with the distributions of size, bulge-to-disc ratio, ellip-
ticity following the priors used by lensfit. In this work, we
describe the galaxies by Sérsic models, with the parameters
determined from the HST images themselves (c.f. § 4.1).
No assumptions about the distributions of the parameters
are made; in particular, we do not assume that the dif-
ferent quantities are uncorrelated. Tests in the GREAT3
challenge (Mandelbaum et al. 2015) and in FC17 show that

lensfit has negligible model bias, and therefore this change
in the morphology is not expected to affect the calibration.
Moreover, lensfit uses a fixed ratio between the bulge and
disc scalelengths, thereby having the same number of free
parameters as the Sérsic model. Consequently the Sérsic
model is similar to the bulge+disc model19.

In contrast to the KiDS data analysis, in FC17 the indi-
vidual exposures were not resampled while being combined
to produce the co-added image. This changes the noise
properties, and thus the detection catalogue. This does not
affect the shape measurement itself, because lensfit is run
on the individual exposures and generates its own segmen-
tation map to mask neighbouring sources. In this work,
we run SWarp with the resampling option turned on, al-
though this has a negligible impact on the shear estimation.

In FC17, SExtractor analysed one co-added image
and this detection catalogue was used in the other three
realisations where the galaxies were rotated. The ratio-
nale behind this choice was to ensure that the shape noise
cancellation was effective. However, as the weights are as-
signed independently and differ slightly due to pixel noise,
the shape noise cancellation was never perfect. Running
SExtractor on all images captures the selection bias that
would be present in the real data. We therefore re-ran the
SCHOol pipeline used in FC17 with SExtractor on each
of the rotations. After this change, we find that the multi-

19 http://strw.leidenuniv.nl/∼arunkannawadi/internal/RadialProfiles.html
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Table 1: Summary of the differences between the SCHOol (FC17) and the COllege simulations

SCHOol (FC17) COllege (this work)

Input distributions Input quantities (size, morphology etc.) cor-
respond to the lensfit priors and a power law
magnitude distribution

Input quantities are taken from Griffith et al.
(2012) based on HST ACS observations

Analytical models Bulge+Disc models, with scalelengths coupled Sérsic models

Object detection SExtractor is run on one rotation and the
same detection catalogue is used in all four
rotations

SExtractor is run on all rotations and cor-
responding detection catalogues are used

Correlations Ellipticity is uncorrelated with size, magni-
tude, morphology, etc.

The dependence between ellipticity, size, mor-
phology, etc., is automatically included by
using the measurements from Griffith et al.
(2012) on HST data

Coaddition SWarp is run with pixel resampling turned
off

SWarp is run with pixel resampling turned
on

Depth: Extends to 29th magnitude Relatively shallow and somewhat incomplete
beyond the detection limit

Sample variance The input catalogue changes for each shear
and PSF realisation

The input galaxy catalogue is identical for all
shear and PSF realisations

Clustering Galaxies are placed randomly on the sky Galaxies are placed at their true locations

Intrinsic alignment Galaxies have random orientation Observed complex ellipticities from Griffith
et al. (2012) are used

Redshifts No explicit redshift information for galaxies A nine-band photo-z is assigned to every sim-
ulated galaxy based on matching to the KiDS
observations of the COSMOS field

Weight bias correction Separately calculated for each shear and each
rotation

Calculated for a combined catalogue for every
PSF set

plicative biases become more negative, by about 0.005. We
return to this in § 5.1.

In the COllege pipeline, for each of the PSF sets, the
32 lensfit catalogues for the eight lensing shears (averaging
to zero, pairwise) and four rotations are first combined, be-
fore the weight recalibration script is run on this combined
catalogue. This ensures that there is no anisotropy in the
catalogues. In the SCHOol pipeline, the weight recalibra-
tion procedure was incorrectly applied to each catalogue,
with a net lensing shear, separately. This difference leads
to a change of about 0.03-0.04 in the multiplicative biases
and by far, the biggest difference between the two analyses.

4. Image simulations

The input parameters of the image simulations used in
FC17 were based on the priors used by lensfit (Miller et al.
2007, 2013), the shape measurement method used. A com-
parison to the KiDS observations showed, however, that
the signal-to-noise ratio and size distributions obtained di-
rectly from the simulations exhibited some differences with
those inferred from the data themselves, which had to be
adjusted for by resampling or re-weighting the simulations.
In particular, the simulations lacked low S/N objects rela-
tive to the data. As shown in § 2.2, it is important that
the simulations match the data fairly well.

Improving the agreement between simulations and data
compared to FC17 was one of the initial objectives of this

work and the way we achieved it is by improving the fi-
delity of the input catalogue, which we describe in this sec-
tion. Rather than using distributions of galaxy properties,
we use morphological parameters determined from HST ob-
servations of the COSMOS field. These are used to simu-
late the COSMOS field under the same seeing conditions of
the VST observations to show that we are able to recover
the observations of that field. Under the assumption that
the galaxies in the COSMOS field are representative of the
whole population, we vary the PSF parameters to sample
the seeing conditions of KiDS.

4.1. Input object catalogue

A key improvement compared to FC17 is the use of observed
positions and structural parameters of galaxies in the COS-
MOS field. For this we use the publicly available ACS-GC
catalogue from Griffith et al. (2012), based on Sérsic model
fits to ACS imaging data in the F814W filter. The catalogue
contains 304 688 objects for which the best-fit Sérsic param-
eters are reported (this includes stars as well). These were
obtained by fitting PSF-convolved Sérsic profiles to each
source using GalFit (Peng et al. 2002), which determines
the best-fit parameters using the Levenberg-Marquardt al-
gorithm for χ2 minimisation. The best-fit Sérsic parameters
are based on the observations in the F814W filter, whereas
the shapes for KiDS are measured in the r-band. In our
analysis, we implicitly assume that the galaxy shapes do not
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Fig. 2: Distribution of input magnitudes for all the galaxies
(black) and the distributions when the galaxies are divided
into the tomographic bins based on their ‘true’ redshifts.
The analytic magnitude distribution used in FC17 is given
in yellow for reference. The region enclosed by the vertical
lines denotes the range in the output magnitude for which
shapes are measured.

depend on the pass-band used. Given the relatively mod-
est difference in wavelength this is not a major concern,
although we note that galaxies do appear to be somewhat
rounder at longer wavelengths (e.g. Schrabback et al. 2018).
We found the position angle measurements to be noisy and
biased, with a preferred intrinsic orientation. The noise in
the position angles is evident in Fig. 1. The bias in the po-
sition angles is not of a major concern, because we rotate
the galaxies to cancel shape noise (see § 3.1).

For every unmasked object in the KiDS observation of
the COSMOS field, we find its ‘best’ match in the ACS-
GC catalogue using the positions and magnitudes in both
catalogues. Since the two catalogues have different depths
and hence different number densities, a symmetric match
is not possible. The best match is identified by finding the
four nearest neighbours in the ACS-GC catalogue in po-
sition and magnitude for every object in the KiDS cat-
alogue. Näıvely, every object in the KiDS catalogue may
be expected to be matched with exactly one galaxy in the
ACS-GC catalogue, although this is not the case. Due to
differences in detection threshold and noise in the images,
a small number of objects in the KiDS catalogue end up
matched to the same object in the deeper ACS-GC cata-
logue. A unique one-to-one matching is obtained in the fol-
lowing manner. For every object in the ACS-GC catalogue
with multiple matches, the pair with the smallest distance
is retained and all other objects in the KiDS catalogue are
matched with its next nearest neighbour. We iterate over
the multiply matched objects 6 times, and if an object in
the KiDS catalogue has found no unique match, it is dis-
carded. Such discarded objects account for about 0.07% by
weight and hence do not affect our calibration in a signifi-
cant manner.

We remove stars from this matched catalogue using the
following criteria: SExtractor CLASS STAR < 0.9 and
FLAG_GALFIT_HI=0, indicating that no problems with the
fit were reported by GalFit. Comparison to objects iden-

tified as stars in a magnitude-size diagram using the HST
values showed that this removed most20 of the star can-
didates. We also discard matches between the catalogues
if the corresponding entries are separated by more than 1
arc second . Finally, we require that the reduced chi-square
values for the Sérsic fits satisfy χ2

ν < 1.5.
For objects in the ACS-GC, we assign the r-band mag-

nitude measured in the KiDS survey if a match is found.
For the remaining objects, which are typically galaxies be-
low the magnitude limit of KiDS, we assign the galaxy the
Subaru r+ magnitude provided by Griffith et al. (2012). We
compared the magnitudes and found they agree fairly well:
the mean difference21 in the magnitude is about 0.07±0.35,
with the faint galaxies contributing to the majority of the
scatter.

Fig. 2 shows that the resulting galaxy catalogue is com-
plete to mr . 25, after which the counts decrease rapidly.
The bright end of the magnitude number counts is described
well with the analytic magnitude distribution

logN(m) = −8.85 + 0.71m− 0.008m2 (16)

used in FC17, where N(m) refers to the number of galaxies
per square degree with magnitudes between m ± 0.05. We
refer to this as the ‘reference’ distribution in Fig. 2.

The orange line in Fig. 3 shows the fraction of objects
that are in the ACS-GC catalogue, but were not detected in
the KiDS imaging of the COSMOS field. At bright magni-
tudes most objects are matched, and the differences can be
attributed to blending, etc. The fraction increases rapidly
beyond mr+ = 24.5, where the KiDS catalogue is incom-
plete. This does suggest, however, that the limiting mag-
nitude of the input catalogue is sufficient to simulate the
images of the brighter galaxies that are above the detection
limit in the KiDS data. We test the sensitivity of lensfit to
these faint galaxies in § 7.

We find that 83% of the objects detected in the KiDS
data are matched to the catalogue from Griffith et al.
(2012). Of the matched objects 91% are galaxies and 84%
of these have Sérsic parameters that can be simulated by
GalSim (Rowe et al. 2015). Griffith et al. (2012) also re-
port the reduced χ2 value for the best-fit Sérsic model, and
94% of the useful galaxies have reported values < 1.5, sug-
gesting that the model is a decent fit to the images. The
final sample of galaxies that we simulate comprises 142 869
galaxies.

