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Abstract

This work studies handover skipping, which is able to transfer the user between two non-adjacent

access points (APs), in light fidelity (LiFi) networks. LiFi is an emerging wireless communication

technology, which operates in a way similar to wireless fidelity (WiFi) but uses light waves as a medium.

Compared to WiFi, LiFi has a relatively shorter range and the coverage range of a single AP is limited.

This could cause more frequent handovers and thus handover skipping techniques are required. The

conventional handover skipping methods rely on the information on the user’s trajectory, which is not

ready to use at the AP. Based on reference signal received power (RSRP), a novel handover skipping

method is proposed in this paper. The new method combines the value of RSRP and the change in

RSRP to determine the handover target. Since RSRP is already used in the current handover schemes,

the proposed method does not require additional feedback. Results show that compared to the standard

handover scheme and the conventional handover skipping method, the proposed method can reduce

handover rate by up to 29% and 17%, and improve throughput by up to 66% and 26%.

Index Terms

1This paper was presented in part at IEEE VTC Spring 2019 [1].
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I. INTRODUCTION

Global mobile data traffic will increase sevenfold between 2017 and 2022, reaching 77.5

exabytes per month by 2022, and traffic from wireless fidelity (WiFi) and mobile devices will

account for 71 percent [2]. Globally, there will be nearly 549 million public WiFi hotspots

by 2022, up from 124 million hotspots in 2017 [2]. The high-density WiFi deployment would

cause sever signal interference due to the limited spectrum resource of radio frequency (RF).

To tackle the looming spectrum shortage in RF, wireless communication technologies based

on extremely high frequencies have attracted significant attentions, such as millimetre wave

(mmWave) communications [3], massive multiple-input multiple-output (MIMO) [4], and visible

light communications (VLC) [5]. The wireless networking use case of VLC is termed light-

fidelity (LiFi) [6], which operates in a way similar to WiFi but uses light waves as a signal bearer.

Unlike RF communications, the LiFi access points (APs) can be integrated in the existing light

infrastructure, e.g. light-emitting diode (LED) lamps, realising a dual purpose system offering

illumination and communication. Recent research shows that with a single off-the-shelf LED,

LiFi is capable of achieving peak data rates above 10 Gbps [7]. Also, LiFi offers many other

advantages over WiFi, including: i) a vast and licence-free spectrum; ii) secure communication

as light does not penetrate opaque structures; and iii) the availability in RF-restricted areas such

as underwater and hospitals [8].

Due to inherently high propagation losses, all wireless communication technologies based on

extremely high frequencies, including LiFi, have a relatively short range. Specifically, the LiFi

AP has a coverage area of approximately 2-3m in diameter [9]. This enables LiFi to achieve

a very high area spectral efficiency through frequency reuse [10]. However, in such an ultra-

dense network, the handover process becomes challenging mainly due to two issues: i) readily

occurring ping-pong effects and ii) relatively short cell dwell time (CDT). The signal strength
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strategy (SSS) method, which always connects the user to the AP that provides the highest

reference signal received power (RSRP), thus becomes hugely suboptimal for LiFi. In order

to suppress the ping-pong effect, the standard handover scheme in long term evolution (LTE)

[11] uses the idea of hysteresis, which prolongs the handover decision for an amount of time.

However, this handover scheme is not capable of tackling the second issue.

In order to avoid the frequent handovers in ultra-dense networks, the concept of handover

skipping is introduced [12]–[14]. A topology-aware skipping scheme is proposed in [12], which

sets a pre-defined threshold with respect to the chord length of the cell. A similar method is

reported in [13], but extended to multiple AP association. The authors in [14] develop a velocity-

aware handover approach, which performs different skipping strategies according to the user’s

velocity, including: best connected strategy, femto skipping strategy, femto disregard stratey and

macro skipping strategy. However, the above methods are all based on the knowledge of the

user’s trajectory. As a result, they have the following limitations: i) the measurement of the

user’s trajectory is less accurate in an indoor scenario due to uncontrollable errors caused by the

multiple reflections at surfaces; and ii) extra feedback is required to send this information to the

APs. To the best of the authors’ acknowledge, no handover skipping method that does not rely

on the user’s trajectory has so far been proposed.

In this paper, an RSRP-based handover skipping method is proposed. The new method exploits

the change in RSRP to reflect whether the user is moving towards the central area of an AP.

