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A Literature Review
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Abstract: The aim of stochastic inventory control is to determine the timing of issuing
replenishment order and the corresponding order quantity subject to uncertainty of demand
and/or other system parameters. In this literature survey we focus on the single-item single-
stocking location stochastic inventory control problem. More specifically, we survey exact
and heuristic models under stationary and non-stationary demand according to uncertainty
strategies proposed by Bookbinder and Tan (1988).

Keywords: inventory control, stochastic lot sizing, static uncertainty, dynamic uncertainty,
static-dynamic uncertainty.

1. INTRODUCTION

Inventory control focuses on the trade-off that arises when
a decision maker aims at meeting customer demand whilst
simultaneously maximising profitability of operations.

At the heart of inventory control we find three key ques-
tions (Silver, 1981):
(1) How often should the inventory status be observed?
(2) When should an order be placed?
(3) What should be the order quantity?

The earliest published academic study on inventory con-
trol, or “lot sizing,” was carried out by Harris (1913).
This research came from author’s working experience to
determine the most economical quantity of replenishment
orders. He considered six factors (unit cost, set-up cost,
interest and depreciation on stock, movement and manu-
facturing interval) to investigate how the total cost varied
with the change of order size, and derived the square-root
formula for reordering quantity, which is now known as
Economic Order Quantity (EOQ) for the deterministic lot
sizing problem.

Over decades, a vast amount of literature investigated
lot-sizing models to progressively embed more realistic
assumptions. This led to several variants according to
demand characteristics and parameter settings. Table 1
presents the general classification of lot sizing problem
with review papers. A survey of existing review works is
presented in (Bushuev et al., 2015).

As shown in Table 1, lot sizing problems are categorised
as deterministic and stochastic according to demand type.
For deterministic problems, customer demand is constant
or dynamic over the time horizon. The EOQ model tackles
the case in which demand is constant. Extensions of this
model were discussed in (Drake and Marley, 2014). Wagner
and Whitin (1958) first proposed the exact formulation
and solution methods for the dynamic lot sizing problem;
their initial work was improved by Zabel (1964) and Bahl
and Taj (1991). Researchers also investigated heuristics

algorithms for dynamic lot sizing problems such as Silver
and Meal (1973; 1978), Kian et al. (2014) and Beck et al.
(2015).

This paper attempts to survey the papers for single-item
lot sizing problem under stochastic (stationary and non-
stationary) demand in terms of uncertainty strategies. We
do not merely list or summarise papers in this area or its
extension; our contributions to the literature on lot sizing
problem are the following.

• We develop a categorisation of stochastic lot sizing
problem under stationary and non-stationary demand
respectively to show how the literature evolved over
the last several decades.

• We demonstrate the development of literature from
the perspective of replenishment policies based on
Bookbinder and Tan’s (1988) uncertainty strategies,
and presents exact formulation and heuristic algo-
rithms for both types of demand.

In the rest of paper, section 2 will briefly introduce
stochastic lot sizing problems, uncertainty strategies and
replenishment policies. Sections 3 and 4 will review papers
for stationary and non-stationary demand, respectively, in
terms of replenishment policies and solution methods.

Table 1. Lot sizing problems and review papers

Classification Review Paper

General Review (Silver, 1981, 2008), (Glock et al., 2014)
Deterministic Demand (Drake and Marley, 2014)

(Brahimi et al., 2006, 2017)
Stochastic Demand (Ritchie, 1986)

(Dural-Selcuk et al., 2016)
Lead Time (Das, 1975)

Capacitated Stock (Karimi et al., 2003)
Perishable Item (Nahmias, 1982), (Janssen et al., 2016)

Lateral Transshipment (Paterson et al., 2011)



2. STOCHASTIC LOT SIZING PROBLEM AND
UNCERTAINTY STRATEGIES

The simplest case for stochastic lot sizing is the Newsven-
dor problem addressed by (Edgeworth, 1888), which is
concerned with controlling a single item over a single time
period.

In the early Sixties, Wagner and Whitin’s work (1958)
on dynamic lot sizing was extended into the stochastic
lot sizing problem considering single-item single-stocking
location inventory control problem with multiple time
periods. To deal with the uncertainty of demands, three
uncertainty control strategies were discussed and adopted
by Bookbinder and Tan (1988): the “static,” the “static-
dynamic” and the “dynamic uncertainty.”

Under the static uncertainty strategy, the timing (R) and
the quantity (Q) of an order are predefined before the
system operates. This policy is generally known as (R,Q)
policy.

