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Abstract

The Y chromosome, a sex chromosome that only exists in males, has been ignored

in traditional epigenetic association studies for multiple reasons. However, sex dif-

ferences in aging‐related phenotypes and mortality could suggest a critical role of

the sex chromosomes in the aging process. We obtained blood‐based DNA methyla-

tion data on the Y chromosome for 624 men from four cohorts and performed a

chromosome‐wide epigenetic association analysis to detect Y‐linked CpGs differen-

tially methylated over age and cross‐validated the significant CpGs in the four

cohorts. We identified 40–219 significant CpG sites (false discovery rate <0.05)

with >82% of them hypermethylated with increasing age, which is in strong contrast

to the patterns reported on the autosomal chromosomes. Comparing the rate of

change in the Y‐linked DNA methylation across cohorts that represent different age

intervals revealed a trend of acceleration in DNA methylation with increasing age.

The age‐dependent DNA methylation patterns on the Y chromosome were further

examined for their association with all‐cause mortality with results suggesting that

the predominant pattern of age‐related hypermethylation on the Y chromosome is

associated with reduced risk of death.
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1 | INTRODUCTION

The Y chromosome, the sex‐determining chromosome found only in

the male phenotype of the population, contains circa 57 million

DNA base pairs (BP; Million BP: MP; H. Sapiens build: hg38/

GRCh38) and is often neglected in (epi)genetic studies. With its

“small” size, it is only larger in terms of BP than both chromosome

21 (circa 47 MP) and chromosome 22 (circa 51 MP). The Y chromo-

some used to be considered mostly meaningless with a high percent-

age of repetitive and noncoding regions (sometimes referred to as

“genomic deserts”). With improvements in analytical methods and

technologies (Jobling & Tyler‐Smith, 2003, 2017), the chromosome

has become a more popular analysis target. The Y chromosome is

most commonly studied regarding Y‐linked haplogroups (Consortium

YC, 2002; Knijff, 2000; Zerjal et al., 1997), especially within phy-

logeny due to its nature of low recombination and paternal inheri-

tance. Moreover, loss of Y chromosome (LOY) has been observed

with age (Forsberg, 2017) and Y‐chromosomic deletions on specific

regions (Yq11) that are associated with oligozoospermia and

azoospermia phenotypes can cause infertility of different degrees

(Vog et al., 1996).

In comparison with the recent upsurge in omics studies focusing

on autosomal chromosomes, the sex chromosomes are often not

included in analyses, especially within genome‐wide association stud-

ies (GWAS), epigenome‐wide association studies (EWAS), and tran-

scriptome‐wide association studies (TWAS) on complex diseases and

traits (Wise, Gyi, & Manolio, 2013). This is unfortunate because the

sex chromosomes could be influential (directly or indirectly) on cer-

tain diseases with sex differences (Khramtsova et al. 2019). Particu-

larly, in the field of aging research, sex differences have been found

to affect the trajectory of aging phenotypes (Dowling, 2014), aging‐
related diseases such as Alzheimer disease and other dementias

(Mazure & Swendsen, 2016), and mortality (Austad & Fischer, 2016;

Case & Paxson, 2005). Although multiple EWASs have been per-

formed to study the dynamic regulatory patterns of the aging methy-

lome, current literature concerning associations between the Y

chromosome and aging mainly describes LOY and copy number vari-

ants (CNV) (Zhou et al., 2016), which have been reported as far back

as 1972 (Pierre & Hoagland, 1972).

Making use of existing multiple datasets on genome‐wide DNA

methylation in older male subjects, we performed an exploratory Y

chromosome‐wide association study on the aging‐related methylation

changes on the Y chromosome and compared them with those from

the autosomal chromosomes. We replicate findings across datasets

and correlate age‐related methylation changes with all‐cause mortality

and discuss potential implications in the epigenetics of aging.

2 | RESULTS

2.1 | Age patterns of methylation in Y‐linked CpGs

From the four datasets MADT, LASDT1, LSADT2, and LBC1921, we

identified 219, 76, 40, and 169 CpGs displaying age‐dependent
methylation patterns with FDR<0.05, respectively. Among them,

207, 72, 35, and 138 CpGs were hypermethylated over age,

accounting for 95%, 95%, 88%, and 82% of all significant CpGs in

each cohort. There were 12, 4, 5, and 31 CpGs hypomethylated with

age, representing 5%, 5%, 12%, and 18% of all significant CpGs

found in each cohort. The results show a high percentage of hyper-

methylated CpGs with age on the Y chromosome.

