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Summary:  

Oligodendrocyte (OL) pathology is increasingly implicated in neurodegenerative 

diseases as OLs both myelinate and provide metabolic support to axons. In Multiple 

Sclerosis (MS), demyelination in the central nervous system (CNS) thus leads to 

neurodegeneration, but the severity of MS between patients is very variable. Disability 

does not correlate well with the extent of demyelination1, suggesting that other factors 

contribute to this variability. One such factor may be OL heterogeneity. Not all OLs are 

the same - mouse spinal cord OLs inherently produce longer myelin sheaths than 

cortical OLs2, and single cell analysis of mouse CNS identified further differences3,4. 

However, the extent of human OL heterogeneity and its possible contribution to MS 

pathology remains unknown. Here we performed single nuclei RNA-sequencing 

(snRNA-seq) from white matter (WM) areas of post mortem human brain both in 

control (Ctr) and MS patients. We identified sub-clusters of oligodendroglia in Ctr 

human WM, some similar to mouse, and defined new markers for these cell states. 

Strikingly, some sub-clusters were under-represented in MS tissue, while others were 

more prevalent. These differences in mature OL sub-clusters may indicate different 

functional states of OLs in MS lesions. Since this is similar in normal appearing white 

matter (NAWM), MS is a more diffuse disease than its focal demyelination suggests. 

Our findings of an altered oligodendroglial heterogeneity in MS may be important to 

understanding disease progression and developing therapeutic approaches. 

 

Main text 

We performed snRNA-seq from WM of post mortem tissue of five human controls 

without neurological disease and four individuals with progressive MS (Extended 

Table1) using the 10x Genomics pipeline5 (Extended Fig.1a). We isolated nuclei from 

different WM areas within the same MS tissue block/patient, including NAWM, active 

(A), chronic active (CA), chronic inactive (CI) and remyelinated (RM) lesions (Extended 

Fig.1b), as defined by neuropathology6. After quality control, we obtained 17799 nuclei, 

with a mean of 1096 genes/nucleus, and a mean of 1795 unique molecular identifiers 

(UMI)/nucleus (Extended Fig.1e,f and Table2). 

 

We performed canonical correlation analysis (CCA) in the combined Ctr and MS 

patient dataset, to minimize sample individual variability batch effects, and clustering 

with Seurat2 (Extended Fig.3)7. We identified five sub-clusters of neurons, seven of 
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OLs, and additional clusters for OPCs, committed OL precursors (COPs), astrocytes, 

vascular smooth muscle cells (VSM), pericytes, endothelial cells, and immune cells 

(Fig.1a, Extended Fig.1g and Table3). We found unique or enriched RNA markers for 

the individual sub-clusters within the OL lineage (Fig.1d, Extended Fig.1c and Table4): 

PDGFRA, BCAN and SOX6 for OPCs, APOE and CD74 for immune oligodendroglia 

(imOLG, see below), CDH20 and RBFOX1 for Oligo1, LURAP1L.AS1 and CDH19 for 

Oligo2, KLK6 and GJB1 for Oligo5 and OPALIN, LINC00844 for Oligo6. We confirmed 

the presence of OLIG2 and absence of NOGOA (RTN4) in human OPCs, as used for 

their identification by neuropathologists8 (Extended Fig.4a). Immunohistochemistry 

(IHC) showed that these OLIG2+NOGOA- OPCs are also SOX6+ (Extended Fig.4b,e). 

IHC confirmed co-labeling of KLK6 (Oligo5) or OPALIN (Oligo6) with OLIG2 (Extended 

Fig.4c,d) and segregation of Oligo5 and Oligo6 (Fig.1b and Extended Fig.4f-h) on a 

different set of donor tissue. Segregation of pairs of sub-cluster markers for Oligo1, 

Oligo2 and Oligo5 was also confirmed using duplex in situ hybridization (ISH - 

BaseScope), with less than 10% of OLs containing both RNA markers (Fig.1c). 

Correlation analysis with oligodendroglia from an Experimental Autoimmune 

Encephalomyelitis (EAE) mouse model of MS4 indicated similarities between mouse 

and human OPCs (Extended Fig.5 and Table5). Human Oligo1 and 5 correlated with 

mouse MOL1/2, while the remaining mature human OL populations were closer to 

mouse MOL5/6. Human Oligo3 and imOLG also presented similarities to mouse 

OPCs/COPS (Extended Fig.5). Therefore, human WM has transcriptionally 

heterogeneous OL states that show some similarities to the adult mouse counterpart. 