Through a weighted average of the value of RSRP and the change in RSRP, the novel method

is able to determine whether to skip a certain AP. As the change in RSRP is related to the

user’ velocity, the proposed method is velocity-aware. Unlike the trajectory-based methods, the

proposed method does not need extra feedback since RSRP is already used in the standard

handover scheme. Therefore, the proposed method can be readily implemented in practice. Also,

the performance of the proposed method in terms of handover rate and coverage probability is

analysed. Furthermore, the optimal weight coefficient is studied. Simulation results show that
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against the standard handover scheme, the proposed method can greatly reduce the handover

rate and improve the throughput.

The remainder of this paper is organised as follows. In Section II, the system model of an

indoor LiFi network and the channel model are described. Section III introduces the standard

handover scheme in LTE. The novel handover skipping method is proposed in Section IV. In

Section V, the handover rate and coverage probability of the proposed method are theoretically

analysed. Simulation results are presented in Section VI. Finally, conclusions are drawn in

Section VII.

II. SYSTEM MODEL

Consider an indoor wireless network consisting of a number of LiFi APs. The system is

considered to be time division duplex, and we focus on downlink communications. Each LiFi

AP is built in a ceiling LED lamp, facing downwards perpendicularly. The LiFi APs use different

spectra and therefore do not interfere with each other. A single photodiode (PD) pointing upwards

perpendicularly is fitted at the user. Though the issue of random receiving orientaions has been

identified [15], the PD can keep facing upwards by using a rotation device to compensate the

change in orientation. The user is assumed to move around in the room, following the random

waypoint (RWP) model [16].

A LiFi channel is comprised of two components: line-of-sight (LoS) and non line-of-sight

(NLoS) paths. Here only first-order reflections are considered since second-order reflections

typically contribute little [17]. Fig. 1 illustrates the LoS and first-order NLoS paths of a LiFi

channel. Let i and u denote the AP and the user, respectively. The LoS path corresponds to the

straight-line distance between the AP and the user, which is denoted by di,u. Let φi,u and ψi,u

respectively denote the angles of irradiance and incidence. The channel gain of LoS is denoted

by H i,u
LoS, and it is given by [17, eq. (10)]:

H i,u
LoS =

(m+ 1)Apd

2πd2i,u
cosm(φi,u)gfgc(ψi,u) cos(ψi,u), (1)
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where m = − ln 2/ ln(cos Φ1/2) denotes the Lambertian emission order, and Φ1/2 is the angle of

half intensity; Apd is the physical area of the PD; gf is the gain of the optical filter; the optical

concentrator gain gc(ψi,u) is given by [17, eq. (8)]:

gc(ψi,u) =


n2

sin2(Ψmax)
, 0 ≤ ψi,u ≤ Ψmax

0, ψi,u > Ψmax

, (2)

where n denotes the refractive index, and Ψmax is the semi-angle of the field of view (FoV) of

the PD.

Fig. 1. The LoS and first-order NLoS paths of the LiFi channel [18].

A first-order reflection consists of two segments: i) from the AP to a small area w on the

wall, and ii) from w to the user. The Euclidean distances of these two segments are denoted

by di,w and dw,u. The angles of radiance and incidence regarding the first segment are φi,w and

ϑi,w, and for the second segment they are ϑw,u and ψw,u. The channel gain of NLoS is written

as follows:

H i,u
NLoS =

∫
Aw

(m+ 1)Apd

2(πdi,wdw,u)2
ρw cosm(φi,w)gfgc(ψw,u) cos(ψw,u) cos(ϑi,w) cos(ϑw,u)dAw, (3)

January 9, 2019 DRAFT



6

where Aw is the area of w and ρw denotes the wall reflectivity.

Adding (1) to (3), the total gain of the LiFi channel can be expressed as follows:

H i,u
LiFi = H i,u

LoS +H i,u
NLoS. (4)

At the receiver, the PD converts the captured photons into an electric current:

Ielec = RpdH
i,u
LiFiPopt/ζ, (5)

where Rpd is the detector responsivity; Popt denotes the transmitted optical power; and ζ is the

ratio of Popt to the optical signal power. The signal-to-noise ratio (SNR) of the user is denoted

by γi,u, which can be written as follows:

γi,u =
(RpdH

i,u
LiFiPopt/ζ)2

NLiFiBLiFi
, (6)

where NLiFi denotes the power spectral density (PSD) of noise at the receiver, including shot

noise and thermal noise, while BLiFi is the bandwidth of the LiFi AP.