By applying these exclusion criteria, we omit more than
20% of the bright galaxies from the HST catalogue, as indi-
cated by the purple line in Fig. 3. If these galaxies are not a
representative population, removing them could introduce a
selection effect in the multiplicative bias estimates. To ver-
ify that we do not exclude any particular sub-population of
galaxies from the HST catalogue, and we show results for
the two most important parameters, namely ellipticity and
size defined as the half-light radius along the major axis

20 In order to quantify the impact of the remaining stars contam-
inating our galaxy catalogue, we later adopted a stricter star se-
lection criterion and removed objects from the output catalogues
post-simulation by imposing a magnitude-dependent size cut on
the HST catalogue. We found the impact on the multiplicative
bias to be negligible (∼ 0.002).
21 In order to ensure that the small difference in magnitudes is
caused by the matching in magnitude-position space, we also
matched only based on the sky positions and we found similar
differences.
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Fig. 3: Fraction of the objects in the HST catalogue that are
missing, or excluded from the simulations plotted against
the Subaru r+-band magnitude.

in Fig. 4. The left panel in Fig. 4 shows that the distribu-
tion of axis ratios22 remains unchanged after excluding the
objects that did not meet the selection criteria. Similarly,
the results in the right panel of Fig. 4 show that for the
galaxies that are detected in the KiDS data, the size distri-
bution also remains unchanged after exclusion (red vs. blue
histograms). When we split the galaxies into broad magni-
tude bins as bright and faint galaxies, at the detection limit
of KiDS, we see that the size distribution changes. This is
caused by the incompleteness of the HST catalogue beyond
mr+ > 25, with preferentially compact galaxies (re . 3.′′)
making the cut for a given magnitude.

The HST COSMOS catalogue used for this work is sub-
stantially deeper, and has a higher number density than
the Leauthaud et al. (2007) catalogue that is the default
input catalogue in GalSim, and is used in both the DESy1
and HSC-DR1 image simulations (parent samples 1-3 in
HSC-DR1). M18a discuss in detail what impact the HST
selection and goodness criteria have on the input sample,
and thereby on the shear biases. In particular, they mention
that their goodness criteria exclude close pairs of galaxies
separated by less than 2.′′4; effectively all galaxy pairs with a
separation below 0.′′9 are removed. The impact of excluding
such close pairs of galaxies was shown to change the multi-
plicative bias by ∼ 0.1, which exceeds the systematic error
budget for all ongoing surveys. The fiducial parent sample
(parent sample 4 in the HSC-DR1 simulations) used in the
HSC-DR1 simulations includes HST images without any
such selection criteria. The parametric catalogue (parent
sample 2 in the HSC-DR1 simulations) are obtained after
such exclusion cuts are applied. In contrast, our input cat-
alogue (Griffith et al. 2012) was processed differently and
Sérsic fits were obtained prior to any selection cuts. We
therefore do not expect to suffer from the exclusion of close
galaxy pairs. For every object in each of the two HST cat-
alogues, we computed the distance to its nearest neighbour
and found (not shown here) that there were many more
close neighbours in the Griffith et al. (2012) catalogue than

22 The ellipticity ε is related to the axis ratio q via |ε| = (1 −
q)/(1 + q).

in Leauthaud et al. (2007) catalogue. A direct comparison
of our simulated image with the corresponding VLT im-
age in Fig. 1 indicates that the simulations include realistic
clustering of galaxies on the sky.

4.2. Correlations between input parameters

We use observed parameters based on high-quality HST ob-
servations to simulate KiDS data. This approach naturally
accounts for potential correlations between input parame-
ters, such as size, magnitude, and importantly, ellipticity.
Moreover, we have photo-z estimates for the galaxies. This
enables us to examine the shape measurement biases con-
sistently for the different tomographic bins, which have dif-
ferent magnitude distributions as shown in Fig. 2.

Throughout this work, by size, we refer to the half-light
radius measured along the major axis of the best-fit ellip-
tical profile, and denote it as re. We will refer to the az-
imuthally averaged size, defined as rab ≡ re

√
q, where q is

the axis ratio as the circularised size. In FC17 the input
parameters were drawn from the lensfit prior distributions,
which introduces a correlation between size and magnitude.
The ellipticities, however, are drawn independently from
the distribution provided by Miller et al. (2013). This was
motivated by noting that that there is no correlation ex-
pected between size re and ellipticity for disc-like galaxies,
as the ellipticity is caused due to the inclination angle rel-
ative to the line-of-sight. This is an important assumption,
because at each step in the cosmic shear analysis cuts on
size and magnitude are made (implicitly by dividing the
sample into tomographic bins – see Fig. 2). If the ellipticity
distribution depends on any of these, a cut in one parameter
results in an implicit cut on the galaxy shape, thus biasing
the shear estimate. We therefore examined if the input pa-
rameters correlate with the ellipticity. Since the half-light
radius re is degenerate with the Sérsic index n, we first look
if the Sérsic index correlates with the ellipticity.

The black points in Fig. 5 show the average Sérsic index
n for galaxies with 20 < F814W < 24.5 as a function of
ellipticity ε using the measurements from the ACS-GC cat-
alogues by Griffith et al. (2012). We observe a clear trend
between n and ellipticity, with more elliptical galaxies hav-
ing a lower Sérsic index. Not surprisingly, the input cata-
logue, after the various cuts applied, shows the same trend
(solid line), whereas the inputs from FC17 do not show any
correlation (dashed line).

Although the structural parameters obtained by Griffith
et al. (2012) are based on high-quality HST observations,
we need to ensure that noise in the images does not in-
troduce spurious correlations in the parameters found by
GalFit. This is a concern, given the evidently different
orientations of the simulated galaxies in Fig. 1, despite
the use of the position angles measured by GalFit. Af-
ter all, noise in the images is a major cause of parameter
degeneracies and introducing such correlations in the image
simulations affects the performance of lensfit. To evaluate
the robustness of the other measurements in Griffith et al.
(2012), we compare the results to GalFit measurements
for galaxies in the Hubble Ultra Deep Field (UDF) pre-
sented by Coe et al. (2006). These data are considerably
deeper than the COSMOS observations, albeit over a much
smaller area of only about 11 arcmin2. We find that the
distributions of Sérsic index, effective radius and elliptic-
ity are comparable between the two data sets for galaxies

Article number, page 13 of 31



A&A proofs: manuscript no. paper v1

0.0 0.2 0.4 0.6 0.8

Axis ratio

0.0

0.5

1.0

1.5

2.0

N
or

m
al

is
ed

C
ou

nt
s

All

Missing in KiDS

Missing + Excluded

100 101 102

Half-light radius (arcsec)

10−3

10−2

10−1

N
or

m
al

is
ed

C
ou

nt
s

All

Missing in KiDS

Missing + Excluded

Missing+Excluded (faint)

Missing+Excluded (bright)
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points; Griffith et al. 2012) and the UDF (red points; Coe
et al. 2006). The solid line indicates the average n as a
function of ε used in the image simulations (for galaxies with
20 < mr < 25), whereas the dashed lines is for the case we
scramble the ellipticities to resemble the FC17 results more
closely.

with 20 < F814W < 24.5. Moreover, the red points in
Fig. 5 are consistent with the COSMOS results. We there-
fore conclude that the trend is not caused by noise in the
shallower COSMOS data, but reflects a real trend. Similar
trends are also observed by Hill et al. (2019) for galaxies in
CANDELS/3D-HST fields (Brammer et al. 2012; Skelton
et al. 2014; Momcheva et al. 2016), thereby confirming our
conclusion.

To explain this trend, we hypothesise that in a mixed
population of galaxies, old (quiescent) red galaxies with
a dominant bulge component are typically more spherical
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Fig. 6: Mean galaxy colour as a function of ellipticity ε.
Using colour as a proxy for morphology, the results support
the trend of Sérsic n vs. ellipticity from Fig. 5.

(low ellipticity, high n) whereas young (star-forming), blue
disc-dominated galaxies appear highly elliptical when ori-
ented edge-on to us. In this scenario, a correlation between
n and ε is expected. As a test of our hypothesis we show the
mean galaxy colour as a function of ellipticity in Fig. 6 for
two different filter combinations. The trend of bluer galaxies
having larger ellipticities is consistent with our hypothesis.
Since the photometry is measured independently from the
galaxy profile fitting, it seems unlikely that spurious depen-
dencies are be introduced in the Sérsic parameters due to
noise alone.

Our hypothesis is also supported by the findings of Hill
et al. (2019), who split the galaxies into the quiescent and
star-forming galaxies based on their rest frame U − V and
V − J colours. They report that at fixed stellar mass,
and for z < 2, quiescent galaxies are rounder than their
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star-forming counterparts. Based on the physical argument
and consistency check with the UDF (and CANDELS/3D-
HST), we conclude that the correlations between the var-
ious Sérsic parameters are in fact real, and not merely an
artefact of fitting a profile to noisy galaxy images. We find
that re of the best-fit GalFit model depends on the ellip-
ticity of the model. Moreover, as discussed below, we are
able to reproduce the correlations in the measured size and
ellipticity very well (see Fig. 8).

The correlation between galaxy colour and ellipticity
also implies that when tomographic cuts are imposed based
on photometric redshifts, which are essentially complex de-
cision boundaries in multi-dimensional colour space, an
implicit ellipticity selection occurs. In our mathematical
framework of § 2.2, different tomographic samples corre-
spond to different selection functions t(h|D) which have a
non-trivial dependence on h through the ellipticity distri-
bution based on Fig. 6. Because the intrinsic ellipticity dis-
tributions differ, we expect some contribution to the mul-
tiplicative bias from ∆t terms if this selection is not ac-
counted for correctly. We discuss the impact of this selec-
tion on the multiplicative bias later in § 6.

4.3. Comparison to VST observations of COSMOS

As explained in § 2.2, the simulated data need to match
the observations for a robust calibration of the shear mea-
surement pipeline. FC17 could only compare output distri-
butions. Although useful, distributions can match for the
wrong reason. Since our image simulations aim to emulate
the COSMOS field, they must match the COSMOS data
closely when the observing conditions in the simulations are
similar to those in the VST observations, on an object-by-
object basis. Such a comparison is therefore more stringent
than simply comparing distributions.

As a first step, we detect objects using SExtractor
in both the simulated and observed stacked r-band im-
age. Fig. 7 shows the difference between the magnitudes
and half-light radii (FLUX_RADIUS) in the simulations and
the data. The average difference in magnitude is generally
small. The size estimates from SExtractor also agree
well, but the overall distributions differ slightly. The ap-
parent trend in the lower panel of Fig. 7 is partly caused
by noise in the images, as it traces the envelope of unphys-
ical sizes indicated by the hatched region.

The agreement between the SExtractor output from
both the simulated and actual data is encouraging. In ap-
pendix B we present results of a similar comparison of sev-
eral lensfit output parameters, namely the weight, S/N, and
the scale-length of the disc model. These parameters are
used to calibrate the shear measurement bias, and the good
agreement between the simulated and observed data on an
object-by-object basis suggests that the resulting estimate
of the bias should be robust. This is a significant improve-
ment compared to FC17, where the simulations contained
too many small galaxies.