The static-dynamic uncertainty applies a fixed reordering
timing, at which the replenishment quantity is determined.
The inventory level required to maintain (the order-up-
to-level: S) is also set in advance; however, the actual
replenishment quantity is decided only at the time the
order is issued. The policy is usually denoted as the (R,S)
policy. An alternative to the (R,S) policy is the (s,Q)
policy; in an (s,Q) policy, an order of size Q is issued
when inventory falls below or at the reorder threshold s.

The replenishment policy under dynamic uncertainty
strategy is the (s, S) policy, where s denotes the reorder
point and S the order-up-to-level. If current stock de-
creases to s, the system will place a replenishment order to
restore the current stock to the level S. (s, S) policy allows
full flexibility. Scarf (1959) showed that if the holding and
shortage cost are linear, the optimal policy in each period
is of (s, S) type.

3. STOCHASTIC LOT SIZING PROBLEM WITH
STATIONARY DEMAND

When the distribution of stochastic demand remains the
same form over the time horizon, finite or infinite, the lot
sizing problem is stationary. Research on stationary lot
sizing problems initially focused on structural properties
of optimal control policies. However, the model solving in
majority of formulations is of high complexity; thus a wide
range of heuristics approaches were derived for various
types of replenishment policies.

3.1 (s,Q) Policy

The research on (s,Q) systems — often referred to as
(r,Q) systems — started with Galliher et al. (1959), which
compared two systems with arbitrary form stationary
probability distribution and with Poisson distribution.
They found that the value of r should be increased along
with the increase of Q in variance of replenishment time
to maintain the optimality of the solution.

Hadley and Whitin (1962) presented an exact solution to
the problem where penalty cost was applied for backorder-
ing. Hadley and Whitin also derived an heuristic algorithm
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Fig. 1. Literature on stationary stochastic lot sizing prob-
lem according to policies

that ignored the possibility during lead time that demand
exceeded the quantity ordered and stockout.

Atkins and Iyogun (1988) proposed a decomposition
method to derive a tight lower bound for stochastic joint
replenishment method under (r,Q) system.

Browne and Zipkin (1991) discussed the (r,Q) system
when demand was discrete and (multivariate) diffusion
based on Hadley and Whitin’s discussion.

Federgruen and Zheng (1992) presented an exact algo-
rithm for the discrete cases. In this method, the opti-
mal parameters were found by incrementally enlarging
the interval of base-stock policies over which the average
was taken until the total cost stopped decreasing. Rosling
(1999) provided a revised version for Federgruen and
Zheng’s method to improve the computational complexity.
In Rosling’s method, Q was initially set to be its lower
bound, and the corresponding r was obtained by Rosling’s
discrete square root algorithm. The number of iterations
required in Rosling’s method was still large and the upper
bound was not tight, which meant that it was still pseudo-
polynomial.

After Hadley and Whitin (1962), several works discussed
exact models and heuristic solution methods for stationary
problem under various assumptions.

Johansen and Thorstenson (1996) considered (r,Q) system
with Poisson demand and lost sales. They formulated an
exact model and designed a policy-iteration algorithm for
discounted cases. Gallego (1998) derived a distribution-
free solution and provided upper bounds on the optimal
long run average cost and on the optimal batch size. Lau
and Lau (2002) proposed a method using spreadsheet’s
direct optimsation to solve a (r,Q) system with backorder-
ing. Shenas et al. (2009) proposed a recursive procedure
for determining the exact policy costs for (r,Q) policy
with Poisson demand and constant lead time. Mhada
et al. (2013) addressed the model when lead time was of
exponential distribution and the demand was an exponen-
tial unreliable manufacturing plant, aiming for a constant
mean production rate. Drezner and Scott (2015) derived
the approximate formulas for the optimal solution for the
particular case of an exponential demand distribution and
simple formulas for the general Poisson demand distribu-
tion. Bright and Rossetti (2013) provided a comparison
among algorithms for the unconstrained (r,Q) inventory
system by evaluating computational performance and so-
lution accuracy of the algorithms for a series of randomly
generated instances.



3.2 (s, S) Policy

Given the complexity in computing parameters for (s, S)
policy, there are many works developing efficient algo-
rithms for stationary (s, S) policy. This research started
with Iglehart (1963), which gave bounds for the sequences
of {sn} and {Sn}. Iglehart also investigated the limiting
behaviors of {sn} and {Sn} over the infinite time horizon
under backordering and lead-time settings. It was proved
that the sequences {sn} and {Sn} contained convergent
subsequences, and every limit point of the sequence {Sn}
was a minimum for the cost function. Then, if the cost
function had a unique optimum, {Sn} converged.