III. STANDARD HANDOVER SCHEME

In order to tackle the ping-pong effect, the handover scheme in LTE [11] introduces two

parameters: handover margin (HOM) and time to trigger (TTT). Fig. 2 shows the principle of

this scheme, which is referred to as STD in the remainder of this paper.

The RSRP of the host AP is denoted by PiH , and the RSRP of the target AP is denoted

by PiT . Let δHOM denote the value of HOM. The STD scheme starts counting time when the

following condition is satisfied:

PiT > PiH + δHOM. (7)

The time counter continues as long as (7) is satisfied, and otherwise is reset. Let tTTT denote

the value of TTT. When the time counter reaches tTTT, a handover decision is made to transfer

the user from the host AP to the target AP.
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RSRP

time

HOM

TTT

Host AP

Target AP

Handover decision

Fig. 2. The handover scheme in LTE.

Fig. 3 exemplifies the movement paths of the user in a LiFi network. The STD scheme can

guarantee a minimum connection time equal to tTTT, which is usually limited to hundreds of

milliseconds [11]. Thus, this scheme is capable of skipping some APs that the user crosses very

quickly, such as Path 1. In this case, the user is directly transferred from AP A to AP C, with

AP B being skipped. However, this scheme cannot skip the APs where the user stays longer

than tTTT, even slightly. Taking Path 2 for example, STD would handover the user from AP A

to AP B, and then from AP B to AP C. Also, it is worth noting that the user might experience

random light-path blockages [19]. This can be deemed as an infinite attenuation for the link

between the user and the blocked APs. The impact of random light-path blockages on handover

rates will be studied in Section VI-E.

IV. PROPOSED HANDOVER SKIPPING METHOD

The value of RSRP reflects the distance between the AP and the user, and a higher RSRP

signifies the corresponding AP is closer to the user. For example, when the user crosses the

border between AP A and AP B in Fig. 3, AP B offers a higher RSRP than AP C. However, in

Path 1 and Path 2, the user passes the outskirts of AP B and moves towards the central area of

AP C. As a result, AP C provides a faster increase in RSRP than AP B. With respect to Path 3,
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Fig. 3. Different movement paths of the user in a LiFi network.

the user moves towards the central area of AP B and thus gains a rapidly increasing RSRP

from AP B. The RSRP and the change in RSRP can be used together to determine whether

an AP needs to be skipped. The objective function of the target AP is denoted by Γi, and it is

formulated as follows:

Γi = P
(t0)
i + λ∆Pi, (8)

where t0 denotes the starting point of the time counter; P (t0)
i is the RSRP of AP i at t0; λ is

the weight coefficient and its optimal value will be studied in Section VI-A; and ∆Pi denotes

the change in RSRP per time unit, which is expressed as:

∆Pi =
P

(t0+tTTT)
i − P (t0)

i

tTTT
. (9)

With the proposed method, the time counter works in the same way as in STD. When the

time counter reaches tTTT, the proposed method would select the AP with the largest Γi to be

the target AP. Note that the target AP does not have to be the one that triggers the time counter,

e.g. AP B in Fig. 3. At the end of the time counter, a handover will be executed immediately if

the target AP already meets the condition in (7). Otherwise, the handover will be held on until

the target AP meets the condition. During this period, the target AP could be recalculated if the
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direction or speed of the user’s movement changes. Let I denote the set of all candidate APs.

The output of the time counter is denoted by tc. The pseudo code of the proposed handover

skipping method is given in Algorithm 1.

Algorithm 1 Proposed Handover Skipping Method

Input: P (t)
H , P (t)

i , ∀i ∈ I

Output: iT

tc ⇐ 0

while tc < tTTT do

if P (t)
i ≤ P

(t)
H + δHOM,∀i ∈ I then

tc ⇐ 0

else if tc = 0 then

t0 ⇐ t

else

tc ⇐ t− t0

end if

t⇐ t+ 1

end while

Γi ⇐ P
(t0)
i + λ

(
P

(t0+tTTT)
i − P (t0)

i

)
/tTTT

iT ⇐ max{Γi}

Note that in (8), P (t0)
i depends on the position of the point that the user crosses the border,

whereas ∆Pi reflects the direction and speed of the user’s movement. If the crossing point is very

close to the border between two candidate APs, e.g. AP B and AP C in Path 1, the RSRP offered

by those APs would be almost the same. In this case, ∆Pi is the dominant factor to determine

the target AP. On the contrary, the values of RSRP significantly differ when the crossing point is
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far away from one candidate AP, e.g. AP C in Path 3. In this case, P (t0)
i becomes the dominant

factor. As for Path 2, AP B provides an RSRP marginally higher than AP C. Meanwhile, the

∆Pi of AP C increases with the user’s speed. If the user moves fast, it is handed over from AP

A to AP C, with AP B being skipped. Otherwise, the user is transferred to AP B due to the

insignificant influence of ∆Pi.