 

In accordance with adult mouse brain scRNA-Seq3, we detected very few cells with 

the hallmarks of newly formed OL (NFOLs) (Fig.1a). Thus, we combined our data from 

Ctr WM with previously published adult brain data9,10 using CCA followed by clustering 

with Seurat27 (Extended Fig.2a and Table2). We were able to re-identify some of our 

OL sub-clusters in these other datasets (Extended Fig.2a). Moreover, we now found 

that Oligo6 had hallmarks of an intermediate state between OPCs and mature OLs 

(Extended Fig.2c,d). To confirm Oligo6 as an intermediate OL state, we performed 

Single-cell Near-Neighbor Network Embedding (SCN3E) analysis11 to order the 

identified populations in pseudotime (Fig.2a). A subset of Oligo6 nuclei connected 

OPCs/COPs with the remaining mature OLs, confirming the intermediate character of 
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this cluster. Oligo1 and Oligo5, by contrast, represented end-states in the SCN3E 

analysis. Interestingly, gene ontology (GO) analysis indicated that their highest 

expressed genes were not myelin genes (Extended Fig.6) suggesting that these 

mature stable OLs do not need to maintain a strongly active transcriptional machinery 

for myelination, but rather a transcriptional network reinforcing signaling, cell-cell 

adhesion and viability. By contrast, GO analysis also indicated that Oligo3 and Oligo4, 

represented actively myelinating oligodendrocytes with ‘myelination’ and ‘membrane 

assembly’ pathways (Extended Fig. 6). 

 

We next compared single-nuclei transcriptional profiles of oligodendroglia from the 

individuals with MS with the Ctr individuals. CCA analysis (considering all the individual 

samples as a variable and using the union of the top variable genes from each of the 

samples) and Seurat2 clustering lead to the identification of all brain cell types, 

including pericytes, macrophages and other immune cells (Fig. 2b) reflecting 

immunological infiltration of the CNS in MS. The total number of OL nuclei isolated in 

Ctr and MS samples was within the same range (Fig.2d). We quantified OLIG1/2-

expressing cells and, despite fewer cells generally in demyelinated lesions, the 

percentage of OLIG1/2+ cells in lesions did not change compared to NAWM and Ctr 

WM (Fig.3a). Further analysis revealed the same oligodendroglial sub-clusters in the 

nuclei derived from MS patients as in Ctr individuals. However, the frequency of nuclei 

in individual sub-clusters was markedly different between Ctr and MS in three ways 

(Fig.2b), helping to explain previous microarray analyses of human brain tissue 

showing different OL transcriptional outputs in MS brain at the population level12-16. 

 

First, we observed fewer nuclei from OPCs in all MS lesions and in NAWM (Fig.2c,d). 

To verify this reduction in other MS patients, we quantified OPCs using the specific 

novel markers identified above for human OPCs, BCAN and SOX6, on post mortem 

MS tissue from a different patient cohort (Extended Table1). Using both IHC against 

SOX6 (Fig.3b) and ISH against BCAN (Extended Fig. 8a),  we confirmed a significant 

reduction in OPCs both in lesions and NAWM, compared to Ctr. This is consistent with 

previous studies17-19 of OPC numbers showing their loss in some MS lesions. 

 

Second, the intermediate Oligo6 cells were highly reduced in MS (Fig.2b,d). We 

confirmed this using IHC against OPALIN on MS tissue, both in lesions and in NAWM 
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(Fig.3c). In addition, we found that remaining OPALIN+ Oligo6 cells were 

predominantly localized to the junction between the WM and GM (Extended Fig.4f,g). 

This widespread decrease of both OPALIN+ cells and OPCs in MS tissue adds 

evidence to the concept that NAWM is indeed not ‘normal’ but has more global 

changes that may reflect a propensity to demyelination20,21 or a regenerative response.  

 

Third, we identified skewing in the sub-clusters of mature OLs between MS and Ctr 

tissue (Fig.2c,d and Extended Fig.7e): Oligo1 was depleted in MS, while Oligo2, 

Oligo3, Oligo5 and imOLGs were enriched. This skewed distribution remained after 

deconvolution of our MS samples according to whether they were from NAWM or 

lesions (Fig.2c). We confirmed that KLK6+ Oligo5 were not lost in MS lesions and 

NAWM by IHC (Extended Fig. 8b).  Although ImOLG expressed canonical OL genes, 

they were slightly separated from the main OL cloud in the tSNE, were closely 

associated with microglia, and expressed genes such as CD74, HLA.DRA, PTPRC, 

C3 (Fig.3d and Extended Fig.8c). We validated the expression of CD74 in OLIG1/2+ 

OL by ISH (Fig.3d). GO and SCN3E analysis suggested that this population consists 

of intermediate OLs with an immunological phenotype (Fig.2a and Extended Fig.6) 

that we have previously described in EAE and in human4.  