After Iglehart (1963), Veinott Jr and Wagner (1965) de-
rived a computational approach from renewal theory and
stationary analysis, and generalized it for the unit interval
range of value for discount factor α. The algorithm started
with the condition that α < 1; furthermore, a resolution
was found to guarantee the optimum of (s, S) policy was
determined by computation.

Richards (1975) examined the condition under which the
inventory position was uniformly distributed, that if and
only if demands were of unit size. Richards also proved
that this condition was independent of the lead time
distribution and of demand distribution. Sahin (1982)
also gave mathematical results on (s, S) inventory models
based on renewal junction. He proved that the total cost
function was pseudo-convex if the underlying renewal
function is concave. His conclusion guaranteed that every
local minimum was a global minimum of total cost, and
permitted the efficient computation of the optimal policy
parameters through a one-dimensional search routine.

To solve the problem efficiently, Archibald and Silver
(1978) developed a series of formulae to calculate the
cost for (s, S) policies recursively, when the inventory
system was continuously reviewed with discrete compound
Poisson demand. The algorithm started with finding the
optimal s for a given n, where n = S − s − 1; and then
S would be determined by finding an optimal n, where n
is a local optimum. Archibald and Silver found that the
value n increased until a local minimum pair of (s, n) was
found. Tighter bounds were developed in Veinott Jr and
Wagner’s (1965).

Inspired by Archibald and Silver’s research, Federgruen
and Zipkin (1984) proposed an algorithm to compute (s, S)
policy starting with any arbitrary parameter pair. The
algorithm was based on an adaption of the general policy-
iteration method for solving Markov decision problem,
where the special structure of (s, S) policies was exploited
in several ways. However, this algorithm was easily trapped
in local optima due to the quasi-convex nature of the
cost function. This algorithm was improved by Zheng and
Federgruen (1991) based on properties of cost function of
(s, S) system and the tight lower and upper bounds for
two parameters, which were iteratively and easily updated
and converged monotonically. Zheng and Federgruen also
exploited a characterisation of the cost function to allow
fast updates by only altering the value of s. Being different
from Zheng and Federgruen’s (1991) method, Feng and
Xiao (2000) introduced a dummy cost factor and an auxil-
iary function to search for the optimal cost value. Feng and
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Fig. 2. Literature on non-stationary stochastic lot sizing
problem according to policies

Xiao’s algorithm revised the dummy cost based on the sign
of auxiliary function and identified the non-prospective
set of S to reduce search efforts. The numerical test in
(Feng and Xiao, 2000) showed that this algorithm saved
on average more than 30% evaluation effort compared with
Zheng and Federgruen’s algorithm.

4. STOCHASTIC LOT SIZING PROBLEM WITH
NON-STATIONARY DEMAND

As Graves (1999) claimed, one main reason for the contin-
uing development of inventory theory is to embed more
realistic assumptions that are in line with production
manufacturing demand into theoretical inventory models.
Under the majority of practical industry circumstances,
demand is not only stochastic but also non-stationary.

4.1 (R,Q) Policy

Sox (1997) studied the dynamic lot sizing problem with
known cumulative function of demand in each time period.
In his settings, costs were non-stationary and backordering
was allowed. A mixed integer non-linear program was
applied to formulate this problem. The model described
the immediate cost incurred at the end of each time
period by the loss function in inventory theory, which
was convex but non-linear. By substituting cumulative
order quantity into the immediate cost function, inventory
variables were eliminated so that the objective function
can be separable in respect of cumulative order quantity
variables. Given this separability, a solution algorithm
was derived based on Wagner-Whitin’s algorithm (1958)
for deterministic problems by adding additional feasibility
constraints. The algorithm transformed the objective cost
function into a series of multi-period newsvendor problems
with various constraints by decomposition, and conducted
rolling-horizon implementation for obtaining the optimal
solution.

This policy was also investigated by Vargas (2009) to de-
termine the optimal solution over the entire finite planning
horizon for dynamic lot sizing problem with stochastic
and non-stationary demand, where a demand density was
known. The model applied assumptions in Wagner-Whitin
(1958) and introduced penalty cost for backordering. By
using stochastic dynamic programming, his model was
shown to be equivalent to solving a shortest path problem



in a specified acyclic network. Vargas also provided an op-
timisation algorithm with rolling horizon with two stages:
(1) to determine optimal replenishment quantities for any
sequence of replenishment point, and (2) to sort out the
optimal sequence of replenishment from above. The results
obtained by this approach presented a better performance
than the previous known methods.