V. THEORETICAL ANALYSIS OF HANDOVER SKIPPING PERFORMANCE

In this section, the theoretical performance of the proposed handover skipping method is

analysed for an arbitrary line trajectory. The area covered by the LiFi network is assumed to be

boundless. Thus, only LoS paths need to be taken into account.

A. Handover Rate

First, we analyse the handover rate of the SSS method, where there is no handover skip.

We focus on the square deployment of LiFi APs as it is commonly used in practice to provide

uniform illumination. The handover rate with the Poisson point process (PPP) deployment can

be found in [20]. It is assumed that the user enters the coverage area of an AP at an arbitrary

point δ with an arbitrary angle θ. Let r denote the length of the side of the coverage area. The

length of the user’s movement path inside the coverage area is denoted by dpath. The average

value of dpath is denoted by d̄path, which is derived in Appendix A. The handover rate in this

case is denoted by η, which is equal to the user’s speed v divided by d̄path:

η =
πv

r

[
3 log

(√
2 + 1

)
+ 1−

√
2
]−1

. (10)

Then we derive the probability of handover skipping. With the proposed method, the user

skips an AP when there exists another AP providing a larger Γi. This event is denoted by X

and its probability P(X) can be expressed as follows:

P(X) = 1− P(¬X), (11)
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where:

P(¬X) = P(ΓB ≥ Γi, ∀i, i 6= B). (12)

With the square deployment, the host AP borders 8 neighbours. Further APs are unlikely to

become the handover target due to the much lower RSRP they provide. Let’s consider the case

that the user leaves AP A and enters AP B, as shown in Fig. 3. AP C and AP D are the only

possible candidates for handover skipping, as in comparison with them the remaining neighbours

perform worse in terms of both P and ∆P . Since the square deployment is axisymmetric, we

assume that the user crosses the right half segment of the border between AP A and AP B. The

candidate for handover skipping could only be AP C if θ is less than 90°, and otherwise AP D.

Therefore, P(¬X) can be rewritten as:

P(¬X) =

∫ r/2

δ=0

P(¬X | δ)P(δ)dδ, (13)

where:

P(¬X | δ) =

∫ π/2

θ=0

P(ΓB ≥ ΓC | θ, δ)P(θ)dθ +

∫ π

θ=π/2

P(ΓB ≥ ΓD | θ, δ)P(θ)dθ. (14)

See the expressions of P(ΓB ≥ ΓC | θ, δ) and P(ΓB ≥ ΓD | θ, δ) in Appendix B. Since θ is

uniformly distributed between 0 and π, the above equation can be rewritten as:

P(¬X | δ) =
ΘD(δ)−ΘC(δ)

π
. (15)

As δ is uniformly distributed between 0 and
r

2
, we have P(δ) =

2

r
. Therefore, (13) can be

computed as follows:

P(¬X) =
2

πr

∫ r/2

δ=0

[ΘD(δ)−ΘC(δ)] dδ. (16)

The handover rate of the proposed method is denoted by ηHS, which is the product of η and

P(¬X). Combining (10) and (16), ηHS can be expressed as:

ηHS =
2v

r2

[
3 log

(√
2 + 1

)
+ 1−

√
2
]−1 ∫ r/2

δ=0

[ΘD(δ)−ΘC(δ)] dδ. (17)
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B. Coverage Probability

The coverage probability is defined as the probability that a user’s SNR is above a certain

threshold γT . This threshold corresponds to a certain horizontal distance between the user and

the AP, which is denoted by lT . According to (6), lT can be computed as follows:

lT =

√[
(m+ 1)Apdhm+1gfgcRpdPopt

2πζ
√
γTNLiFiBLiFi

] 2
m+3

− h2 (18)

The user’s SNR is larger than γT when l < lT . Therefore, the coverage probability of the SSS

method is equal to P(l < lT ). Assuming the user is randomly located in the square coverage

area with an equal probability, P(l < lT ) can be expressed as:

P(l < lT ) =



π

(
lT
r

)2

, lT ≤
r

2

2

√(
lT
r

)2

− 1

4
+

(
lT
r

)2 [
π − 4 arccos

(
r

2lT

)]
,

r

2
< lT <

√
2r

2

1, lT ≥
√

2r

2

. (19)

