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The liver’s remarkable capacity to self-repair and regenerate following tissue injury 1 

has been recognised since the ancient Greek myth of Prometheus. However the 2 

diverse potential sources of this regenerative capacity have been an area of hot debate 3 

and only recently have studies started to unravel the actual degree of hepatic cell 4 

plasticity. The article by Deng X, Zhang X, Li W et al. Chronic liver injury 5 

induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 6 

2018; 23:114-122 established through lineage tracing experiments using a double-7 

fluorescent reporter system that biliary epithelial cells significantly contributed to 8 

hepatocyte regeneration in two murine chronic liver injury models. Furthermore, 9 

during the cholangiocyte-to-hepatocyte conversion, bi-phenotypic cells were 10 

identified in both mouse models as well as in human cirrhotic livers. Following 11 

analysis of liver progenitor cell markers and mature cholangiocytes, the authors 12 

concluded that cholangiocytes directly lineage-converted to hepatocytes without a 13 

progenitor cell intermediate and suggested these bi-phenotypic cells as potential 14 

cellular sources for future therapeutic transplantation strategies.  15 

 16 

The landscape of published evidence supporting the regenerative capacity and 17 

plasticity of hepatocytes and cholangiocytes has changed rapidly over the last few 18 

years and a novel working model is gradually emerging, describing several potential 19 

routes to liver regeneration. It involves (a) lineage-restricted regeneration, where 20 

mature hepatocytes or biliary epithelial cells proliferate and generate new hepatocytes 21 

or cholangiocytes, respectively, or (b) non-lineage-restricted regeneration, mediated 22 

by immature, bipotential liver progenitor cells (LPCs), giving rise to either of the two 23 

main hepatic epithelial lineages, or - only recently fully recognised - 24 

‘transdifferentiation-based regeneration’, where mature hepatocytes or cholangiocytes 25 

convert to the opposite lineage to replace lost tissue. 26 

Several recent papers have indicated the heterogeneity of hepatocytes in both the 27 

physiological maintenance of liver mass and following injury.
(1-3)

 Of note, a periportal 28 

source of regenerative hepatocytes was described. These hybrid hepatocytes 29 

(HybHP), located at the limiting plate, were positive for both hepatocyte nuclear 30 

factor 4 α (HNF4α) and the ductal transcription factor Sox9 but were negative for the 31 

cholangiocyte and liver progenitor cell marker cytokeratin 19 (CK19). HybHPs  32 

regenerated hepatocytes following chronic and carcinogenic injury.
(1)
 Hepatocyte-to-33 
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cholangiocyte transdifferentiation has been shown by Schaub et al. in a mouse model 34 

of Alagille syndrome that results in cholestatic injury at birth and leads to postnatal de 35 

novo cholangiocyte formation. This cellular plasticity was mediated via transforming 36 

growth factor β signalling.
(4)
 In this model, there is likely a strong selective pressure 37 

on hepatocytes due to the lack of pre-existing peripheral bile ducts.  Similarly, 38 

selective pressures facilitated the significant transdifferentiation of biliary epithelial 39 

cells to hepatocytes following substantial hepatocyte depletion using zebrafish as the 40 

model organism.
(5)
 For some time it had been controversial whether cholangiocyte-to-41 

hepatocyte conversion was an effective mechanism of hepatocyte regeneration in 42 

zebrafish alone or whether it also occurred in mouse and humans. Experiments in 43 

mice, combining significant liver injury with the inhibition of hepatocyte proliferation 44 

by either knockdown of the transmembrane heterodimeric protein β1-integrin or 45 

overexpression of the cyclin-dependent kinase inhibitor p21 in hepatocytes, led to 46 

induction of cholangiocyte-derived ductular reactions and the formation of functional, 47 

biliary epithelial cell-derived hepatocytes.
(6)
 Together these data have demonstrated 48 

functionally relevant cellular plasticity in the epithelial compartment of the injured 49 

liver, adding cholangiocytes to the list of potential cell sources for hepatocyte 50 

regeneration and visa versa.  51 

In a recent issue of Cell Stem Cell, Deng et al. corroborated and extended these 52 

findings by confirming cholangiocyte-to-hepatocyte transdifferentiation in murine 53 

lineage tracing models in the absence of genetic interventions.
(7)
 The authors used 54 

thioacetamide (TAA) administration as a model of progressive fibrosis and cirrhosis 55 

and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) as a model of cholangitis and 56 

biliary fibrosis. The study took advantage of double-fluorescent Cre reporter mice, 57 

which displayed global expression of membrane-targeted tandem dimer Tomato, 58 

unless excision had taken place through the expression of Cre recombinase. The 59 

authors achieved this in hepatocytes using an adeno-associated virus expressing Cre 60 

recombinase under the control of the hepatocyte-specific thyroxine-binding globulin 61 

promoter. Hence, cells ubiquitously fluoresced red except for adult hepatocytes, 62 

which exhibited green fluorescent protein (GFP) expression. In both injury models, 63 

following extended injury, patches of HNF4α
+
 hepatocytes developed that were red 64 