 

In addition, differential gene expression analysis between individual OL in Ctr 

compared to MS indicated that several myelin protein genes were upregulated in 

mature OL in MS (Fig.3e, Extended Fig.8h and Table6). We found similar upregulation 

of myelin genes when comparing Ctr and NAWM (Extended Fig.8h) indicating that, in 

the context of disease, mature OLs might increase transcriptional programs 

responsible for myelination.  

 

Our dataset has the unique advantage that we could identify and compare expression 

of potential novel biological markers in different lesion types, NAWM and Ctr WM, 

albeit on a limited number of patients. The proportion of cells expressing several genes 

(e.g. KIRREL3, CDH20, PLCL1, LINC00609, FRMD5, LRRTM3, C1QTNF3-AMACR) 

was enriched in Ctr and CI, but not in other lesions (Fig.4a). Other markers were 

proportionally enriched or depleted in other lesion types, such as NKAIN2 (reduced 

proportion in RM lesions) or WWOX (reduced proportion in CA lesions) (Fig.4a). 

Significant differences in expression levels were also observed in specific OL sub-
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clusters for KIRREL3 and CDH20 (Fig.4b and Extended Table7). Paradoxically, the 

average expression (total normalized RNA counts) for some of these genes was lower 

in Ctr tissues and higher in RM lesions (Extended Fig. 9d). This may be due to a lower 

proportion of cells in RM lesions expressing some genes at a higher level, leading to 

a sparse but high overall expression level (Extended Fig. 9e). However, using ISH on 

a different cohort of MS tissue, we could confirm the finding of an increased number 

of cells expressing CDH20 in CI lesions and reduced number of WWOX-expressing 

cells in CA lesions (Fig.4c and Extended Fig.9a-c). Thus, in spite of small numbers 

and pathological subtype lesion variability, our results provide proof of principle that 

MS lesion subtypes may be identifiable by different markers. Increasing patient and 

lesion numbers may lead to the identification of novel and specific markers of MS 

lesions, which will be interesting to correlate with clinical outcome, imaging and cell 

type-specific effects of MS risk SNPs. These differences may even provide potential 

future targets for PET biomarkers to identify different MS lesion types in vivo. 

 

Our findings clearly illustrate the power of snRNA-Seq for the neuropathological 

analysis of human diseases, and we predict that the widespread use of this technology 

at scale will greatly enhance our understanding of chronic neurological diseases and 

lead to revised classifications, improved diagnostic accuracy, and novel markers. 

Furthermore our data show the need to re-evaluate current approaches for discovering 

regenerative therapies in MS. These are based on the assumption that enhancing 

differentiation of resident OPCs to OLs expressing myelin genes/proteins will lead to 

enhanced remyelination in progressive MS. Our results show that this is over-simplistic 

for two reasons. First, the striking pathology we observe is not a failure of differentiation 

to the myelin gene-expressing OL, but is instead the loss of the Oligo1 population 

(which we predict to be fully mature and stable OLs) and the skewing of the 

differentiation program to other subclasses of mature OLs with different transcriptional 

signatures. These new OLs may therefore have important functional differences in 

their ability to provide metabolic support or, in the case of imOLG, contribute to the 

inflammatory pathology. Identification of these functional differences and strategies to 

restore healthy OL heterogeneity should be a major future focus in MS research. 

Second, our results showing depletion of not only OPCs but also the intermediate 

Oligo6 populations, and increased expression of myelin genes in mature OLs in MS, 

may suggest that subsets of mature OLs contribute to remyelination. This is in line with 
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retrospective carbon 14 based birth-dating in MS patients22 and electron microscopy 

in large animal models23, but in sharp contrast to rodents where remyelination is driven 

entirely by recruitment and differentiation of resident OPCs. This highlights the 

difficulties in extrapolation from rodent to human and further emphasizes the power of 

studying human pathology at a single cell level to inform appropriate therapeutic 