It can be found that the coverage probability of the SSS method depends on the size of

the coverage area, and is thus denoted by P(r). Regarding the proposed method, its coverage

probability is equal to P(r) when no handover skipping occurs. When there is a handover skip,

the distance between the host and target APs changes from r to
√

2r. The coverage probability

of the proposed method can be estimated as follows:

PHS(r) = P(¬X)P(r) + P(X)P(
√

2r). (20)

However, the skipped AP is located at one end-point of the border between the host and

target APs, making this corner area unlikely to be involved in handover skipping. Therefore,

(20) would underestimate the SNR of the user in the lower end. More details will be given in

the following section.
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Fig. 4. Handover rate versus the user’s speed.

C. Validation

Monte Carol simulations are conducted to verify the above theoretical analysis. Here the

weight λ is fixed to be 1. In Fig. 4, the handover rate is shown as a function of the user’s

speed. As can be seen, the analytical results in (17) closely match the simulations. In addition,

the handover rate decreases when: i) the distance between the nearest APs increases; or ii) the

vertical distance between the user and the AP increases; or iii) the half-intensity angle of the

LED increases.

Taking v = 5 m/s as an example, Fig. 5 presents the coverage probability of the proposed

method. The impact of the user’s speed will be studied in the following section. In general,

the estimated expression agrees with the simulations. For lower SNRs, the analytical results are

below the simulations with a marginal gap, as explained. Also, it can be found that the noted

three situations all result in a decrease in SNR. In summary, the handover rate can be reduced

at the cost of a decreasing SNR.
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Fig. 5. Coverage probability versus threshold SNR.

VI. SIMULATION RESULTS

In this section, Monte Carlo simulations are conducted to evaluate the performance of the

proposed method. The STD and trajectory-based handover skipping methods are considered as

benchmarks. In order to provide a fair comparison, the same HOM and TTT are used in the three

methods. Here the values of HOM and TTT are set to be 1 dB and 160 ms [11]. In addition, we

consider 16 LiFi APs and the separation between the two nearest APs is fixed to be 2m. Other

required parameters are summarised in Table I.

A. The Impact of the Weight Coefficient

First, we study the effect of λ on the performance of the proposed method. Note that λ needs

to be larger than tTTT, as stated in Lemma A.2. Different speeds of the user in four movement

scenarios are considered: 0.1 m/s (slowly moving), 1.4 m/s (walking), 5 m/s (running) and 10

m/s (sprinting). As shown in Fig. 6, for a slowly moving user, the throughput almost remains the

same as λ varies in the displayed range. This is because in this case, the change of RSRP is very

insignificant in determining the handover target. As the speed increases to 1.4 m/s, choosing a

DRAFT January 9, 2019



15

TABLE I

SIMULATION PARAMETERS

Parameter Value

Room size (length by width by height) 8m × 8m × 3m

The physical area of a PD, Apd 1 cm2

The gain of the optical filter, gf 1

The refractive index, n 1.5

Half-intensity radiation angle, Φ1/2 60°

FoV semi-angle of PD, Ψmax 90°

Transmitted optical power, Popt 3 Watt

The ratio of Popt to the optical signal power, ζ 3

Detector responsivity, Rpd 0.53 A/W

Wall reflectivity, ρw 0.8

Bandwidth per LiFi AP, BLiFi 200 MHz

PSD of noise in LiFi, NLiFi 10−21 A2/Hz

Handover overhead 200 ms [21]

proper λ becomes crucial. On the one hand, a too small λ would disable the function of handover

skipping. On the other hand, a too large λ would cause unnecessary handover skipping. For a fast

moving user, the throughput is a monotonically increasing function of λ in the displayed range.

The reason is that the change of RSRP becomes a dominant factor in this case. Considering the

optimal solutions to different speeds of the user, λ is set to be 1 in the following simulations.