The lensfit measurements made on the COSMOS field of
the KiDS data show that the average measured scale length
depends on the observed ellipticity, as shown in Fig. 8. Our
improved COllege simulations match the observations fairly
well. Comparison to simulations where we randomise the
input ellipticities indicates that part of the sharp upturn
for high values of |ε| is introduced by lensfit itself. A sim-
ilarly weak variation is seen for the FC17-like simulations
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Fig. 7: Object-by-object comparison of SExtractor
quantities. The upper panels show the unweighted his-
tograms for measurements from the KiDS COSMOS
field and our simulated data. The lower panels show 2-
dimensional histograms with the difference between the
simulations and the data along the vertical axis and the
quantity of interest along the horizontal axis. Each ver-
tical column is normalised such that each peak in the 1-
dimensional slices of the 2-dimensional histogram is nor-
malised to unity. This improves the histogram visually, al-
lowing us to see the contrast across the full parameter range.
The shaded region in the bottom figure indicates where the
corresponding quantities in the simulations are negative.
The red dashed lines show the median values, which indi-
cate that the agreement between the simulations and the
data is generally good.

(the shift towards larger sizes was already noted earlier),
where the input ellipticities did not depend on other param-
eters. However, the lensfit measurement itself cannot fully
explain the observed trend, which we therefore attribute
to intrinsic correlations between galaxy size and elliptic-
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ity. Hill et al. (2019) also observe the same trend between
GalFit-measured size and ellipticity, specifically for star-
forming galaxies. These suggest that any sample selection
which implicitly or explicitly places cuts on galaxy sizes also
place a cut on galaxy ellipticity, and change the ellipticity
distribution of the sample. This has an impact on shear cal-
ibration, and as we show in § 6, this affects the estimate of
multiplicative bias in a significant manner. Referring back
to § 2.2, because we include re in D and |ε| in h, rsims(h|D)
is rather flat for the simulations in FC17 and when we ran-
domise the ellipticity, but this is not so for the real data.
The excellent agreement between our fiducial simulations
and the data suggests that ∆r terms for our fiducial cali-
bration simulations must be small. We do not expect the
prior distributions to affect the lensfit measurements sig-
nificantly, and therefore we do not investigate the impact
of the assuming an incorrect prior in lensfit.

4.4. Comparison to KV-450 data

Having established that we can emulate the VST observa-
tions of the COSMOS field, the next step is to use simula-
tions to quantify the shear bias for each tomographic bin
used in the KV-450 cosmic shear analysis. To do so, we need
to simulate data with observing conditions sampled from
the actual distribution in KiDS, because the bias could de-
pend on the PSF size and sky background level, which in
turn mildly affect the observed galaxy sample. Treating the
input catalogue from COSMOS as a representative sample,
we can then determine the bias in the shear estimates from
lensfit. FC17 have shown that the multiplicative bias does
not depend explicitly on the PSF properties. Therefore, un-
like the image simulations in DESy1 (Samuroff et al. 2018;
Zuntz et al. 2018), we do not include any spatial variations
of the PSF.

We do not change the background noise level in the im-
ages, and consider the same 65 PSFs (i.e., 13 PSF sets,

each set containing five PSFs corresponding to five expo-
sures) used in FC17 for our fiducial simulations. A more
comprehensive study, simulating the full survey in multiple
filters to better capture the determination of photo-zs, is
deferred to future work. As shown in Appendix C the re-
sulting PSFs only coarsely sample the actual distribution
of PSF properties observed in the KV-450 r-band images.
Fortunately, the distribution of lensfit output parameters
does not change significantly when the PSF is varied.

Figure 9 shows the marginal distributions of some of the
observable properties of galaxies, with each galaxy weighted
by its lensfit weight. The simulated distributions (green
dashed histograms) match the KV-450 data well (black his-
tograms). We observe some differences at low S/N and small
galaxy sizes, which may be result from the absence of vari-
ations in the noise levels. In reality the background lev-
els vary between exposures, which will affect the fainter,
smaller galaxies the most. Moreover, scattered light in the
telescope optics causes additional spatial variations in the
background in the KiDS data, whereas such complications
are absent in our simulations. To account for these small
mismatches we re-weight the simulations to improve the
match with the data for the final shear calibration, pre-
sented in § 6.

Initial comparisons of our simulation output and the
KV-450 measurements showed good agreement for un-
weighted quantities, but failed to reproduce the weighted
distributions. Further investigation revealed that the cul-
prit was an error in the weight-recalibration of the KiDS-
450 data set, not a problem with the simulations. This has
been corrected in H18, resulting in the excellent agreement
presented in Fig. 9. Comparison to Fig. 3 in FC17 shows
that the agreement with the data has improved dramati-
cally. The realistic input catalogue plays a crucial role in
this, but applying the correct weight-recalibration scheme
(to both data and simulations) also affected the results for
KiDS-450 analysis (H17) ever so slightly (H18).

5. Selection biases

The multiplicative bias in the shear estimated from a pop-
ulation of galaxies not only depends on our ability to deter-
mine the ellipticity from noisy data, but is also affected by
subtle biases introduced during the detection and sample
selection stage. We refer to these as selection biases, which
cause biased shear estimates, even if the shape measure-
ment itself is unbiased. As demonstrated in FC17, selection
biases cannot be ignored for current (and future) cosmic
shear surveys. In this section, we quantify the impact of
the various examples of selection bias introduced at dif-
ferent stages in the analysis before proceeding to estimate
in § 6 the multiplicative bias for each of the tomographic
bins.

5.1. Bias due to source detection

The detection of objects by SExtractor can already in-
troduce a selection bias if the probability of detecting a
galaxy depends on whether it is aligned (or anti-aligned)
with the shear or the PSF. This was first mentioned in Hi-
rata & Seljak (2003) and discussed in the context of the
KiDS data in Section 4.2 of FC17 and we revisit it here in
this section. To estimate the detection bias, we matched ev-
ery detected source to the corresponding object in the input
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Fig. 9: Comparison of lensfit-weighted normalised distributions of galaxy properties between KV-450 data (black), KiDS
observations of COSMOS (blue), COllege simulations (green) and COllege simulations after re-weighting (orange) the
simulated galaxies to match the joint distribution of signal-to-noise ratio and size in the KV-450 dataset (c.f. § 6). No
redshift cuts are applied here, but similar level of agreement can be seen for each tomographic bin individually.

catalogue so we can use their true ellipticities (which include
the shear), which are by definition unbiased. We discard
a small fraction of false positive detections (noise peaks),
which have no corresponding object in the input catalogue.
Of the matched objects, we only remove the stars, thus as-
suming a perfect star-galaxy separation (although keeping
the stars made no significant difference). This is motivated
by the fact the contamination by stars is low after the de-
termination of photo-zs and the classification of stars by
lensfit.

For the full sample of detected galaxies we obtain an
average multiplicative bias of about -0.025 (we find com-
parable values for both m1 and m2). As PSF anisotropy is
a potential source of selection bias (see the lowel panel of
Fig. 10) we also determined the multiplicative selection bias
in the frame parallel to the major axis of the PSF (m||) and
in the direction 45◦ to it (m×). The results are similar to the
m-values in the detector frame of reference, suggesting that
PSF anisotropy is not the dominant cause. Instead, the neg-
ative value indicates that SExtractor, at least with the
parameters chosen to analyse the KiDS data, preferentially
detects objects that are not aligned along the direction of
the shear. This may be attributed to SExtractor using
a circular kernel to detect objects, and thereby having a
slight preference to identify circular sources as opposed to
elliptical sources at low signal to noise ratios. We emphasize
that the detection bias precedes shape measurement, and is
therefore independent of the shape measurement algorithm
in general. However, some methods such as Bernstein et al.
(2016) are beginning to incorporate their own corrections to
account for detection biases (among other selection biases)
that are somewhat algorithm-dependent. The exact mag-
nitude of the bias will depend on the observing conditions
and the detection algorithm.

The green stars in the upper panel of Fig. 10 show the
multiplicative SExtractor detection bias as a function
of magnitude for the KV-450 emulation. The bias is small
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Fig. 10: Shear selection bias introduced by SExtractor
detection as a function of the measured magnitude. Upper
panel: Multiplicative bias m along the PSF direction and
at 45◦ to it. Lower panel: Additive bias in PSF frame, for
PSFs with 〈|εPSF|〉 ∼ 0.025. Faint galaxies can exhibit a
shear bias as large as −0.05 after the detection step, prior
to shape measurements. The points are slightly offset in the
horizontal direction for visual clarity.

for bright objects, but increases to almost −0.05 near the
detection limit. In contrast, we find that the detection bias
is negligible for the original FC17 analysis, because the de-
tection was done only on the original image and not on the
other three images where the galaxies were rotated (also
see § 3.3). This causes an artificial cancellation of any net
ellipticity, which does not occur in the real data. Thus, en-
forcing almost perfect shape noise cancellation by not using
an independent detection catalogue or by assigning same
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weights to the rotated pairs of galaxies, as done for the
HSC-DR1 shear calibration in M18a, will miss the contri-
bution to shear bias due to selection effects. We note that
in FC17, we detected a much smaller level of multiplicative
and additive bias at the SExtractor stage, as a result of
using a single detection image which cancelled any additive
detection bias. If we instead follow our more realistic imple-
mentation of running SExtractor on each rotation of the
FC17 images, we obtain the blue circles in Fig. 10. These
agree well with our results of the fiducial simulation, which
suggests that the observed correlations between structural
parameters and the ellipticity (see § 4.2) are not impor-
tant at this stage. We verified this explicitly by measur-
ing the selection bias where the ellipticities were assigned
randomly to the COSMOS galaxies. Those results (red di-
amonds) agree fairly well with the other points shown in
Fig. 10. The relatively low sensitivity to the input galaxy
population is fortunate, especially in view of the Stage IV
cosmic shear surveys, since advancements in shape mea-
surement methods can minimise the measurement biases
and selection biases can be accounted for through image
simulation.

Although the multiplicative bias is unchanged when
evaluated in the reference frame co-aligned with the PSF,
the anisotropy of the PSF is expected to affect the object
detection, resulting in additive bias. To evaluate this, we
simply take the mean of true sheared ellipticities, after ro-
tating them to the PSF frame, across all input shears to
get additive bias terms c|| and c×. This results in smaller
errorbars on the c-terms compared to the m-terms. The
lower panel of Fig. 10 shows that faint galaxies that are
aligned along the PSF are preferentially detected, leading
to an additive bias in the PSF frame. For galaxies fainter
than 24th magnitude show an additive bias c|| at the level

of 10−3 for our choice of PSF ellipticities (see Fig. C.1)
which have a mean ellipticity 〈|εPSF|〉 ∼ 0.025, while the
cross-component term c× is within 2 × 10−4 (not shown
here). A naive calculation based on quadrupole moments
suggests that PSF anisotropy introduces additive and mul-
tiplicative biases at a comparable level. These amplitudes
are too small to have been detected when examining the
multiplicative bias, and is anyway far lesser than the bias
introduced by the detection kernel. Thus, we can safely ig-
nore any coupling between shear and PSF ellipticity.