approaches. 
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Figure1: Single nuclei RNA-seq reveals oligodendroglia heterogeneity in the 
human brain. a, tSNE projection of all recovered cell clusters, sorted by cell population 
(left) or disease condition (right) (n=17799 nuclei from 5 Ctr and 4 MS patients). b, 
Combined OPALIN and KLK6 staining of human Ctr WM (scale bar: 5mm, inlays: 
50µm).  c, Double in-situ hybridization (ISH, BaseScope) of human Ctr WM 
counterstained with hematoxylin; quantification of double-positive OL determined by 
ISH (left) and the snRNA-seq dataset (right), (left graph: n=4 for 
LURAP1L.AS1+CDH20+, n=3 for other combinations. Experiments were performed in 
3 independent batches; data displayed as mean ± SEM, rectangles, circles and 
triangles display individual values of double positive, marker1 and marker2, 
respectively. Right graph: Percentage of nuclei positive for marker 1, marker 2 and 
double. Positive = average expression >0. Total n (individual nuclei) for each 
combination: CDH20+KLK6+ n=5902, LUAP1L.AS1+OPALIN+ n=2980, 
nLUAP1L.AS1+CDH20+=5782, nLUAP1L.AS1+KLK6+=3395. d, Violin plots of 
markers enriched in specific OL subpopulations showing normalized gene expression 
(nOPC=352, nCOP=242, ImOLG=207, nOligo1=1129, nOligo2=1839, nOligo3=775, 
nOligo4=1579, nOligo5=1167, nOligo6=1484). Violin plots are centered around the 
median with interquartile ranges, with the shape representing cell distribution. ImOLG: 
immune oligodendroglia, VSM cells: vascular smooth muscle cells, COPs, committed 
oligodendrocyte progenitor cells, OPCs: oligodendrocyte precursor cells. 
 
Figure2: Altered oligodendroglia heterogeneity in human MS brain. a, SCN3E 
pseudotime analysis of the human OL lineage in Ctr and MS white matter (WM). b, 
Frequency distribution of all clusters between Ctr (red) and MS (turquoise) nuclei. c, 
Frequency distribution of OL clusters between Ctr and different MS lesions. d, tSNE 
projections of OL sub-clusters in Ctr and MS tissue (n=4037 OL in Ctr and n=4737 OL 
in MS). 
 
Figure3: Depletion of specific OL sub-clusters and increased expression of 
myelination genes in mature OLs in human MS brain. a, Total cellular and OL 
densities in Ctr WM, NAWM and MS lesions (data displayed as mean ± SEM, n=5 Ctr 
individuals, n=9 MS individuals, ANOVA). b, SOX6-expressing OPCs in Ctr WM, 
NAWM and MS lesions (scale bars 50µm, data displayed as mean ± SEM, n=4 Ctr 
individuals, n=5 MS individuals, ANOVA) and tSNE overlay of SOX6 expression in the 
Ctr and MS snRNA-seq dataset. c, OPALIN-expressing OL in Ctr WM, NAWM and MS 
lesions (scale bar: 50µm, data displayed as mean±SEM, n=3 Ctr individuals, n=5 MS 
individuals, ANOVA) and tSNE overlay of OPALIN expression in the Ctr and MS 
snRNA-seq dataset. d, CD74 expression in the Ctr and the MS snRNA-seq dataset 
and BaseScope in-situ validation of presence of CD74 combined with IHC staining for 
Olig1/2+ OLs (n=2 different MS patients, experiments were performed in 2 independent 
batches). e, Heatmap representing the average gene expression of a subset of genes, 
including myelin-related genes, in mature OL in Ctr vs. MS samples). For tSNEs and 
heatmap, n=4037 OL in Ctr and n=4737 OL in MS for all t-SNE projections). a-c: only 
p-values compared to Ctr are displayed. 
 
Figure4: Differential gene expression analysis of MS lesions reveals potential 
specific markers. a, Dotplot illustrating the top differentially expressed genes (in 
terms of percentage of cells expressing these genes per sample) between lesions, 
NAWM and control; both size and color indicate z-scores (blue and large: low; red and 
large: high; small: intermediate). Validated genes CDH20 and WWOX are highlighted 
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with squares. b, Average gene expression across Oligo2 (left) and Oligo3 (right) in 
chronic inactive (CI) lesions compared to the average expression in the rest of the 
lesions. In red: examples of genes significantly differentially expressed and 
upregulated in CI lesions (Bonferroni corrected Wilcoxon Rank Sum two-sided test, 
adjusted p-val <0.05). c, BaseScope in-situ validation of CDH20 expression in different 
lesion types (scale bars: 2mm, 10µm, data displayed as mean±SEM, n=5 active 
lesions, n=7 chronic inactive and n=3 chronic active lesions derived from n=7 different 
MS patients, ANOVA, only significant p-values are displayed). Abbreviations: NAWM 
(normal appearing white matter), active (A), chronic active (CA), chronic inactive (CI) 
and remyelinated (RM). 
 