4.2 (R,S) Policy

Tarim and Kingsman (2004) formulated the problem as a
mixed integer programming (MIP). It modeled the total
expected cost by minimising the summation of holding
and ordering cost under the constraint that the probability
that the closing inventory in each time period was a certain
non-negative value. This formulation allowed the simul-
taneous determination of reorder point and size. Tarim
and Kingsman (2006) provided another MIP formulation
where the objective function was obtained by the mean of
piecewise linearisation. The accuracy of the approximation
can be adjusted by introducing new breakpoints.

Tarim et al. (2011) provided an efficient computational
approach to solve the MIP model in (Tarim and Kingsman,
2004). The algorithm converted the relaxation of the orig-
inal MIP model to a shortest path problem implemented
by branch-and bound procedures. This algorithm also con-
sidered the case of infeasibility, where the solution would
generate a tight lower bound for the optimal cost, and it
can be modified to obtain a feasible solution to generate
an upper bound.

Özen et al. (2012) considered both penalty cost and
service level, proved that the optimal policy was the base
stock policy for both penalty and service-level constrained
models, and for the capacity limitations and minimum
order quantity requirements.

More recently, Rossi et al. (2015) extended Tarim and
Kingsman’s MIP model (2006) into a mixed integer lin-
ear programming (MILP) formulation for non-stationary
stochastic demand. The model first applied loss function
and its complementary function to describe total cost. A
piecewise linearisation approach was utilized to convert
cost function from non-linear form to linear. The research
also considered several service level measures (α service
level on each period, βcyc service level independently for
each replenishment cycle and the classic β service level) by
adding various constraints. Moreover, the model consid-
ered penalty cost for backordering, and it can be adapted
into lost sales scheme by introducing a parameter that
presented the selling price per product in order to take
into account the associated opportunity cost, which related
to the demand that was not immediately satisfied under
control policy as a prerequisite. Therefore, this research
enabled the modelling for several variants with a fully
linear formulation.

4.3 (s, S) Policy

Computing (s, S) policy parameters under non-stationary
demand is a challenging task. The classic Silver and Meal
heuristic algorithm (Silver and Meal, 1973) for determin-
istic demand was extended by Silver (1978) and Askin

(1981) to study the lot sizing problem under nonstationary
stochastic demand.

Silver’s algorithm was a stochastic version of (Silver and
Meal, 1973). It used a deterministic model to calculate
the number of periods that each order must cover; when
this replenishment plan was known, the associated safety
stocks were then myopically determined.

Askin explicitly included the cost effects of probabilistic
demand in the choice of the number of periods for which
to order (Askin, 1981). In contrast to Silver (1978), Askin
used a least cost per unit time approach to determine
the number of periods the immediate replenishment must
cover.

Bollapragada and Morton (1999) approximated the non-
stationary problem via a series of stationary problems
based on the method developed by Zheng and Feder-
gruen (1991). Parameters were determined by equating
cumulative mean demand of stationary and non-stationary
problems over the expected reorder cycle.

Dural-Selcuk et al. implemented computational experi-
ments of Askin (1981) and Bollapragada and Morton
(1999) on a new common test bed. For both approaches
they observed relatively large optimality gaps of 3.9% and
4.9%, respectively (Dural-Selcuk et al., 2016).

To overcome these shortcomings, Xiang et al. (2018) intro-
duced a mixed integer non-linear programming (MINLP)
formulation for (s, S) system applying piecewise lineari-
sation approximation method proposed by Rossi et al.
(2015). Xiang et al. also derived an heuristic algorithm
with binary search. Both solution methods outperformed
the previous heuristics in computational efficiency for
short and long time horizon tests. The comparison between
two proposed algorithms found that binary search required
a significantly less time than the MINLP.

Finally, Kilic and Tarim (2011) provided the grounds
for measuring system nervousness in (R,S) and (s, S)
system when demand was non-stationary. Tunc et al.
(2013) conducted a numerical study to compare these
policies for cost-effectiveness. Tunc et al. (2011) applied
the stationary policy as the approximation to the optimal
non-stationary system and found that stationary policies
may be an efficient approximation to the optimal non-
stationary system when demand information was of high
uncertainty with a low penalty cost.

5. CONCLUSION

This paper surveyed works focusing on the single-item
single-stocking location stochastic lot sizing problem un-
der stationary and non-stationary demand. Conceptual
maps were provided to classify works in the literature
that appeared since the late Fifties. By separating works
on grounds of demand (non)stationarity, we presented
the development of the literature from the perspective
of replenishment policies based on Bookbinder and Tan’s
(1988) uncertainty strategies. For both types of demand,
we investigated existing exact as well as heuristic formu-
lations.
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