B. Handover Rate

Second, the handover rate performance of the proposed method is studied. Fig. 7 presents the

decreases in handover rate provided by the proposed method against STD and the trajectory-

based method. The following outcomes are observed: i) compared to the baseline methods, the
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Fig. 7. The decrease in handover rate versus the speed of the user.

proposed method can effectively decrease the handover rate for different speeds of the user; and

ii) as the speed of the user increases, this decrease in handover rate becomes larger. At v = 0.1

m/s, the proposed method achieves a handover rate 2% less than STD. When v increases to 1.4

m/s, this gap increases to 18%. For v = 10 m/s, the proposed method reduces the handover rate

over STD by 29%, and compared to the trajectory-based method this gap is 17%.
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C. Coverage Probability

Third, the coverage probability for different speeds of the user in shown in Fig. 8. Here

the SSS method is considered as a baseline, because its host AP only depends on the user’s

location, regardless of the user’s speed. This method can be deemed as a special case of STD

with zero HOM and TTT. As shown, the coverage probability of the proposed method decreases

as the user’s speed increases, especially for medium SNRs between 14 and 18 dB. High SNRs

correspond to the cell centre, where the handover skipping rarely occurs; low SNRs correspond

to the cell corner, where the target AP of handover skipping can provide a comparable SNR

against the skipped AP. Otherwise, the SNR performance would substantially decrease when

the handover skipping happens. Nevertheless, for the 50-th percentile, the SNR of the proposed

method is only 2 dB less than that of SSS at most. This means that with the proposed method,

the user can achieve an SNR comparable to that of SSS in at least 50% of situations. Also, it

is observed that at v = 10 m/s, there is a noticeable gap between the coverage probabilities of

the proposed method and the trajectory-based method at lower SNRs. This is because when the

user moves very fast, the proposed method might skip more than one AP, leading to a significant

decrease in SNR.

D. Throughput

In Fig. 9, the user’s throughput is presented as a function of the user’s speed. The throughput

is mearsured by the modulation and coding scheme in [22], and no data transmission is counted

during the process of handover. As shown, the proposed method always achieves a higher

throughput than the baseline methods. This gain becomes more significant as the user’s speed

increases. For v = 5 m/s, the proposed method can improve the throughput over STD and the

trajectory-based method by 17% and 5%. When v increases to 10 m/s, the corresponding values

increase to 66% and 26%, respectively.
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Fig. 9. Throughput versus the speed of the user.

E. The Impact of Random Light-path Blockages

Finally, we study the impact of random light-path blockages on handover rates. In queueing

theory [23], the Poisson point process is widely used to model random events such as the arrival

of packages at a switch. Here the events of light-path blockages are also assumed to follow the

Poisson distribution, and its mean is referred to as the occurrence rate. As shown in Fig. 10,
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Fig. 10. Handover rate versus the occurrence rate.

the handover rates of all involved methods noticeably increase with the occurrence rate in the

case of v = 1.4 m/s. While the user’s speed increases to 5 m/s, the corresponding handover

rate is hardly affected by the change in occurrence rate. This is because for the user moving

at a relatively high speed, in comparison to user mobility, the random light-path blockage is an

insignificant factor that affects the handover process.

VII. CONCLUSION

In this paper, a novel handover skipping method was proposed for LiFi networks. Unlike

the conventional methods using the user’s trajectory information, the proposed method is based

on RSRP, which has been commonly used in the current handover schemes. Therefore, the

proposed method does not require additional feedback and can be readily implemented in

practice. Specifically, the change of RSRP is exploited to reflect whether a user is moving

towards the AP. The weighted average of this parameter and the value of RSRP is used to

determine the target AP for handover. Also, the handover rate and coverage probability of the

proposed method is theoretically analysed. Furthermore, the effect of the weight coefficient on
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the performance of the proposed method is studied. Simulation results show that the proposed

method can significantly reduce the handover rate against STD, especially when the user is

moving relatively fast. Regarding the system throughput, the proposed method outperforms STD

and the trajectory-based handover skipping method by up to 66% and 26%, respectively. Future

research will study the issue of handover skipping in hybrid LiFi and WiFi networks.
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APPENDIX

A. Derivation of d̄path

For a certain entry point, there are four types of possible paths, as shown in Fig. 11. Each

type corresponds to a mathematical expression of dpath(δ):

dpath(δ) =



δ

cos(θ)
, 0 ≤ θ < θ1

r

sin(θ)
, θ1 ≤ θ <

π

2

r

sin(π − θ)
,

π

2
≤ θ < θ2

r − δ
cos(π − θ)

, θ2 ≤ θ ≤ π

, (21)

where: 
θ1 = arctan

(r
δ

)
θ2 = π − arctan

(
r

r − δ

) . (22)

a) b)

c) d)

Fig. 11. The movement paths of the user in the coverage area of an AP.
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Since sin(π − θ) = sin(θ), the second and third types can be merged into one. The average

value of dpath(δ) can be calculated as follows:

d̄path(δ) =
1

π

(∫ θ1

θ=0

δ

cos(θ)
dθ +

∫ θ2

θ=θ1

r

sin(θ)
dθ +

∫ π

θ=θ2

δ − r
cos(θ)

dθ

)
. (23)