Before continuing, we briefly discuss the relevance of
the selection bias from the detection step for the metacal-
ibration approach. The adopted procedure so far to deal
with the noise correlations introduced in the metacalibra-
tion procedure is to add anti-correlated noise (Sheldon &
Huff 2017). This worsens the S/N of all galaxies, and conse-
quently reduces the limiting magnitude for shape measure-
ments. As a result, the detection goes to fainter magnitudes
than shape measurements are performed on, and the effect
of shear bias due to detection should be minimal. This bias
could still be captured by metacalibration, in principle, if
the detection algorithm was re-run on the sheared images,
to determine if the sheared galaxy would have been detected
by the algorithm or not.

5.2. Bias after lensfit selections

To be consistent with the selection cuts imposed in the
cosmic shear analysis, we apply the same lensfit selection

as was applied to the data and explained in Appendix D1
of H17. We reject objects for which lensfit measured sizes
smaller than 0.5 pixels, as well as objects that would be ex-
cluded from the cosmic shear analysis based on their fit-
class flags. Finally, we only keep those objects whose re-
calibrated lensfit weights are strictly positive.

To estimate the resulting selection bias after the lensfit
selection criteria, we use the input (sheared) ellipticities and
find that the net multiplicative bias for the remaining sam-
ple of galaxies is +0.004. This includes the SExtractor
selection bias, which means that the bias due to lensfit
selections alone is +0.029, thereby largely cancelling the
bias caused by SExtractor. The positive selection bias
is likely due to the tendency of lensfit to flag small objects
anti-aligned with the shear as stars.

5.3. Bias from lensfit weights

FC17 show that selection bias from lensfit weights have
a strong magnitude dependence. We observed a similar
dependence with our new inputs and also noticed that
this selection bias is sensitive to the joint distributions of
galaxy properties, since for FC17-like simulations, the bias
due to lensfit selections alone is found to be as high as
about +0.055 with the correctly recalibrated weights in the
FC17 simulations. Thus, the approximate cancellation of
the SExtractor and lensfit selection biases is coinciden-
tal and the two selections cannot be guaranteed to be com-
plementary under all circumstances.

Although the usage of the true (sheared) ellipticities,
rather than the measured ellipticities, should mimic the per-
formance of a perfect algorithm, measurement bias is still
present in a subtle manner through the recalibrated weights
from lensfit. To quantify the resulting multiplicative bias,
we compute the weighted average of true (sheared) ellip-
ticities. The net multiplicative bias with lensing weights is
about 0.015 for the full sample of galaxies. Comparison to
the mean bias from the previous section implies that the
bias due to the recalibrated lensfit weights alone is little
over 0.01. This shows relatively low-sensitivity to the joint
distributions in the input catalogue, with FC17-like simu-
lations exhibiting multiplicative bias of about 0.01 caused
by the lensfit weight themselves.

6. Calibration results

Having established that our image simulations provide a
good representation of the KiDS data, we now proceed to
determine the multiplicative biases for KV-450 for the dif-
ferent tomographic bins. These are used to correct the cos-
mic shear correlation functions used in H18 to infer cosmo-
logical parameters. Before we do so, however, we first com-
pute the mean bias for the full sample of simulated galax-
ies. We find that for the full sample of simulated galaxies,
m1[qsims] = −0.008±0.001 and m2[qsims] = −0.005±0.001.
These uncertainties represent the deviation of the data
points from the linear fit (Eq. (2)), and underestimate the
true uncertainty. For the calibration of the cosmic shear
signal, the uncertainties are derived in a more rigorous way
through bootstrapping.

H17 examined the impact of residual multiplicative bias
on the cosmological parameter estimates and concluded
that a error in m of 0.05 would be acceptable. Based on
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the results presented in FC17, an overall systematic uncer-
tainty of 0.01 was adopted by H17. The error was assumed
to be the same for all four tomographic bins in H17, because
redshift information for the simulated source was lacking.
In contrast, emulation of the COSMOS field allows us to
calibrate each tomographic bin separately. The resulting
bias estimates, and their associated uncertainties for each
bin are therefore (largely) independent, which effectively
increases the overall uncertainty in cosmological parame-
ters when all bins are considered. An overall tolerance of
0.05 implies that we can accommodate errors of about 0.02
per tomographic bin, which we adopt as our systematic
error budget. We show in § 7 that we can control our mul-
tiplicative bias errors to within 0.02. In this paper, we do
not constrain the multiplicative bias more than the require-
ment. Hence our results are considerably more conservative
than the FC17 estimates.

6.1. Bias for tomographic bins

Although the mean multiplicative bias for the full galaxy
sample is small, it is not guaranteed to be so for a particu-
lar subset of galaxies, and residual multiplicative biases that
are greater than 0.05 are still possible, particularly for small
galaxies with low signal-to-noise ratios. Furthermore, vari-
ations in observing conditions across the survey will modify
the distributions of sizes and S/N values from pointing to
pointing, thus changing the bias. Hence, as discussed in
Eq. 13, we cannot simply assume that m[preal] = m[psims],
but we need to account for the differences between the
observations and the simulations. Finally, the simulations
match the observations very well, but not perfectly and
small corrections need to be made to estimate m[preal] from
Eq. 11 or equivalently from Eq. 13.

To do so, we re-weight the simulated catalogue following
‘Method C’ of FC17. In principle the shear bias is a function
of many galaxy properties, denoted by D in § 2.2, but fol-
lowing FC17, Z18 and M18a we focus on the two dominant
observables, namely the S/N and a resolution parameter R
that quantifies how the observed shape is affected by PSF
convolution. As in FC17 (Eq. (7)), we define the resolution
parameter R as

R =
r2psf(

r2ab + r2psf

) (17)

where rab is the circularised galaxy size defined in § 4.2
and r2psf :=

√
P11P22 − P 2

12, where Pij are the weighted
quadrupole moments, measured with a circular Gaussian
function of size 2.5 pixels. For any given galaxy, R assumes
a value between 0 and 1. We remind the reader that R is
large for poorly resolved galaxies and small for well-resolved
galaxies.

The deviation from m[psims; ssims], as given in Eq. 11
is approximated by the summation over all S/N-R bins of
bi[rsims; tsims]∆wi, where i denotes a generic S/N-R bin,
bi[rsims; tsims] is the multiplicative bias in that bin obtained
from simulations and ∆wi is the difference between the frac-
tion of weight between data and simulations. We divide the
simulated galaxies into an irregular 20 × 20 grid of S/N
and R, with each bin containing the same sum of lensfit
weights (similar to Fig. 9 of FC17). We compare the ratio
of the sum of lensfit weights in the KiDS data to those in
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Fig. 11: Multiplicative bias calculated using the re-
weighting technique as a function of tomographic bins used
in the KV-450 cosmic shear analysis. The black diamonds
correspond to the fiducial bias values obtained after tomo-
graphic splitting of the simulated galaxy population, while
the blue downward pointing triangles correspond to the bias
values obtained without such a splitting. The hatched re-
gions indicate the ±0.02 region around the fiducial values.

the simulations and find that the ratios are generally close
to unity, implying our results are robust. We also explicitly
verified the robustness of our results to the binning, and
found no significant differences.

To determine the residual shear calibration bias we di-
vide the galaxies first into their respective tomographic
bins. Hence we take advantage of the fact that we have as-
signed photo-zs to the simulated galaxies in the COSMOS
field. We then re-weight the samples based on the observed
distributions of R and S/N for each bin separately. As we
use the redshift estimates for individual galaxies, we refer to
this implementation as ‘with-z’. This implementation cap-
tures the different distributions of galaxy properties in each
tomographic bin most faithfully. For this reason we adopt
it as our fiducial calibration. Unless otherwise mentioned,
we will use this redshift implementation to obtain the shear
calibration biases.

To highlight the importance of redshift information in
the simulations, we also consider a calibration scheme where
we use the full sample of simulated galaxies in the re-
weighting step. As before, the resulting distributions of R
and S/N match the observations, but the bias estimates in-
clude galaxies outside the tomographic bin. This method,
which is most similar to the approach taken by FC17, does
not use the redshift information, and we refer to this as
‘no-z’.

The results for both these implementations are listed in
Table 2 and shown in Fig. 11. In both implementations we
determine the statistical uncertainties in the bias through
a bootstrap procedure. To do so, we select galaxy samples
at random, and for each random sample we obtain the bias
values. The standard deviation of m1 and m2 over the boot-
strap realisations are taken to provide 1σ uncertainties on
the multiplicative biases. The shear bias estimates with the
‘no-z’ implementation are within our two per cent tolerance
per tomographic bin, but only barely for the two lowest
redshift bins. Thus, the naive way of re-weighting the sim-
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Table 2: Residual multiplicative bias for the five tomographic bins

Tomographic bin Bin Median RMS m (with-z) m (no-z) m (FC17cor)

definition label magnitude ellipticity

0.1 < zB ≤ 0.3 B1 22.34 0.264 −0.013± 0.008 −0.036± 0.003 0.021± 0.004

0.3 < zB ≤ 0.5 B2 23.00 0.258 −0.010± 0.006 −0.028± 0.003 0.017± 0.004

0.5 < zB ≤ 0.7 B3 23.71 0.274 −0.011± 0.006 −0.008± 0.003 0.023± 0.004

0.7 < zB ≤ 0.9 B4 23.85 0.237 +0.007± 0.006 +0.006± 0.003 0.029± 0.004

0.9 < zB ≤ 1.2 B5 24.06 0.237 +0.006± 0.007 +0.009± 0.003 0.045± 0.004

Notes. The bias values in the second column correspond to our fiducial calibration where we split the galaxy sample first into
tomographic bins (with-z); for the m (no-z) results the bias as a function of size and S/N is determined before the split into
tomographic bins; m (FC17cor) lists the results if the FC17 simulations had been analysed with the correct weight recalibration.

ulated galaxies to match the galaxies in tomographic bins,
from redshift-agnostic simulations, as in FC17, Z18 for the
im3shape catalogue and M18a, does not give an accurate
estimate of the residual biases.