2.2 | Cross‐sample/population replication of
significant CpGs

An overall view of the above four sets of CpGs revealed a total of

282 CpGs significantly hypermethylated with FDR <0.05 in at least

one cohort (Supporting Information Table S1), where 139 of the

sites were also significantly hypermethylated in at least one other

cohort with FDR <0.05. For the hypomethylated sites, 48 were sig-

nificant in at least one of the cohorts with FDR <0.05 (Supporting

Information Table S2) but with little validation (N = 3) in any of the

other cohorts with FDR <0.05.

Table 2 presents, for each dataset in the discovery column, the

proportion of significant CpGs replicated across the other three

datasets. In general, hypermethylated CpGs were much more repli-

cated in comparison with hypomethylated CpGs. The 72 and 35

hypermethylated CpGs detected by LSADT2 and LSADT1 had a
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replication rate of over 90% by the MADT cohort. Even the 138

hypermethylated CpGs discovered by the Scottish LBC1921 birth

cohort were replicated with 43% by the Danish MADT cohort. In

the rightmost column of Table 2, we show the proportion of discov-

ery CpGs replicated by any of the three other datasets. It shows

again, the hypermethylated CpGs were much more replicated than

the hypomethylated CpGs. In Table 3, we show detailed information

for 7 CpGs that are present in all four cohorts with FDR <0.05. All

of them are hypermethylated with increasing age. Among the 7

CpGs, 5 are linked to functional genes or pseudogenes at the pro-

moter regions.

2.3 | Accelerated rate of hypermethylation in high
age‐groups

By plotting the coefficients of the significant hypermethylated CpGs

over Y chromosome position (Figure 1), we see a tendency of

increased hypermethylation profiles with increased age. We

smoothed the regression coefficients for age (the rate of change)

using locally weighted scatterplot smoother (Jacoby, 2000) (LOESS,

α = 0.5), with residual standard errors of 0.51, 1.57, 0.917, and

1.772, for MADT, LSADT1, LSADT2, and LBC1921, respectively.

These lines clearly demonstrate a trend of a higher magnitude of

regression coefficients for hypermethylation for cohorts of higher

mean ages. More specifically, LBC1921 (mean age: 88.51) has higher

coefficient values compared with MADT (mean age: 66.73), LSADT1

(mean age: 79.34), and LSADT2 (mean age: 81.69). The lines for

LSADT1 and LSADT2 are intertwined but still notably higher com-

pared to the line of MADT.

Figure 2 displays the box plots for cohort age (a) and for the

regression coefficients of significantly hypermethylated CpGs by

dataset (b). We see a tendency of higher age with higher methyla-

tion level. The tendency is seen when looking at Figure 2c. Here, we

see that the mean increase in age of 133% (factor 1.33, mean age

66.73–88.51 years) corresponds to the accelerated hypermethylation

values by 260% percent (mean coefficients of 1.31–3.40).
Among the significant CpGs (FDR <0.05), 7 were present in all

four cohorts (Table 3). Again, we checked how the coefficient of

these corresponded to findings above. We ranked the coefficient of

each site from each cohort to numbers between 1 and 4, where 1

was the highest value and 4 was the lowest. We saw that for all but

one sites, LBC1921 had the highest value (score: 1). For MADT, all

sites had the smallest value (score: 4). For LSADT1 and LSADT2, the

scores were all either 2 or 3, except for a single site having score 1.

Again here, we are able to reveal how the higher ages in the cohorts

correspond to higher coefficients for the 7 CpGs.

By performing the Wilcoxon rank‐sum test (also known as

Mann–Whitney–Wilcoxon (MWW) or U test) on all sites where the

coefficients in all cases were hypermethylated (N = 125), revealed

the same conclusions as above. The 125 sites were picked out on

the basis that only the sites that at least one of them were signifi-

cantly associated with age (FDR<0.05) in at least one cohort but

had positive regression coefficients (i.e., increased methylation over

age) for all four datasets. With an H0 = no difference in coeffi-

cients between the cohorts (where the main difference of the

cohorts is their age), the test results are produced in Table 4. For

all tests except the comparison between LSADT1 and LSADT2

(p = 0.80), a significant difference was observed, with p = 2.7832e‐
06 for comparing LBC1921 with MADT. We can conclude that

there are significant differences in the coefficients (i.e., the rate of

change) between older and younger cohorts, as suggested by Fig-

ures 1 and 2.
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2.4 | Relationship with mortality