(i.e. were not Cre-deleted), suggesting a non-hepatocyte origin. However, in this 65 

system the authors cannot formally exclude the possibility that small numbers of 66 
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hepatocytes that escaped the Cre-deletion expanded throughout the parenchyma. 67 

However, this scenario is not considered likely as any putative Cre-escaped 68 

hepatocytes would not have any known selective advantage over the Cre-deleted 69 

hepatocytes. Importantly, following TAA-injury, putative transdifferentiated 70 

hepatocytes exhibited markers of spatial zonation, including expression of carbamoyl 71 

phosphate synthetase I in periportal and glutamine synthetase in pericentral areas, and 72 

were therefore demonstrated to have functionally integrated into the liver 73 

parenchyma. In addition, none of the liver cancers that formed after 52-week TAA 74 

treatment were derived from transdifferentiated hepatocytes. To formally prove the 75 

non-parenchymal origin of these new hepatocytes, Deng et al. used positive lineage 76 

tracing. Co-staining of HNF4α and CK19 revealed double-positive cells in periportal 77 

liver areas. Lineage tracing for CK19
+
 biliary epithelial cells was performed, which 78 

revealed that these cells migrated from ductal to parenchymal areas, adopted 79 

hepatocyte shape and consequently expressed HNF4α, cytochrome P450 3A4 and 80 

multidrug resistance protein 4. Furthermore, these cholangiocyte-derived cells lacked 81 

expression of CK19 and Sox9. It was estimated that approximately 9-10% of 82 

hepatocytes were derived through hepatocyte transdifferentiation of biliary epithelial 83 

cells in the TAA- and DDC-induced liver injuries. Bi-phenotypic cells that co-84 

expressed HNF4α and CK19 and exhibited columnar and stratified epithelial 85 

morphology were further analysed. The majority of bi-phenotypic cells lacked 86 

primary cilia as well as expression of the polarity marker protein kinase C zeta, 87 

suggesting that cells had lost their typical apical-basal polarity during the conversion 88 

process. A few mature cholangiocytes displayed co-expression of HNF4α and 89 

primary cilia, which prompted the authors to propose that cholangiocyte-to-90 

hepatocyte transdifferentiation was the result of a previously unrecognised direct 91 

lineage conversion. The fact that bi-phenotypic cells did not express the liver 92 

progenitor cell markers Lgr5 and alpha-fetoprotein led Deng et al. to conclude that 93 

this conversion had taken place without a liver progenitor cell intermediate. It should 94 

be noted that (a) the putative liver progenitor cell pool consists of a very 95 

heterogeneous cell population, which necessitates the simultaneous use of multiple 96 

markers to identify all subpopulations and (b) alpha-fetoprotein is only suitable as a 97 

liver progenitor cell marker in rats and not in mice.
(8)
 Therefore, a more detailed 98 

analysis of these bi-phenotypic cells would need to be undertaken before the 99 
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conclusion of a direct cholangiocyte-to-hepatocyte lineage conversion without a 100 

progenitor cell intermediate can be formally proven.  101 

While underlying mechanisms may vary between species and are certainly context-102 

specific, these data emphasise that the liver has an abundance of effective 103 

regenerative sources, inducing the most appropriate cell in a given injury scenario. 104 

Collectively, these recent papers
(5, 8, 9)

 have highlighted the plasticity of the liver’s 105 

epithelial cell population, and clearly shown that this response is dependent upon the 106 

type of injury and regenerative failure of the ‘native epithelial cell’. This has also 107 

helped to uphold the liver’s reputation as a regeneration super star among solid 108 

organs. 109 

 110 

  111 
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Figure 1: Biliary epithelial cell-to-hepatocyte conversion. 
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Figure 1: Biliary epithelial cell-to-hepatocyte conversion. Deng et al. used tamoxifen 

treatment in CK19
CreERT

:mTmG mice to label cytokeratin 19 (CK19)-expressing 

biliary epithelial cells (BECs) with green fluorescent protein (GFP). Chronic liver 

injury through treatment with thioacetamide or 3,5-diethoxycarbonyl-1,4-

dihydrocollidine led to the generation of bi-phenotypic cells that co-expressed CK19 

and hepatocyte nuclear factor α (HNF4α). In addition, single-cell lineage tracing was 

performed in thioacetamide-treated CK19
CreERT

:mTmG mice through one round of 

low-dose tamoxifen administration. Single GFP
+
 BECs gave rise to small hepatic 

nodules of CK19
-
HNF4α

+
 cells, providing evidence for a BEC-to-hepatocyte 

conversion. 
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