Our result exposes an important limitation of redshift-
agnostic image simulations. So far, redshift estimation and
shear calibration have been treated as two independent
problems, at least in practice, within cosmic shear analyses.
In § 2.2, we argued that the bias surface must be sensitive to
the overall joint distribution of the galaxy properties, which
may differ from one tomographic bin to another. Thus, if
the sample of galaxies in a tomographic bin is not repre-
sentative of the overall sample used for re-weighting, the
terms involving ∆r and ∆t in Eq. 11 become large enough
so that they lead to residual biases that are not captured
by the re-weighting procedure used for calibrating shear. If
the galaxy properties for a given size and S/N value vary as
a function of redshift, we expect the ‘no-z’ approach to be
(slightly) biased. Due to the complex selection function, and
possibly in combination with a redshift-dependent intrinsic
ellipticity distribution, the ellipticity distributions in the
different tomographic bins may differ. Viola et al. (2014)
show that the bias in ellipticity, in general, depends on the
ellipticity itself and this is known to be true for lensfit as
well. But because we do not (and should not) characterise
the bias in terms of the measured ellipticities, the mixture
of galaxy populations between the data and the simulations
may differ, even though the S/N-R distributions in the two
are made identical.

We characterise the input ellipticity distribution using
per-component root-mean-square (RMS) values of the el-
lipticity, defined as

erms :=

√∑
k wk|εin|2k
2
∑
wk

, (18)

where the wk are lensfit weights and the summation is over
all the galaxies in the sample, and over all input shears and
rotation, so the the weights are averaged out. In Table 2,
we notice that the RMS ellipticity show some differences.
For comparison, the RMS ellipticity values when the input
ellipticities were scrambled were found to be 0.274± 0.002
for the different tomographic bins, indicating that the dif-
ferences we see in Table 2 are due to intrinsic differences
in the ellipticity distributions. Different values of RMS el-
lipticity in the different tomographic bins, when the inputs

are based on COSMOS, are not surprising given the depen-
dence of mean colour on the ellipticity, as shown in Fig. 6.
We also noted (not shown here) the the distributions them-
selves were visually different for the tomographic bins, par-
ticularly at low redshifts. Kannawadi et al. (2015) show
that some of these differences may be due to overdensities
or underdensities along the line-of-sight, which alter the
ellipticity distributions. Therefore, the input ellipticity dis-
tributions may not be typical of galaxies at that redshift,
leading to a systematic error of ∼ 0.01 in shear calibration
bias (Kannawadi et al. 2015). However, as we show later
in Fig. 14, the input catalogue with randomised ellipticities
do not describe the KV-450 data very well, suggesting that
our input ellipticities are indicative of the true ellipticity
distributions, and that the differences are not dominated
by cosmic variance alone. The uncertainty in the ellipticity
distribution is one of the major source of systematic error
in the multiplicative bias for low redshift bins. In this work,
we are relatively insensitive to intrinsic variations in p(|ε|)
across tomographic bins since we impose the same selec-
tion as in the data on assigned zB values. This is a strong
motivation for future cosmic shear analysis to build a fully
self-consistent shear calibration with realistic, multi-band
image simulations, so that the sample selection in the sim-
ulations and in the data are done from their colours and
magnitudes.

The use of redshift information, however, has additional
advantages that are worth considering. For instance, in
redshift-agnostic, single-band simulations, we rely entirely
on the shape measurement pipeline, in this case lensfit, to
perform the star-galaxy classification. In multi-band obser-
vations, this may be mitigated thanks to the various pho-
tometric cuts on the data. In the absence of photometric
information in the simulations, stars misclassified as galax-
ies by lensfit that may have been rejected based on their
photometry contaminate the simulated galaxy sample. Re-
moving such stars from the simulated catalogues based on
the ground truth can affect the bias estimate itself. More-
over, in our case, the redshift distribution for COSMOS
exhibited a small bump at around zB ∼ 5 (not shown).
This spurious galaxy population is eliminated in our fidu-
cial scheme, but not in the other. In order to ensure that
the difference between the ‘with-z’ case and the no-z case
does not arise because of this photometric selection, we re-
did the ‘no-z’ calibration, but now restricting the sample
to 0.1 < zB ≤ 1.2 but no further tomographic splitting. We
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find that the bias values shift by an amount ≤ 0.006, too
small to explain the difference in the first two tomographic
bins.

Finally, we also present results in Table 2 and in the
upper right panel of Fig. 13 for the FC17 simulations (la-
belled as FC17cor) after we corrected our earlier error in
calculating the lensfit weights, and when we detect galax-
ies in each of the rotated images. For a fair comparison, the
‘no-z’ case must be used as the reference. We find that the
bias shifts upwards by 0.02-0.04 compared to our fiducial
results (‘with-z’). To put our results in the context of § 2.2,
we attribute the differences in the multiplicative biases be-
tween the ‘with-z’ (fiducial) and ‘no-z’ cases to the ∆t terms
of Eq. 11. The differences in the bias values between the
fiducial simulations and ‘FC17cor’ are due to a combina-
tion of ∆r and ∆t terms. This highlights the importance of
realistic image simulations that reproduce the actual obser-
vations and contain redshift information for the sources. We
discuss more on this in § 7. We note that, fortuitously, the
bias values provided in FC17 match the current estimates
in the first three bins, and are 0.02 lower for the fourth bin.
The tomographic samples used in KiDS-450 and KV-450
analyses are somewhat different due to new photo-zs, de-
spite having the same global set of galaxies. However, we
note that this difference affects the residual multiplicative
bias only mildly. Although our results are fundamentally
different from that of FC17, the final impact on the cosmic
shear analysis is expected to be small because the errors in
the analysis partially cancelled the actual bias.

6.2. Additive bias

Although the image simulations are realistic and resemble
the data well, they do not capture all potential sources of
bias that are present in the actual observations. For in-
stance, we did not include

1. artefacts, such as cosmic rays, asteroids, satellite trails,
binary stars etc.,

2. camera distortions, pointing errors and astrometric cor-
rections,

3. spatial variation of PSFs and PSF modelling errors,
4. detector non-idealities such as variation in pixel re-

sponse, charge trailing etc.,

to list a few. A thorough study of instrumental effects of
the OmegaCAM detectors is under way (Hoekstra et al., in
prep). Ignoring these effects is not expected to significantly
change the multiplicative correction terms, but could have
an impact on the additive bias. In particular, Hoekstra et
al., (in prep) find that detector effects primarily affect c1
terms. For this reason, additive shear bias corrections are
derived empirically using the data themselves in H18(See
Appendix D4 in H17 for another example).

It is nevertheless interesting to compare the level of ad-
ditive biases in the image simulations to that observed in
the data. To separate the contribution of PSF leakage to ad-
ditive bias, we restricted our analysis to the first five PSF
sets but performed more simulations with all the PSFs ro-
tated by 90◦ so as to produce ten PSF sets with zero aver-
age PSF ellipticity. We find c1 to be small (. 5× 10−4) for
the different tomographic bins, whereas c2 is in the range
[5, 10]× 10−4. In the PSF frame, we found c× to be consis-
tent with zero and c|| in the range [−12,−3]×10−4. Similar
results were also obtained in FC17.
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Fig. 12: Additive bias, estimated as the mean ellipticity,
for the entire galaxy sample (All) and for the five different
tomographic bins (B1 through B5). Identical selection cri-
teria has been applied to both the KV-450 data and to the
simulations. The c1 terms are expected to differ due to the
detector effects in the OmegaCAM data which are excluded
in the simulations.

Interestingly, H17 also observed a statistically signifi-
cant additive bias in the KiDS data, in particular for c2
(see Fig. D6 of H17), which is corroborated by the simu-
lations. Fig. 12 shows that the amplitude of the c2 terms
are in agreement between the data and the simulations.
We find similar level of c2 when we simulate images with
a circular PSF. We did not find any significant c2 immedi-
ately after the SExtractor detection step, or by replacing
the lensfit-measured ellipticities with the input ellipticities,
while continuing to impose the same cuts that are applied
on the data. This suggests that the lensfit-measured ellip-
ticities give rise to the c2 terms at the level of . 10−3.
Similar levels of additive biases were found in FC17 as well,
where we verified that the incorrectly recalibrated weight
in FC17 has little effect on the additive bias terms. We
note that such small but statistically significant additive
terms were also found in the DESy1 shape catalogue (Z18)
and on small angular scales in the HSC-DR1 shape cata-
logue (Mandelbaum et al. 2018b). The similarity in the level
of c−terms between the KV-450 data and the simulations
indicates that other sources of shear bias are small.

We also explored how the additive bias depends on the
galaxy properties. In § 5 we already found that a mag-
nitude dependent (or S/N-dependent) additive bias along
the direction of the PSF can arise at the detection step,
which is particularly significant for faint galaxies. After the
shape measurement step, we find a strong dependence of
c2 as a function of the resolution R, at a per cent level
for poorly-resolved galaxies, but tending to zero quickly for
well-resolved galaxies. In contrast, the amplitude of c1 is
much lower < 0.003 and exhibited only mild dependence
on S/N and R. While c1 took both positive and negative
values depending on the galaxy properties, we observed c2
to be always positive. The excellent agreement between the
c2 terms, given the strong dependence on galaxy proper-
ties, indicate that the galaxy population in the simulations
is indeed representative of the data.
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In the PSF frame, c|| showed a strong dependence on
both S/N andR, with c|| . −0.01 for galaxies withR > 0.7
or S/N < 10. For each sub-population of galaxies split finely
in bins of S/N or R, the amplitude of the cross-component
additive bias |c×| < 10−3, with no particular trend as a
function of the observables.

7. Sensitivity analysis

In § 4.3 and § 4.4 we showed that our image simulations
match the actual data very well and that the re-weighting
factors are close to unity for subsets of galaxies split by
size and S/N, with fluctuations of the order of 10−4 or less.
Consequently, the estimates of the shear biases presented in
Table 2 should be accurate. Nonetheless it is worthwhile to
explore the robustness of our results and attempt to quan-
tify the potential systematic uncertainties that may still be
present. For instance, we simplified the galaxy morpholo-
gies by representing them with Sérsic profiles. Our input
catalogue is incomplete at the faintest magnitudes, but the
missing galaxies may still affect the estimate of the mul-
tiplicative bias. Varying star densities can affect the re-
sults (e.g. Hoekstra et al. 2015; Hoekstra et al. 2017). In
this section we therefore explore the sensitivity of the shear
measurement bias to various assumptions and simplifica-
tions made in the simulations. These results help to assess
the robustness of the calibration presented in the previous
section. In the language described in § 2.2, these tests corre-
spond to various evaluations of the ∆ terms from different
simulations. As these tests can become computationally ex-
pensive very quickly, we use only 5 of the 13 PSF sets. This
results in only minor changes in the mean residual bias val-
ues (< 0.005; see lower right panel of Fig. 13), and hence
they remain a good representation of the data. The smaller
volume of simulations naturally results in a larger statisti-
cal uncertainty, but we note that we are interested in deter-
mining the change in the mean values of the multiplicative
biases of the different tomographic samples when we vary
the inputs. The errors are tightly correlated among the dif-
ferent simulations within a tomographic bin, as there is a
significant overlap among the input samples of galaxies in
the different simulations and because the noise realisations
in the images are identical in many of these simulations,
unless explicitly mentioned otherwise. Hence, the shifts are
not driven by noise. Our main objective is to ensure that
uncertainties in the input quantities do not change the bias
by more than 0.02. The results in this section indicate that
they are indeed controlled under 0.02, but it appears that
we cannot impose a tighter limit on the overall uncertainty
at this time.