Extended Figure1: Single nuclei RNA-seq of human post-mortem brain tissue: 
a, Schematic overview of the methodology and workflow used to isolate single nuclei 
from human white matter and RNA-seq using Chromium 10x Genomics and Illumina 
NGS (scheme was created with BioRender). b, Luxol Fast Blue (LFB) staining of 
human control (Ctr, left) and Multiple Sclerosis (MS, right) brain sections used for the 
experiment; WM is outlined with a dotted line. MS brains were divided into normal 
appearing white matter (NAWM) (1) and different lesion types (2-4). c, Violin Plots of 
additional markers enriched in specific OL subpopulations showing normalized gene 
expression (nOPC=352, nCOP=242, ImOLG=207, nOligo1=1129, nOligo2=1839, 
nOligo3=775, nOligo4=1579, nOligo5=1167, nOligo6=1484). Violin plots are centered 
around the median with interquartile ranges, with shape representing cell distribution. 
d, Double in-situ hybridization (ISH, BaseScope) of human Ctr WM counterstained 
with Hematoxylin. e, Correlation between RIN values and number of genes per nucleus 
or number of cells recovered in individual samples. f, Quality control parameters of 
different human brain OLs snRNA-seq datasets showing the individual number of 
genes (top) and number of UMI (bottom) per cell (n=1161 cells from Habib et al 2017, 
n=3998 Ctr nuclei from this dataset and n=4873 nuclei from Lake et al. 2018).  g, tSNE 
projections of known cellular markers for the identification of all brain cell clusters in 
Ctr samples (n=6591 nuclei). 
 
 
Extended Figure2: Quality control of snRNA-seq dataset reveals similar depth 
to previous datasets, and combination with other human brain snRNA-seq 
datasets identifies Oligo6 as an intermediate OL state.  a, tSNEs representing OL 
lineage clusters when performing clustering analysis with the combination of the three 
datasets (left) and assigning cell identity according to the clusters identified in Fig.1 
(right, in brackets, the numerical cluster identity with the dataset combination, as 
indicated in the left tSNE) (n= number of nuclei, nCluster0=1445, nCluster1=1406, 
nCluster2=1355, nCluster3=1299, nCluster4=1150, nCluster5=1068, nCluster6=828, 
nCluster7=605, nCluster8=59, nCluster9=250, nCluster10=28). b, tSNEs indicating 
the cell origin when combining the current snRNA-seq dataset with Habib et al., 2017 
and Lake et al., 2018 snRNA-seq datasets sorted by different individuals (top), different 
datasets (middle) and different regions (bottom) (n=9493 nuclei).  c-d, Heatmaps 
representing expression of genes associated with intermediate states across the 
oligodendroglial lineage (as defined by Lake et al., 2018) at a cluster (c) and individual 
cell (d) level. e, Frequency distribution of identified oligodendroglia between different 
datasets.  
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Extended Figure3: Seurat2 CCA clustering of snRNA-seq dataset at different 
clustering resolutions. Seurat clustering at a lower (a) and higher resolution (b) than 
the clustering resolution in Fig.1 (n=17799 nuclei derived from 5 Ctr and 4 MS 
patients). 
 
Extended Figure4: Validation of novel OL sub-cluster markers and regional OL 
subpopulation distribution in human Ctr brain. a, Violin plots showing SOX6, RTN4 
(NOGOA) and OLIG2 normalized expression counts in different OL subpopulations 
(n=number of nuclei in Ctr nOPC=273, nCOP=153, ImOLG=81, nOligo1=952, 
nOligo2=388, nOligo3=82, nOligo4=724, nOligo5=393, nOligo6=991). Violin plots are 
centered around the median with interquartile ranges, with shape representing cell 
distribution. b, Colocalization of SOX6 and OLIG2 as a marker for OPCs (scale bar: 
20µm). c, Colocalization of OPALIN and OLIG2 as a marker for Oligo6 (scale bar: 
20µm). d, Colocalization of KLK6 and OLIG1/2 as a marker for Oligo5. e, 
Colocalization of SOX6, NOGOA and OLIG2. SOX6+OLIG2+NOGOA- cells (upper 
panel) are OPCs, NOGOA+OLIG2+SOX6- cells are mature OL (scale bar: 10µm). f, 
OPALIN staining of a Ctr brain section (scale bars: 5mm, inlay: 300µm). g, OPALIN+ 
Oligo6 in different bins of 300µm increments from the GM/WM border (scale bar:50µm, 
n=3 different Ctr  and MS individuals with NAWM and lesions, ANOVA, data are 
displayed as mean ± SEM). h, Combined OPALIN and KLK6 staining of another 
human Ctr brain block (scale bar: 5mm, inlays: 50µm). In b-e experiments were 
independently performed in 2 batches. i, Validation of novel OL mRNA markers in 
combination with OLIG1/2 IHC. BCAN (top left), CLDND1 (top right), KLK6 (bottom 
left) and CDH20 (bottom right). Red arrowheads: marker+/OLIG1/2+ OL, blue 
arrowhead: marker-/OLIG1/2+ OL (scale bars: 10µm). 
 