The LBC1921 birth cohort contains samples of older ages with infor-

mation on mortality available. This enables us to compare the associ-

ation of age‐related CpGs on the risk of death. Among the 169 age‐
associated CpGs, about half (74 CpGs, 44%) have p < 0.05 in the

survival analysis using Cox regression (Supporting Information

Table S3). In Figure 3, we display the coefficients from the Cox

regression model against the coefficients on age (the rate of change)

for methylation. CpGs significantly hyper‐ or hypomethylated with

age (FDR<0.05 for empty dots; the larger the dots, the higher the

significance level) also tend to be significantly associated with mor-

tality (red dots p < 0.05 from Cox model). The relationship is domi-

nated by CpGs hyper‐ or hypomethylated with age (large dots) that

are associated with a lower hazard of death (negative coefficients

from Cox model for hypermethylated CpGs in the bottom‐right panel
while positive coefficients from Cox model for hypomethylated CpGs

in the top‐left panel). The collective association with mortality (indi-

cated by incremental R2) by age‐associated CpGs is shown in Sup-

porting Information Figure S1 where a PMS based on a list of top

30 CpGs best fits to the mortality data with a p‐value of 9.59e‐03
and adjusted R2 of 0.035. Interestingly, the regression coefficient for

all PMSs is negative (Supporting Information Table S4) indicating a

negative correlation with mortality.

3 | DISCUSSION

By focusing on male‐only samples, we were able to analyze the age

pattern of Y‐linked DNA methylation in older people. We identified

significant CpG sites that change their methylation levels across

ages. Different from the reported age‐related methylation patterns

dominated by decreased methylation over increasing ages (Johans-

son, Enroth, & Gyllensten, 2013; Li et al., 2017; Marttila et al.,

2015), the Y‐linked DNA methylation is characterized by increased

methylation with increasing age, accounting for over 80% or 90% of

all the significant age‐associated CpGs. As shown by Figure 3, the

CpGs hypermethylated with increasing age nearly all have negative

coefficients from the Cox model indicating an association with

longer survival by age‐related methylation changes. For the small

group of CpGs with increased hazard of death when methylation

goes up, their methylation levels are in fact decreased with increas-

ing age meaning nonincreased or even decreased risk of death by

their age‐related methylation patterns. This is further supported by

the Cox model for PMS with a negative coefficient showing that

increased score of multiple age‐related CpGs (mostly hypermethy-

lated with age) reduces the risk of death. We postulate that the

observed age‐associated hypermethylation on the Y chromosome

could represent an active response to the aging process that helps

to maintain male survival at high ages.
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The detected age‐associated hypermethylation on the Y chromo-

some is further consolidated by our cross‐cohort replication as

shown in Table 2. High replication rates were observed across the

datasets for hypermethylated CpGs while that for the hypomethy-

lated CpGs were mostly low. This contrast suggests that the

observed overwhelming pattern of Y‐linked hypermethylation could

represent a striking difference in the age‐related epigenetic control

over sex and autosomal chromosomes as the age‐associated methy-

lation patterns on autosomal chromosomes are dominated by

reduced methylation with increasing age (Li et al., 2017). We have

recently compared the age‐associated CpGs with mortality‐associ-
ated CpGs on autosomal chromosomes found in the LBC1921 birth

cohort and found very limited overlap (about 10% of the age‐associ-
ated CpGs) between them although the overlap is significantly differ-

ent from random (unpublished results). Most importantly, the

overlapping CpGs are dominated by those age‐related methylation

patterns help to reduce mortality. Different from the autosomal

chromosomes, the high overlap (44%) between age‐ and mortality‐
associated CpGs on the Y chromosome (Figure 3) highlights its high

importance in successful aging in males.

Among the 5 annotated genes in Table 3, increased expression

of NLGN4Y has been associated with autism (Ross, Tartaglia, Merry,

Dalva, & Zinn, 2015) and expression of DDX3Y may modulate

neuronal differentiation (Vakilian et al., 2015). A recent study

reported that the expression of the TBL1Y gene plays an important

role in cardiac differentiation (Meyfour et al., 2017). The other gene

in Table 3 (TTTY23, TTTY20, LOC100101121, or TTTY23B) is all

nonprotein coding genes involved perhaps in the regulatory domain.

Although current literature on these genes is limited and may not be

directly linked with aging and mortality, their biological roles merit

further investigations.