7.1. Impact of clustering and galaxy density

The images of galaxies that are nearby on the sky blend to-
gether, making the measurement of their shapes challeng-
ing. M18a show in their Fig. 16 that blending can intro-
duce multiplicative shear biases as large as 0.1. The impact
of blending for KV-450 is expected to be much less, as the
data are relatively shallow in comparison to the HSC obser-
vations. More representative for our data, Samuroff et al.
(2018) show that the bias in the tomographic bins due to
neighbour contamination is about ∼ 0.05 for DESy1 results
with the im3shape catalogue. In particular, their Fig. 10
shows how the bias depends on the distance to the nearest

neighbour. The exact level of bias depends not only on the
shape measurement algorithm, but also on how galaxies in
the neighbourhood in the data are accounted for.

FC17 show that the impact of blending of galaxies for
KiDS is negligible, by computing the multiplicative bias
with simulations where the fiducial number density was
lowered by 50%. The change in the multiplicative bias is
found to be small (less than 0.002), as the self-calibrating
lensfit accounts for the adjacent galaxies internally and is
therefore fairly robust. Although this suggests that blend-
ing can be ignored, it is worth noting that the galaxies were
placed randomly, whereas in reality galaxies cluster. Our
fiducial simulations, by virtue of emulating the COSMOS
field, do capture the realistic clustering of galaxies present
in the field. To quantify any contribution to the multiplica-
tive bias caused by clustering, we perform another set of
simulations with the same input catalogue but with ran-
dom positions for the galaxies. As shown in the upper left
panel of Fig. 13, the change in multiplicative bias is greater
than 1σ for the B2 and B4, and negligible compared to the
statistical error in the other three bins.

It is possible that the galaxy density in the COSMOS
field is atypical. To explore the impact of this, we create
new simulations where the number density is increased by
a factor f relative to the simulations with random galaxy
positions23. For lower densities (f < 1), we select a dif-
ferent random subset from the COSMOS sample for every
input shear and input PSF. For higher densities (f > 1),
we include the full sample once and then, we select a ran-
dom subset to account for the rest of the galaxies. We find
that the change in the biases were negligible (not shown)
for f = 0.8, and within the tolerance limit for f = 1.5. We
emphasise that a global increase in galaxy density by 50%
over the full COSMOS area exceeds realistic variations, and
thus resembles an extreme scenario. The large differences
found in B2 and B4 become even more significant, indicat-
ing the possibility that the COSMOS sample exhibit lower
clustering in those redshift bins.

7.2. Impact of stellar density

The density of stars varies across the sky as a function of
Galactic coordinates. Given the large area covered by KiDS,
we expect some variation in star-galaxy blending. In the
simulations the density of the stars is held fixed. As already
mentioned in § 3.1, the stellar magnitude distribution is
obtained from the Besançon model24 (Robin et al. 2003;
Czekaj et al. 2014) corresponding to right ascension α of
175◦ and declination δ of 0◦. As already pointed out by
FC17, this region has a star density than is higher than
the average for the entire KV-450 footprint. To test our
sensitivity to the star density, we increase the density of
stars further by a factor of two.

The results are presented as red squares in the upper
left panel of Fig. 13. These show that the change in multi-
plicative bias is within 1σ, with the exception of B2, which
is where the misclassified stars in the data usually end up.
The change is nevertheless within 0.01. We note that the
stars do not contaminate the galaxy catalogue due to the

23 Since the masks in the COSMOS field are not incorporated
in the simulations without clustering, the number density is re-
duced by a small fraction.
24 http://model.obs-besancon.fr/
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Fig. 13: Residual biases calculated with different simulations indicating the robustness of our calibration to different
assumptions about the input to the simulations. Top-left: Sensitivity to galaxy clustering and number density (§ 7.1
and § 7.2). Top-right: Sensitivity to input ellipticity correlations with galaxy parameters (§ 7.3). Bottom-left: Sensitivity
to the magnitude completeness of the input catalogue (§ 7.4) and to galaxy model in the simulations (§ 7.5). Bottom-right:
Sensitivity to the quality of photo-zs ( § 7.6). The hatched regions in the all panels are indicate the ±0.02 region around
the fiducial values of each panel (black diamonds).

photometric selection based on their input redshift. Our hy-
pothesis for the change is that the increased stellar density
leads to increased blending with galaxies, particularly the
faint ones, leading to an increased rejection of faint galax-
ies. This explains the smaller sample size in B5, leading to
larger error bars and a change in the values towards pos-
itive values in four of the tomographic bins. We did not
explore this further, as the star density is very high whilst
the changes are small enough to be of no concern for KV-
450.

To investigate the possibility that we are mis-estimating
our bias due to higher-than average stellar density, we re-
peated the simulations with only half the numbers of stars,
removing them randomly. We find from the upper left panel
of Fig. 13 that both B1 and B2 are sensitive to a reduction
in stellar density, especially B1, which marginally exceeds
our error budget of 0.02. While other tomographic bins do
not show any monotonic behaviour for the central values
as a function of stellar density, B1 appears to exhibit a
monotonic behaviour. Therefore, considering the two cases
to bracket realistic variation of stellar densities with suffi-
cient margin of error, we do not expect the bias to shift by
more than 0.02.

7.3. Dependence on the input catalogue

The residual multiplicative bias estimates from the fidu-
cial simulations are in good agreement with the published
values of the same in FC17. However, we emphasize that
this is merely a lucky coincidence. Had we only corrected
the weight recalibration, and used the input catalogue used
in FC17 to calibrate shear, we would have obtained a cor-
rection quite different from our fiducial results as indicated
by the orange stars in the upper right panel of Fig. 13.
We attribute this shift to the fact that ellipticities are cor-
related with other galaxy properties that affect the shear
bias. As argued in § 4.2, we have strong reasons to believe
that such correlations are real, and thus crucial to include
in the simulations.

As mentioned in § 3.3, there were a few improve-
ments and corrections made to the simulation pipeline.
We obtained multiplicative bias estimates using the input
catalogues used in FC17. For the FC17 input, m[qsims]
for the population of the galaxies that enter the cosmic
shear analysis is measured to be (3.22 ± 0.42) × 10−2 and
(3.14 ± 0.27) × 10−2 for m1 and m2 respectively. This is
evidently very different from what we obtained from the
fiducial simulations, which had bias values consistent with
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Fig. 14: Weighted distribution of ellipticities as measured
by lensfit. The grey histogram shows the distribution for
the KV-450 data, which is reproduced fairly well using our
fiducial simulations (green) that use Sérsic profiles. Simi-
lar distributions are obtained when we use real galaxy im-
ages from COSMOS (blue) or instead represent galaxies
by bulge+disc models (purple). The simulation where the
input ellipticities were scrambled gives a very different dis-
tribution (red) and is inconsistent with the data.

zero. Due to the redshifts being absent, we are able to obtain
bias for the tomographic bins using only the ‘no-z’ method.
The upper right panel in Fig. 13 suggests that the multi-
plicative bias can differ by 0.02 depending on which input
catalogue is chosen. However, based on a careful compari-
son with the data, as in Fig. 8 for example, we can rule out
the input catalogue of FC17 as not a good representation
of real galaxy population, and therefore the relative large
change in the bias is not surprising.

This effect is not expected to impact the shear cali-
bration of DESy1 (Z18) and Samuroff et al. (2018), and
HSC-DR1 (M18a) shape catalogues significantly, which use
postage stamps from the HST COSMOS sample. Although
this is primarily done with the intention to capture any
model bias, it also ensures that any dependencies on size-
ellipticity correlations (see § 4.2, § 4.3) are also captured
implicitly. We also see this again in § 7.5, where we repeat
the simulation where we substitute a fraction of the input
with real galaxy images and see no significant differences.

To quantify the importance of capturing ellipticity cor-
relations, we created another set of simulations where we
scrambled the input ellipticites randomly to make them un-
correlated. We find a significant change in the multiplicative
bias values approaching those from the FC17-like simula-
tions. From Fig. 14, we also note that in the simulations
with ellipticities scrambled, the resulting weighted elliptic-
ity distribution does not resemble that from the KV-450
data whatsoever. Thus, this also acts as a sensitivity test
to the ellipticity distributions, albeit indirectly.

7.4. Impact of the input magnitude distribution

In order to assess the impact of the incompleteness of the
ACS-GC catalogue at the faint end, we take the ratio be-
tween the input magnitude histograms of the simulation
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Fig. 15: Distribution of the (input) galaxy magnitudes for
the fiducial, shallow and deep input catalogues.

used in FC17 and the ACS-GC catalogue and obtain a
weight for the magnitude bins for magnitudes greater than
25. We create copies of the faint galaxies several times, a
number roughly equal to their magnitude weight and ran-
domly place them in the simulated images. We do not ex-
pect the clustering properties of such galaxies to be of major
concern, because their main impact is to introduce noise in
the background around the bright galaxies that are used in
the lensing analysis. We refer to this input catalogue as the
‘deep’ catalogue and show its input magnitude distribution
in Fig. 15. The faint galaxies that are detected in the ACS-
GC catalogue might not be a fair subset of the population
of faint galaxies. From Fig. 4, we already saw that the faint
galaxies are preferentially small due to their higher surface
brightness for a given total magnitude (small galaxies are
not missing in the KiDS catalogue, because they are de-
tected). Including a large number of such compact galaxies
is expected to affect the detection catalogues themselves
and drive the multiplicative bias to become even more neg-
ative as opposed to including a fair population. This there-
fore is a worst case scenario and is very conservative.

We also created another set of simulations where only
the galaxies that were detected in the KiDS-COSMOS cat-
alogue were included. We call this the ‘shallow’ input cat-
alogue. We know from Hoekstra et al. (2017) that missing
faint undetected galaxies in the image simulations can shift
the multiplicative bias towards positive values. From our
work, we know that the exclusion of faint galaxies around
the limiting magnitude based on their non-detection can
introduce much larger selection biases (negative multiplica-
tive bias), similar to the levels found in Fig. 10. Therefore,
we expect the residual multiplicative bias to become more
negative overall.