Extended Figure5: Comparison of human Ctr and MS OL snRNA-seq and mouse 
EAE oligodendroglia scRNA-seq datasets shows similarities and differences in 
OL heterogeneity. Heatmap of the mean AUROC values (see methods), from the 
unsupervised classification, of cell type to cell type comparison between human 
(current dataset) and mouse oligodendroglia (Falcao et al, 2018). 
 
Extended Figure6: Gene Ontology analysis reveals functional differences 
between human OL sub-clusters. The most significantly differentially expressed 
genes from the snRNA-seq experiment of each OL sub-cluster were selected and 
Gene Ontology and pathway analysis was performed with the ClueGO plug-in in 
Cytoscape on each individual cluster. Individual donut charts present the percentage 
of found genes associated with the term and depict the most significant biological 
categories. 
 
Extended Figure7: Clustering of snRNA-seq dataset by different origins. a, 
tSNEs representing human Ctr and MS WM nuclei  after dimensionality reduction with 
principal component analysis (PCA) at different resolutions. b-d, Clustering of snRNA-
seq datasets by sample after dimensionality reduction with PCA (left) and canonical 
component analysis (CCA, right), highlighting Ctr/MS individual and lesion type 
combined (b), Ctr/MS individual (c) and lesion type (d) separately. e, Frequency 
distributions of OL sub-clusters by Ctr (left) and MS (right) individuals. (n=17799 cells 
derived from 5 Ctr and 4 MS patients). 
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Extended Figure8:  Validation of skewed MS heterogeneity and OL gene 
expression profiling in Ctr and NAWM. a, Validation of BCAN-expressing OPCs in 
combination with OLIG1/2 IHC. Red arrowhead: BCAN+/OLIG1/2+ OPC, blue 
arrowhead: BCAN-/OLIG1/2+ OL (scale bar: 20µm) and tSNE overlay of BCAN 
expression in the snRNA-seq dataset in Ctr and MS, (scale bar: 20µm, data displayed 
as mean±SEM, n=4 samples from different control individuals, n=6 NAWM samples  
and n=5 MS lesion samples from different MS patients, ANOVA. b, KLK6-expressing 
OL in Ctr WM, NAWM and MS lesions (scale bar: 50µm, data displayed as 
mean±SEM, n=4 samples from different Ctr individuals and n=5 different MS 
individuals, ANOVA) and tSNE overlay of KLK6 expression in the Ctr and MS snRNA-
seq dataset. c, Violin plots showing the normalized expression counts of genes 
enriched in ImOLG in the snRNA-seq dataset (nOPC=352, nCOP=242, nImOLG=207, 
nOligo1=1129, nOligo2=1839, nOligo3=775, nOligo4=1579, nOligo5=1167, 
nOligo6=1484). Violin plots are centered around the median with interquartile ranges, 
with shape representing cell distribution. d, MRF IHC in Ctr WM, NAWM and MS 
lesions (scale bar: 50µm, data displayed as mean±SEM, n=6 samples from different 
control individuals, and n=7  different MS patients, ANOVA) and tSNE overlay of MYRF 
expression in the snRNA-seq dataset. e, tSNE overlay of MBP expression in the Ctr 
and the MS snRNA-seq dataset (n=4037 OL in Ctr and n=4737 OL in MS). f, Western 
blot of the MYRF antibody on human brain lysate to validate the specificity of the 
antibody. For gel source data, see Supporting Fig.1   g, Combination of MYRF mRNA 
and protein labeling to confirm the specificity of the MYRF antibody in Ctr WM (scale 
bar: 10µm). h, Heatmaps representing the average gene expression of a subset of 
genes, including myelin-related genes, in Ctr vs. MS samples in OPCs (Ctr.vs. MS and 
Ctr. vs. NAWM) and mature OLs (Ctr vs. NAWM). a-b,d: each experiment was 
performed in 2 (3 for d) independent batches and p-values are only displayed 
compared to Ctr.; f,g: each experiment was performed twice on independent samples. 
 