The Y chromosome accounts for about 2% of the total length of

human genetic materials. However, the number of Y‐linked CpGs on

the Illumina 450 K array (416 CpGs) is less than 0.1% of the total

number of CpGs on the array (485,242 CpGs). This means that the

CpGs for the Y chromosome are highly underrepresented. This can

be due to the fact that the Y chromosome is a gene‐poor area (75–
80 genes), in comparison with the number of genes carried by chro-

mosome 20 (500–600 genes) which is about the same size. Compar-

ing the number of CpGs on Y chromosome and chromosome 20

(10,383 CpGs), the proportion of Y‐linked CpGs is very much limited.

This presents an obvious limitation of our study, and as such, our

results should be interpreted with caution. We hope that future

studies using high capacity design or methylation sequencing tech-

nique will help to validate our findings and uncover the impact of Y

chromosome on male aging.
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TABLE 1 Cohort‐specific characteristics ordered by mean age

MADT LSADT2 LSADT1 LBC1921 Total

N (males) 266 72 48 238 624

Mean age (year) ± SD 66.73 ± 6.18 79.43 ± 4.08 81.69 ± 5.28 88.51 ± 4.74 77.66 ± 11.2

Age min/max (year) 56.99–79.87 74.33–87.75 74.66–89.59 79.01–94.97 56.99–94.97

Country of origin Denmark Denmark Denmark Scotland
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4 | MATERIALS AND METHODS

4.1 | Study populations and samples

We analyzed Y chromosome data on four cohorts of middle‐ and

older‐aged subjects consisting of Middle‐Aged Danish Twins (MADT)

(Gaist et al., 2000), Longitudinal Study of Aging Danish Twins

(LSADT1, LSADT2) (Christensen, Holm, Mcgue, Corder, & Vaupel,

1999), and Lothian Birth Cohort of 1921 (LBC1921) (Deary, Gow,

Pattie, & Starr, 2011). All four cohorts utilized DNA isolated from

whole‐blood samples from individuals between the age of 56 and 95

which have been processed using the Illumina HumanMethyla-

tion450 BeadChip or 450 K array (Illumina, Inc., San Diego, CA,

USA). For this study, only male participants (N = 624), probes corre-

sponding to the CpGs located on the Y chromosome (N = 416), and

the latest wave sample of each participant from LBC1921 were

used. Table 1 outlines the basic cohort characteristics.

4.2 | Preprocessing and quality control (QC)

Before statistical analysis, the three Danish cohorts (MADT, LSADT1,

and LSADT2) were normalized internally only by their Y‐linked CpGs

(N = 416). This was done, using the minfi R package (Aryee et al.,

2014) through subset‐quantile within array normalization (SWAN)

(Maksimovic, Gordon, & Oshlack, 2012). The Scottish (LBC1921)

cohort was already normalized using this package, but for the whole

genome and was additionally adjusted for a minor batch effect

revealed by principal component analysis (PCA) using the ComBat

(Johnson, Li, & Rabinovic, 2007) function from the sva R package

(Leek, Johnson, Parker, Jaffe, & Storey, 2012). Subsequently, we per-

formed QC by removing probes with an overall sum of 10 or more

cross‐reactive targets (N = 18) (Y‐a et al., 2013). No probes with

detection p > 0.01, no‐signaling, polymorphic probes with European

allele frequency at least 1% or more than 5% percent missing values

were found. A total of 398 CpGs remained after preprocessing. For

each CpG, methylation, β value was calculated as M/(M + U) with M

and U for the methylated and unmethylated signal intensities. Before

statistical modeling, methylation β values were converted into M val-

ues for better statistical properties by logit transformation.

4.3 | CpG‐based association tests

The CpG‐based age association tests were modeled using linear

regression models. For the Danish twin samples, twin pairing was

included as a random factor in a mixed effect model. The regression

analysis adjusted for blood cell‐type composition (CD8T, CD4T, nat-

ural killer cell (NK), B cell, monocyte, and granulocyte) estimated

using Houseman's method (Houseman et al., 2012) implemented in

TABLE 2 Cross‐cohort replication for each set of hyper‐ and
hypomethylated CpGs. Rows indicate discovery cohorts (N: the
number of significant CpGs with FDR <0.05), and column indicate
replication cohorts with percentages in the table showing the
replication rate. The last column is proportion of discovery CpGs
replicated by at least one replication cohort

Replication

Discovery MADT LSADT2 LSADT1 LBC1921 Any

Hypermethylated

MADT

(N = 207)