The integrals on the right side of the above equation can be solved by calculating the

antiderivatives. Consequently, the above equation can be expressed as follows:

d̄path(δ) =
1

π

[
δ log

(
r + δ1
δ

)
+ r log

(
δ + δ1

δ2 − r + δ

)
+ (r − δ) log

(
r + δ2
r − δ

)]
. (24)

where: 
δ1 =

√
δ2 + r2

δ2 =
√

(r − δ)2 + r2

. (25)

With δ varying from 0 to
r

2
, the parameter d̄path is computed by:

d̄path =
2

r

∫ r
2

δ=0

d̄path(δ)dδ. (26)

Substituting (24) into (26), d̄path can be expressed as follows:

d̄path =
r

π

[
3 log

(√
2 + 1

)
+ 1−

√
2
]
. (27)

B. Derivation of P(ΓB ≥ ΓC | θ, δ) and P(ΓB ≥ ΓD | θ, δ)

According to (1), (5) and (8), Γi can be written as follows:

Γi = geff

[(
1− λ

tTTT

)
P(t0)
i +

λ

tTTT
P(t0+tTTT)
i

]
, (28)

where:

geff =

[
(m+ 1)ApdgfgcRpdPopt

2πζ

]2 (
h
(t)
i,u

)2m+2

, (29)

and:

P(t)
i =

[(
h
(t)
i,u

)2
+
(
l
(t)
i,u

)2]−m−3
, (30)
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where h
(t)
i,u and l

(t)
i,u denote the vertical and horizontal distances between AP i and user u,

respectively. Since all APs are assumed to lie on the same level, h(t)i,u is a constant and thus

can be abbreviated to h.

Removing the common items in ΓB and ΓC , P(ΓB ≥ ΓC | θ, δ) can be rewritten as:

P(ΓB ≥ ΓC | θ, δ) = P(Z(θ) ≥ 0 | θ, δ), (31)

where:

Z(θ) =

(
1− λ

tTTT

)(
P(t0)
B − P(t0)

C

)
+

λ

tTTT

(
P(t0+tTTT)
B − P(t0+tTTT)

C

)
. (32)

Given δ and θ, we have:

l
(t0)
B,u =

√(r
2

)2
+
(r

2
− δ
)2

l
(t0+tTTT)
B,u =

√(r
2
− vtTTT sin(θ)

)2
+
(r

2
− δ + vtTTT cos(θ)

)2
l
(t0)
C,u =

√(r
2

)2
+
(r

2
+ δ
)2

l
(t0+tTTT)
C,u =

√(r
2
− vtTTT sin(θ)

)2
+
(r

2
+ δ − vtTTT cos(θ)

)2
. (33)

Lemma A.1: For θ ∈
[
0,
π

2

]
, Z(θ) is monotonically decreasing up to some point and then

monotonically increasing if P(t0+tTTT)
B −P(t0+tTTT)

C < 0, and otherwise monotonically increasing.

Proof: Note that the item
(

1− λ

tTTT

)(
P(t0)
B − P(t0)

C

)
in (32) is a constant with respect to

θ. Therefore, Z(θ) changes along with
(
P(t0+tTTT)
B − P(t0+tTTT)

C

)
, which is denoted by F (θ). Let

F1(θ) and F2(θ) denote
(
l
(t0+tTTT)
B,u

)2
and

(
l
(t0+tTTT)
C,u

)2
, respectively. The derivative of F1(θ) and

F2(θ) are computed as follows:
F ′1(θ) = vtTTT [(2δ − r) sin(θ)− r cos(θ)]

F ′2(θ) = vtTTT [(2δ + r) sin(θ)− r cos(θ)]

. (34)

For δ ∈
(

0,
r

2

)
, we have 2δ − r < 0. In addition, since θ ∈

[
0,
π

2

]
, sin(θ) and cos(θ) are

non-negative and cannot be zeros at the same time. Thus F ′1(θ) is always negative. Note that
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m > 0 for all possible Φ1/2. Hence, P(t0+tTTT)
B is monotonically increasing. As for F ′2(θ), its

derivative F ′′2 (θ) is expressed as follows:

F ′′2 (θ) = vtTTT [(2δ + r) cos(θ) + r sin(θ)] . (35)

Note that F ′′2 (θ) is always positive. Also, we have F ′2(0) = −vtTTTr < 0 and F ′2(
π
2
) =

vtTTT(2δ + r) > 0. Therefore there exists one and only one θ meeting F ′2(θ) = 0. This signifies

that P(t0+tTTT)
C is monotonically increasing until F ′2(θ) = 0 and then monotonically decreasing.