 
Extended Figure9: Validations of altered OL heterogeneity in MS and mRNA 
expression differences in lesions. a, Quantification of BaseScope in-situ 
hybridization of CDH20 (mRNA) in individual MS patients (corresponds to Fig. 4c) 
shows an enrichment in chronic inactive lesions in each individual (n= individual 
number of quantified fields per patient (n=7): MS235: n=10 for A and CI lesions, 
MS200: n=4 for A, CI and CA lesions, MS249: n=4 for A and n=8 for CI lesions, MS361: 
n=7 for A and n=10 for CI lesions, MS106: n=11 for CA and CI lesions, MS161: n=6 
for CA and n=10 for CI lesions, MS300: n=7 for A and n=10 for CI lesions, data 
displayed as mean ± SEM). b-c, BaseScope in-situ hybridization of WWOX (mRNA) 
shows depletion of detected mRNA in CA lesions on average (b) and in individual MS 
patients (c) (scale bars: 2mm, 20µm, b: n=2 for active lesions and n=4 for chronic 
inactive and chronic active lesions, data displayed as mean ± SEM, ANOVA, c: dots 
display the individual number of quantified fields per patient (n=5), MS245: n=8 for A, 
n=10 for CI and n=9 for CA lesions, MS361: n=6 for A and n=10 for CI lesions, MS101: 
n=6 for CI and n=11 for CA lesions, MS161: n=10 for CI and n=7 for CA lesions, 
MS296: n=11 for CA and n=6 for CI lesions, data displayed as mean ± SEM). d, 
Dotplot of the total normalized RNA UMI counts found within the lesions, NAWM and 
controls,  where both size and color indicate z-scores blue and large: low; red and 
large: high; small: intermediate). e, Density histograms showing the difference in 
distribution of normalized counts observed between control and remyelinated lesions. 
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Extended Table1: List of human donor tissue, including frozen samples used in 
snRNA-Seq and paraffin samples used in ISH and IHC validations, with sex, age 
at death, cause of death, MS type and disease duration, when available. 
Abbreviations: M=male, F=female, SP=secondary progressive, PP=primary 
progressive, NA=not available. 
 

Extended Table2: Sequencing statistics of the 20 samples used for the study, 
quantification of number of nuclei positive for OL marker combinations (relative 
to Fig 1c right) and QC stats of the available published snRNA-seq dataset 
(relative to Extended Data Figure 2). n=17799 nuclei derived from 5 Ctr and 4 MS 
patients. 
 
Extended Table3: List of differentially expressed genes for each of the 23 cell 
type clusters. (Bonferroni corrected Wilcoxon Rank Sum two tailed test, adjusted p-
val < 0.05). n= number of individual nuclei, nAstrocytes=1046, nAstrocytes2=196, 
nCOPs=242, nEndothelial_cells1=452, nEndothelial_cells2=384, 
nMacrophages=368, nImmune_cells=423, nMicroglia_Macrophages=428, 
nNeuron1=1507, nNeuron2=1438, nNeuron3=543, nNeuron4=948, nNeuron5=595, 
nImOLGs=207, nOligo2=1839, nOligo4=1579, nOligo6=1484, nOligo5=1167, 
nOligo1=1129, nOligo3=775, nOPCs=352, nPericytes=585 and 
nVasc_smooth_muscle=112.   
 
Extended Table4: List of differentially expressed genes for the 9 OL clusters, 
when considering only the OL lineage, and selection of OL markers. n= number 
of individual nuclei, nOPC=352, nCOP=242, nImOLG=207, nOligo1=1129, 
nOligo2=1839, nOligo3=775, nOligo4=1579, nOligo5=1167, nOligo6=1484. 
Bonferroni corrected Wilcoxon Rank Sum two tailed test, adjusted p-val < 0.05. 
 
Extended Table5: Comparison of human Ctr and MS OL snRNA-seq and mouse 
EAE oligodendroglia scRNA-seq datasets shows similarities and differences in 
OL heterogeneity (related to Extended Figure 5). Selected top hits with mean 
AUROC values >= 0.5 for unsupervised classification of cell type pairs between human 
(current dataset) and mouse OLs (Falcao, van Bruggen et al. 2018). 
 