31.40% 15.46% 28.50% 57.00%

LSADT2

(N = 72)

90.28% 30.56% 27.78% 95.83%

LSADT1

(N = 35)

91.43% 62.86% 8.57% 94.29%

LBC1921

(N = 138)

42.75% 14.49% 2.17% 46.38%

Hypomethylated

MADT

(N = 12)

0.00% 8.33% 8.33% 16.67%

LSADT2

(N = 4)

0.00% 0.00% 25.00% 25.00%

LSADT1

(N = 5)

20.00% 0.00% 0.00% 20.00%

LBC1921

(N = 31)

3.23% 3.23% 0.00% 6.45%

TABLE 3 The 7 CpGs significantly hypermethylated in all four datasets (FDR <0.05)

Cross‐cohort hypermethylated CpGs (N = 7, FDR <0.05) Illumina 450 K annotationa

CpG MADTcoef
b LSADT2coef

b LSADT1coef
b LBC1921coef

b Gene (Name) Gene (Group) CpG Island

cg03055837 0.897143 (4) 1.008964 (3) 1.399633 (2) 2.602283 (1) NLGN4Y TSS1500 N_Shore

cg00311963 0.89143 (4) 0.988388 (3) 1.17261 (2) 1.917789 (1) LOC100101121;TTTY23 TSS1500 S_Shore

cg00679624 0.836824 (4) 1.03516 (3) 1.069887 (2) 2.545285 (1) Island

cg14180491 1.133525 (4) 2.143094 (2) 2.780263 (1) 2.068691 (3) DDX3Y 5'UTR;1stExon Island

cg01707559 1.194551 (4) 1.733023 (2) 1.228877 (3) 4.47433 (1) TBL1Y TSS200 Island

cg18188392 1.989856 (4) 2.556912 (3) 2.715966 (2) 3.89269 (1) Island

cg06636270 1.017389 (4) 2.124417 (2) 1.581355 (3) 2.837249 (1) TTTY20 TSS1500 N_Shore

aUCSC annotation, University of California, Santa Cruz. bThe coefficients are based on regression coefficients for age, and the number in parenthesis

indicates order ranked from highest to lowest coefficient (1–4).
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the R package minfi for the Danish twin data and R package celltype-

s450 for the LBC1921 data.

The model for the twin cohorts was defined as:

DNAmCpG ¼ β0 þ β1age þ β2CD8T þ β3CD4T

þ β4NK þ β5Bcellþ β6Mono

þ β7Gram þ 1jTwinPairID

while for LBC1921, the model was defined as:

DNAmCpG ¼ β0 þ β1age þ β2CD8T þ β3CD4T þ β4NK

þ β5Bcell þ β6Mono þ β7Gram

For both, DNAm is methylation level for a CpG, that is, the

methylation M value. The coefficient β1of these regression models

captures the mean pattern of DNAm changes over age or the rate

of change in DNA methylation by age. Multiple testing was adjusted

by calculating the false discovery rate (FDR, Benjamani–Hochberg;

Benjamini & Hochberg, 1995), and CpGs with FDR <0.05 were

defined as significant.

Besides analyzing the age‐dependent methylation patterns of Y‐
linked CpGs, we also perform survival analysis to estimate the effect

of DNA methylation on the risk of death in the LBC1921 samples

(N = 238, death = 151) using the Cox proportional hazard model,

hðtÞ ¼ h0ðtÞ exp β1DNAm þ β2ageð Þ

here, t is the survival time (from age at blood sampling to death or

to last follow‐up if censored), h(t) is the hazard function, and h0(t) is

the baseline hazard function. The effect of DNA methylation on sur-

vival is adjusted for age at blood sampling.

4.4 | Polygenic methylation score (PMS)

To summarize the effect of age‐associated Y‐linked CpGs on mortal-

ity, we use PMS as introduced by Linnér et al. (2017). For a list of q

age‐associated CpGs selected using a significance cutoff, the PMS

for a sample j is calculated as the sum of their coefficients for age

(β) multiplied by methylation levels of corresponding CpGs (DNAm),

PMSj ¼ ∑q
i¼1βðiÞ �DNAmði; jÞ. Effect on mortality for the calculated

PMS is assessed by including it as a variable in the Cox regression

model together with individual age as a covariate for adjustment.

The predictive power of PMS is evaluated by the incremental coeffi-

cient of determination (incremental R2) calculated as the difference

in R2 (pseudo R2) between the Cox model fitted with PMS and age

and the model with age only.
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