We find in Fig. 13 that for the first three tomographic
bins, all three input catalogues give values for the multi-
plicative bias that are consistent within 1σ uncertainty. For
the last two tomographic bins, the multiplicative bias de-
rived from the shallow and deep catalogues are significantly
more negative than the fiducial ones, as expected. Both
these cases exaggerate the effects of faint galaxies, and we
can expect the true variations to be much smaller than our
error budget of 0.02.
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7.5. Impact of morphology and model bias

We use Sérsic models based on HST observations to de-
scribe the surface brightness profiles of galaxies, which dif-
fers from the model that lensfit uses to fit the data. Such a
mismatch may introduce model bias (Voigt & Bridle 2010;
Zuntz et al. 2013; Kacprzak et al. 2014), but Miller et al.
(2013) have argued that this should be subdominant for
the analysis of ground-based data. This is supported by
the performance of lensfit on realistic simulated galaxies
in the GREAT3 challenge (Mandelbaum et al. 2015) and
additional tests presented in FC17.

We explicitly verified that the model bias is subdomi-
nant in this work as well. This was done by matching the
Griffith et al. (2012) catalogue with the COSMOSCatalog
available in GalSim (see Leauthaud et al. 2007; Mandel-
baum et al. 2014, for details). The COSMOSCatalog contains
the best-fit Sérsic and bulge+disc parameters for 87717
galaxies in the HST COSMOS field and a flag indicating
which of the two parametric models is a better fit. As a con-
sistency check, we found that the Sérsic parameters in both
the catalogues are largely in agreement with each other.
Whenever the two component model was deemed to be a
better fit, we replaced those galaxies in our fiducial simula-
tion by the equivalent bulge+disc model. This resulted in
about 10% of the input galaxies being replaced. The resid-
ual multiplicative biases do not change significantly (see
lower left panel of Fig. 13) for the tomographic bins. We
ran another simulation where we replace the Sérsic mod-
els with realistic galaxy images available via COSMOSCata-
log. This resulted in about 30% of the input galaxies being
replaced. Although the fraction of galaxies for which the
Sérsic models were replaced is small, this predominantly
happens for bright galaxies, which carry relatively larger
weights. In both these cases, the ellipticity distributions
are also consistent with our fiducial simulations as seen in
Fig. 14. As seen in the lower left panel of Fig. 13, no sig-
nificant change in the multiplicative biases is found. Thus,
we once again conclude that there is no evidence of any
significant model bias.

7.6. Impact of redshift quality

As we have shown in § 6, sample selection based on pho-
tometric redshifts modifies the ellipticity distribution, and
therefore, the bias in the shear estimate. We divided the
simulated galaxies into tomographic bins using photo-z esti-
mates that were derived from VST and VISTA (and CFHT)
observations of the COSMOS field. The seeing of the COS-
MOS field, at least through the r−band filter, is better than
most of the pointings (see Fig. C.1). As a result, the quality
of the nine-band photo-zs for galaxies in the COSMOS field
is likely to be better than most of the other fields, and hence
may not be representative of the KV-450 data set. In our
simulations, we have varied the seeing conditions for shape
measurements, but in all cases, each galaxy is assigned the
same redshift. The results from the ‘no-z’ case may be seen
as a limiting case of extremely poor photo-zs, which exceeds
the tolerance limit for B1. We therefore have to investigate
how sensitive the inferred biases are to the quality of the
photo-zs.

To assess the impact of tile-to-tile variation of n(z), we
generate tomographic samples in the simulations based on
the ugri redshifts as in KiDS-450. These are of poorer qual-

ity compared to the nine-band redshifts used in this work.
We see from the lower right panel of Fig. 13 that the change
in the bias is the largest for B1 and B5, and are well within
the statistical errorbars for the other three tomographic
bins. This is in line with what we would expect given the
results of Wright et al. (2018). They find that in the case
of four-band photo-zs, B1 contains a significant population
of intermediate to high redshift (spectroscopic) interlopers
(zspec & 0.5) that are not present in the nine-band photo-z
case. Similarly, they find that the four-band photo-zs are
unable to define B5 robustly. Thus the change from nine-
band to four-band photo-zs has the maximal impact on B1
and B5 naturally.

We also incorporate redshifts of significantly higher
quality by assigning the COSMOS-30 redshifts from Ilbert
et al. (2009). We find that the tomographic bins defined
with COSMOS-30 redshifts give consistent bias with the
exception of B1, although it is within the allowed limit of
two per cent. It is intriguing that the the tomographic sam-
ples defined based on four-band photo-z and COSMOS-30
redshifts have shear biases that are in very good agreement
with each other, especially in B1 and B5. We note that this
agreement is merely coincidental, despite the intersection
of the tomographic samples based on four-band photo-z
and COSMOS-30 being similar to, or smaller than the in-
tersection of the samples based on the other two pairs of
redshifts. It is important to recognise that in all cases, the
shape catalogues are the same and we only change our se-
lection function used to define the tomographic bins.

More recent redshift estimates for galaxies in the
COSMOS field are provided in the COSMOS2015 cata-
logue (Laigle et al. 2016). However, unlike the ones available
in Griffith et al. (2012) which detects objects in the opti-
cal band (F814W ), Laigle et al. (2016) use near-infrared
images from Y JHKs bands to detect objects. This intro-
duces selection effects for faint galaxies, particularly at high
redshifts and does not allow for a fair comparison for our
purposes, and therefore we do not show it here. We never-
theless cross-matched these two HST-based catalogues and
assigned the galaxies in our simulations more accurate red-
shifts. We found that the multiplicative biases were largely
consistent in the first four bins, but a relatively large bias
(about +0.068) was seen in B5. We investigated this further
and found that when 30-band photo-zs from COSMOS2015
are used, large galaxies were preferentially left out from B5.
We attribute the increase in the multiplicative bias due to
relative abundance of small galaxies (i.e., high R) which
exhibit high positive bias on average. We emphasise once
again that this does not affect the KV-450 shear calibration,
but is only intended to show the importance of including ac-
curate and unbiased redshift information in the simulations
that are used to calibrate the shear.

A similar approach was tested for DESy1 (Z18), where
they defined sub-samples in their simulations using 30-band
redshifts and show that the bias obtained is different in the
presence of redshift errors. Moreover, the difference in the
bias increased with increasing redshifts, and exhibited a
maximum difference of ∼ 0.025 (see Fig. 15 of Zuntz et al.
(2018)). The DESy1-like redshift assignments were stochas-
tic to mimic n(z) in the different tomographic bins and
did not capture any correlation with the galaxy properties.
In contrast, we have selected our tomographic sample in a
more realistic way in our fiducial simulations. We find in
the lower right panel of Fig. 13 larger shifts at low redshift
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bins compared to the high redshift bins. We also see from
Fig. 11 that the difference in the bias values is largest at low
redshifts when we include no redshift information (no-z)

If the change in ellipticity distributions is purely due to
an evolving population of galaxies, then accounting for the
difference in distributions is less important if the redshift
errors are large enough to dilute any small differences. But
as redshift errors shrink, or equivalently, as the tails of the
n(z) in the different tomographic bins vanish, which will be
the case for future surveys, accounting for the difference in
ellipticity distributions becomes important.

8. Summary and Conclusions

Measuring the gravitational lensing shear field in a suffi-
ciently unbiased way is absolutely necessary for an accurate
estimation of the cosmological parameters. This is partic-
ularly of importance when different probes agree with the
standard cosmological paradigm of ΛCDM, but disagree on
the exact values of the model parameters. Various system-
atic errors and biases have to be checked to ensure that
the results are accurate when precise measurements become
possible with the ongoing and future surveys.

In this paper, we have calibrated the shear measure-
ments from the Kilo-Degree Survey using simulations with
increased realism in comparison to previous studies. We
have also provided a mathematical framework to under-
stand the limitations of the calibration procedure itself and
to provide context to our results, and point out where the
additional systematic uncertainties come from. It is useful
to classify the main results of this paper into those that
are only applicable to our self-calibrating lensfit analysis of
KiDS, and those that are generic and relevant to all on-
going and future weak lensing surveys. We first summarise
our results for KiDS and then list the more generic results.

By emulating the COSMOS field first, and extending
it to a larger area by varying the observing conditions, we
have simulated a mock KiDS+VIKING-450 dataset. A key
improvement with respect to the previous study is the use
of the catalogue from Griffith et al. (2012) as our input
to the simulation, which contains structural parameters for
galaxies in the COSMOS field based on HST observations.
The simulations are found to represent the observed data
extremely well. By cross-matching our input catalogue to
the catalogue obtained from the KiDS observation of the
COSMOS field, we have assigned a nine-band photo-z to
each simulated galaxy. We have split the simulated galaxies,
based on their assigned photo-zs, into tomographic samples
of width ∆zB = 0.2, as used in the KV-450 cosmic shear
analysis (H18) and calibrated the shear for the individual
tomographic galaxy samples. The self-calibrating version of
lensfit used to measure shear removes almost all of the raw
biases internally and shows only small residual biases that
may be considered to be consistent with zero within the
allowed tolerance limit (∼ 2 per cent). We emphasise that
an almost unbiased shear estimate is obtained internally
for the tomographic bins, without any baseline correction
applied from the simulations.

Compared to the previous calibration study undertaken
by FC17, the uncertainty in the shear calibration has in-
creased from 0.01 to 0.02. However, the values of the mul-
tiplicative bias for the first four tomographic bins are con-
sistent with that reported in FC17 within the allowed tol-
erance limits, and therefore do not call into question the

accuracy of cosmological results from the KiDS-450 cos-
mic shear study (H17). While the uncertainties on shear
estimates have doubled, the use of nine-band photometry
facilitates the use of a fifth high-redshift tomographic bin,
thereby making the constraints on the S8 parameter in the
KV-450 cosmic shear analysis of H18 more robust.

Through an extensive suite of image simulations, we
have performed a variety of sensitivity tests and show that
the shear calibration biases are controlled within the error
budget of 0.02 per tomographic bin. In a few exaggerated
test cases where the biases vary by more than 0.02 from the
fiducial values, we show that such scenarios can be deemed
unrealistic by comparing the properties of the simulated
galaxies with the observed galaxies. It is worth noting that
the single largest systematic uncertainty in the S8 estimate
comes from the uncertainty in the shear calibration.

Several sources that affect the shear calibration have
come to light during this work that require us to (not)
make strong assumptions about the population of galax-
ies and model the astrophysical variations in the survey
footprint. Further developments are being carried out on
shape measurement algorithms for subsequent data releases
of KiDS with the aim to make the shear measurements less
sensitive to the properties of the simulated galaxy popula-
tion and foreground contributions. Many of our results are
applicable to other weak lensing surveys and other shape
measurement methods. We conclude by listing the generic
take-away messages below.