It is worth noting that F ′2(θ) is always larger than F ′1(θ). This means that when P(t0+tTTT)
B and

P(t0+tTTT)
C are both increasing, P(t0+tTTT)

B has a larger slope than P(t0+tTTT)
C . As a result, F (θ) is

monotonically increasing if F (0) ≥ 0. Otherwise, F (θ) is monotonically decreasing first and

then monotonically increasing.

Lemma A.2: For θ ∈
[
0,
π

2

]
, there is up to one solution to Z(θ) = 0 on condition that

λ > tTTT.

Proof: According to Lemma A.1, Z(θ) is monotonically increasing when F (0) ≥ 0. It is

evident that Lemma A.2 is true in this case. When F (0) < 0, Z(θ) is monotonically decreasing

first and then monotonically increasing. In this case, Lemma A.2 is true if Z(0) < 0. Substituting

θ = 0 into (32), we have:

Z(0) =

(
1− λ

tTTT

)(
P(t0)
B − P(t0)

C

)
+

λ

tTTT
F (0). (36)

Note that P(t0)
B −P(t0)

C is always non-negative and
λ

tTTT
is assumed to be larger than 1. Hence

Z(0) < 0 when F (0) < 0.

The coefficient tTTT is very small in practice, with a typical value of 0.16 s [11]. Therefore,

the condition λ > tTTT can be readily satisfied. This is also a guideline for the choice of λ.

Lemma A.3: There exists at least one θ to meet Z(θ) ≥ 0.

Proof: Substituting θ =
π

2
into (32), we have:

Z
(
π
2

)
=

(
1− λ

tTTT

)(
P(t0)
B − P(t0)

C

)
+

λ

tTTT
F
(
π
2

)
. (37)
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The derivative of Z
(
π
2

)
with respect to l is written as:

dZ
(
π
2

)
dl

= 2(m+ 3)

[
FA + FB +

λ

tTTT
(FC + FD − FA − FB)

]
, (38)

where: 

FA =
(r

2
+ δ
)[

h2 +
(r

2

)2
+
(r

2
+ δ
)2]−m−4

FB =
(r

2
− δ
)[

h2 +
(r

2

)2
+
(r

2
− δ
)2]−m−4

FC =
(r

2
+ δ
)[

h2 +
(r

2
− vtTTT

)2
+
(r

2
+ δ
)2]−m−4

FD =
(r

2
− δ
)[

h2 +
(r

2
− vtTTT

)2
+
(r

2
− δ
)2]−m−4

. (39)

As mentioned, the coefficient tTTT is very small. In practice, we have 0 ≤ vtTTT < r and thus(r
2

)2
≥
(r

2
− vtTTT

)2
. Hence, FC ≥ FA and FD ≥ FB, leading to FC+FD−FA−FB ≥ 0. Also,

it is evident that FA+FB > 0. Thus the derivative of Z
(
π
2

)
with respect to δ is always positive.

In other words, Z
(
π
2

)
is monotonically increasing with δ. Meanwhile, we have Z

(
π
2

)
= 0 when

δ = 0. Therefore, Z
(
π
2

)
must be non-negative.

Combining the three above lemmas, there is one and only one θ to satisfy Z(θ) = 0 when

F (0) < 0. For F (0) ≥ 0, Z(θ) would be always positive if there does not exist a solution to

Z(θ) = 0. Unfortunately, due to the high order of the polynomial in (32), it is difficult to derive

a closed-form solution to Z(θ) = 0. Let ΘC denote this solution if there exists one and otherwise

ΘC = 0. Then P(ΓB ≥ ΓC | θ, δ) can be computed as follows:

P(ΓB ≥ ΓC | θ, δ) =


0, 0 ≤ θ < ΘC

1, ΘC ≤ θ ≤ π

2

. (40)

Similarly, P(ΓB ≥ ΓD | θ, δ) can be expressed as follows:

P(ΓB ≥ ΓD | θ, δ) =


1,

π

2
< θ ≤ ΘD

0, ΘD < θ ≤ π

, (41)

where ΘD is the solution to ΓB = ΓD if there exists one, and otherwise ΘD = π.

DRAFT January 9, 2019