We show that the KV-450 dataset itself exhibits mild
selection biases arising from the SExtractor detection
step that are significant for faint galaxies. Because the de-
tection bias occurs prior to measuring galaxy shapes, it is
independent of the shear measurement algorithm, and is ex-
pected to be generic for all ongoing and upcoming lensing
surveys. In the KV-450 tomographic bins, we estimate the
contribution to multiplicative bias to be at worst −0.005,
which is non-negligible, particularly as the survey volume
increases. The magnitude-dependence, or equivalently, the
S/N dependence of detection bias implies that, irrespective
of the performance of the shear measurement algorithm,
the image simulations used to infer the bias in shear must
have a realistic distribution of magnitude or S/N to capture
these biases accurately. However, because object detection
bias appears to be rather insensitive to the types of galaxy
morphology simulated and the presence of any correlations
between galaxy ellipticity and size, image simulations do
not have to be ultra-realistic in order to accurately cali-
brate object detection selection bias. They could be used in
combination with metacalibration that can remove not all,
but most of the raw shear biases.

The multiplicative bias for a sample of galaxies inferred
from the simulations depends on the fidelity of the input
catalogue and various other assumptions in the simulations.
To constrain the uncertainty in multiplicative bias from
simulations further, it may be required to emulate the entire
dataset, not just by including instrumental variations, but
also by including the astrophysical variations such as stel-
lar and galaxy densities. Increasing the realism of the input
galaxy catalogue to emulate future surveys seems challeng-
ing, as it requires us to input the unknown. Large cosmo-
logical simulations, such as the Euclid flagship simulation25

25 http://sci.esa.int/euclid/59348-euclid-flagship-mock-galaxy-
catalogue/
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could help in this regard. By requiring the cosmological
results obtained from two different shape catalogues cali-
brated using the same simulations be in agreement, it is
possible to self-consistently verify if the simulations match
the data to the desired accuracy. We base this claim based
on our framework. Alternatively, shape measurement meth-
ods must be improved to reduce their sensitivities to the
galaxy properties.

We argue that it is important to include the observable
parameters that are used to define any galaxy sample. For a
tomographic cosmic shear analysis, this corresponds to the
photo-z of the same quality as in the data (Z18), or equiva-
lently galaxy colours from the same set of filters. By assign-
ing photo-zs to our input catalogue based on the matching
to the observed data, we explicitly show that biases es-
timated for the low redshift bins can differ by more than
0.02, and hence calibrating shear simply based on signal-to-
noise ratio and size distributions alone is insufficient. For
a fully consistent high accuracy tomographic cosmic shear
analysis, it will be essential to create multi-band image sim-
ulations in order to be able to apply photo-z selections con-
sistently to the simulations and the data.
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Appendix A: Practical Estimator

Appendix A.1: Estimate from samples

We can express the integral of b[rsims; tsims] over wreal as a
sum of integrals over mutually exclusive partitions of D =⋃
k

Dk, such that p′sims(D) > 0 and s′(D) > 0 for every

D ∈ D.

I =

∫
dDwreal(D)b[rsims; tsims](D)

=
∑
i

∫
Di

dDwsims(D)b[rsims; tsims](D)
wreal(D)

wsims(D)
. (A.1)

We rewrite each of the three probability distributions with
the Dirac delta function as

I =
∑
i

∫∫
Di×Di

dD0dD3δ(D3 −D0)wsims(D3)b[rsims; tsims](D3)

×

∫
Di

dD1δ(D1 −D0)wreal(D1)

.
∫
Di

dD2δ(D2 −D0)wsims(D2)
.

(A.2)

To obtain a practical estimator for the above integral, the
Dirac delta is replaced with a top-hat function which may
be considered as smoothed delta function. For every D ∈ Di
and D0 ∈ Dj , we define the smoothed delta function as

δ(D−D0) −→ Π(D−D0) =
δij
Ai

=

{
1/Ak if D,D0 ∈ Dk
0 otherwise

,

(A.3)

where δij is the Kronecker delta and Ai :=
∫
Di

dD, is the

‘area’ of the partition Di.

Î =
∑
i

∫
Di

dD0
wi,real
wi,sims

∫
Di

dD3
1

Ai
wsims(D3)b[rsims; tsims](D3)

(A.4)

=
∑
i

1

Ai

∫
Di

dD0
wi,real
wi,sims

〈bi[rsims; tsims]〉 (A.5)

=
∑
i

wi,real
wi,sims

〈bi[rsims; tsims]〉 , (A.6)

where wi,real =
∫
Di

dDwreal(D) =
∫
Di

dDp′real(D)s′(D) and

similarly for the simulations.

Appendix A.2: Bias in the estimator

The estimator derived in Eq. A.6 uses galaxy samples taken
from the observed data and from the simulations. Thus, the
shot noise due to discrete galaxy counts can make the esti-
mate biased even if the underlying populations are identical.
In this sub-section, we show that the systematic bias can
be neglected in comparison to the statistical errors if the
binning includes a sufficient number of galaxies.

Let two random variables Ni,sims and Ni,real denote the
number of galaxies (or sum of the lensing weights) in the
simulations and observed data respectively that fall in the
ith bin. The samples are independent, hence we can write
the average of ratios as〈
Ni,real
Ni,sims

〉
= 〈Ni,real〉

〈
1

Ni,sims

〉
=
ni,real
ni,sims

+ ri, (A.7)

where the ni’s refer to the averages and ri is the deviation
of the average from the ratio of averages. If psims = preal,
〈Ni,sims〉 = 〈Ni,real〉. The ratio of the averages, however, is
generally not equal average of the ratios.

For simplicity, consider Ni,sims to be a random variable
that follows a Poisson distribution with a mean ni,sims � 1.
Then〈

1

Ni,sims

〉
≈
〈

1

Ni,sims + 1

〉
=

1− e−ni,sims

ni,sims

=
1

〈Ni,sims〉
− e−〈Ni,sims〉

〈Ni,sims〉
. (A.8)

This result is fairly independent of the distribution of
Ni,sims if its mean is much higher than unity. In this
limit, the difference between the average of the inverse
and inverse of the average scales down exponentially as
the mean increases. The resulting bias in the estimator∑
i ri 〈bi[rsims; tsims]〉, is

ri ∼
〈Ni,real〉
〈Ni,sims〉

e−〈Ni,sims〉 �
√
Ni,sims. (A.9)

Thus, the bias in the estimator is negligible when there are
sufficient numbers of galaxies in each bin.

Appendix B: Detailed comparison between the
KV-450 data and simulations

We compared the output quantities of the lensfit catalogue
for the COSMOS tile with our simulations when we used
similar PSFs. The upper panes in Fig. B.1 show the un-
weighted histogram of lensfit weights, while the lower panes
show the weighted histogram of the signal-to-noise ratio and
the lensfit-measured scale length along the major axis of the
galaxy. The lower panels in each of the three figures show
2-dimensional histograms with the difference in X between
the simulations and data along the vertical axis and the X
in the data along the horizontal axis. The red lines indi-
cate the median value of the differences. As in Fig. 7, each
vertical column is normalised such that each peak in the
1-dimensional slices of the 2-dimensional histogram is nor-
malised to unity. This improves the histogram visually, al-
lowing us to see the contrast across the full parameter range.
The shaded regions correspond to unphysical regions, due
to the corresponding quantities in the simulations taking
negative values.

As the recalibration procedure for the COSMOS tile is
carried out at a catalogue level with the rest of the galax-
ies in the G12 patch of the KV-450 dataset, the weight
depends more than just on the galaxy properties. A one-
to-one comparison might not be fair in this case. Although
the weights of the individual object are not exactly in agree-
ment with each other, the overall weight distribution, and
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Fig. B.1: Object-by-object comparison of lensfit quantities,
similar to Fig. 7. See text in appendix B for details.

the weighted distribution of other observables appear to be
in good agreement.

The scatter in the S/N increases with S/N. This is so
because the estimate of there noise term N in the ratio
S/N itself is noisy which is amplified by the high value of
the signal S. For a random scatter of N around its true
mean, the median (and mean) are biased towards positive
values. However, as there are very few galaxies at such high
values of S/N, it does not affect our sample significantly.
Similarly, there is good agreement between the measured
sizes, particularly for the bulk of the galaxies.

Appendix C: PSF models

The PSF in the observations is modelled by fitting an ellip-
tical Moffat profile. Although the atmosphere at the VST
site is fairly stable, to account for the time-dependent see-
ing conditions and spatial variation of the PSF, the model
parameters are obtained for each exposure and for each
CCD separately by running PSFEx (Bertin 2011) on KiDS-
DR1/2 data. To capture the realistic temporal variation in
the PSF, we select a series of PSF parameters that corre-
spond to five consecutively observed exposures. These are
used for the different exposures that make up a single point-
ing. However, any spatial variation is ignored altogether and
all galaxies in a given simulated exposure are convolved
with the same PSF for simplicity. To account for long-term
variations in seeing conditions that occur throughout the
survey, we chose the PSF parameters from 13 KiDS point-
ings, resulting in a total of 65 different PSFs. These corre-
spond to the same 65 PSFs used in FC17, which themselves
are a subset of the observed PSFs26. We compared the resid-
ual multiplicative bias in the tomographic bins by running
the FC17 pipeline with only 25 out of the 65 PSFs, and the
results were essentially the same.

For reference Fig. C.1 compares the distribution of the
PSF parameters in the simulations (red) and in the ac-
tual data (black). We also show the distribution of parame-
ters for the VST r-band observations of the COSMOS field
(grey).

To quantify the PSF size and shape we do not use the
Moffat model parameters, but instead we use quantities de-
rived from weighted quadrupole moments (see Eq. (6) in
FC17) with a Gaussian weight function of size 2.5 pixels.
The pseudo-Strehl ratio is defined as the fraction of light in
the central pixel of the PSF and is available in the lensfit
output catalogue. The distributions of the PSF parameters
in the simulations are spiky because we only use a small
set of PSFs. The broadening around the peaks is caused
by the gaps between the chips; at those locations only four
exposures contribute.

26 A benign error was found after the FC17 analysis where the
PSF ellipticity from PSFEx was not propagated correctly to
the ellipticity of the PSF in the simulations, but increased by
almost a factor of 2. Since the ellipticities themselves are small,
the effect is minor and the simulations are fully self-consistent.
We therefore did not correct this error in this analysis
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Fig. C.1: Histograms of the PSF parameters for the simulations using the COllege pipeline (red), entire KV-450 data
(black) and for the COSMOS field alone (grey).
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