Extended Table6: List of differentially expressed genes in Ctrl Vs. MS nuclei in 
OL clusters (related to Figure 3e and Extended Figure 8h). (Bonferroni corrected 
Wilcoxon Rank Sum two tailed test, adjusted p-val < 0.05). 
 
Extended Table7: List of differentially expressed genes between different types 
of lesions within OL clusters. (Bonferroni corrected Wilcoxon Rank Sum two tailed 
test, adjusted p-val < 0.05). (nOPC=79, nCOP=89, nImOLG=126 , nOligo1=177 , 
nOligo2=1451, nOligo3=693, nOligo4=855, nOligo5=774, nOligo6= 493 ). 
 
Supporting Fig1: Raw image file of MRF Western Blot for Extended Fig8f. Left 
lane: protein ladder. Middle and right lane: duplicates of human protein lysates. 
Dashed box indicates cropped region. Loading control was not used as no quantitative 
measures were taken. 
 
 
Methods:  
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Human Donor tissue: 

Post-mortem unfixed frozen tissue and formalin fixed paraffin embedded (FFPE) tissue 

was obtained from the UK Multiple Sclerosis Tissue Bank via a UK prospective donor 

scheme with full premortem consent and with full ethical approval by MREC/02/2/39 

(UK Ethics Committee) and 2016/589-31 (Regionala Etiskprövningsnämnden, 

Stockholm, Sweden). For the snRNA-seq, we used white matter regions from fresh-

frozen tissue sections for both controls (4 males and 1 female), NAWM and MS lesions 

(3 males and 1 female). Controls (Extended Table1): 5 samples from 5 different 

donors, NAWM: 3 samples from 3 patients, Chronic Active: 4 samples from 4 patients, 

Active: 3 samples from 2 patients, Chronic inactive: 3 samples from 3 patients, 

Remyelinated: 2 samples from 2 patients.  For the in-situ validation on FFPE tissue 

sections we used a total of 11 Ctr (5 males and 6 females) and 15 MS (7 males and 8 

females) tissue samples from different donors. The Ctr and MS donors did not have a 

significantly different age difference (Ctr frozen: 58.0±17.5 yrs, MS frozen: 46.8±8.4 

yrs, Ctr FFPE: 57.7±12.3 yrs, MS FFPE: 53.5±9.1 yrs, One-way ANOVA (p=0.3724), 

F(3, 31)=1.079, Tukey’s multiple comparison test: Ctr frozen vs. MS frozen: p=0.4769, 

Ctr frozen vs. Ctr FFPE: p>0.9999, Ctr frozen vs. MS FFPE: p=0.8713, MS frozen vs. 

Ctr FFPE: p=0.3775, MS frozen vs. MS FFPE: p=0.7307, Ctr FFPE vs. MS FFPE: 

p=0.7889, data displayed as mean ± SD). 

 

Isolation of Nuclei: 

Nuclei were isolated from fresh-frozen 10m sections as previously described24 with 

modifications. The regions of interest were macro-dissected with a scalpel blade, lysed 

in Nuclei Isolation Buffer (NEB, 10mM TrisHCl pH 8.0, 0.25M Sucrose, 5mM MgCl2, 

25mM KCl, 0.1% Triton X) with 0.1mM DTT and 0.4U/ul RNAse Inhibitors freshly 

added before use and homogenized with a Dounce homogenizer. The suspension was 

filtered through a 30m strainer and centrifuged for 10min at 1,000g. The pellet was 

re-suspended in 400l cold PBS with 0.4U/l RNAse inhibitors and 310l of solution 

mixed with 90l of debris removal solution (Miltenyi Biotech), overlaid with 400l of 

cold PBS with 0.4U/l RNAse inhibitors and centrifuged for 10min at 3,000g. The 

supernatant was removed, the pellet washed with cold PBS with 0.4U/l RNAse 

inhibitors and re-suspended in PBS 0.5% BSA with 0.4U/l RNAse inhibitors. The 

remaining 90l were diluted with 180l of cold PBS 0.75% BSA 0.4U/l RNAse 
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inhibitors, filtered through a decreasing cell strainer size (30-10µm) and centrifuged for 

5min at 1,000g. The pellet was re-suspended in 25l PBS 0.5% BSA with 0.4U/l 

RNAse inhibitors. The 2 pellets were combined 1:4 (filtered : debris removed, 

respectively) for further 10x loading. 

 

Single nuclei preparation for 10x loading 

25l of wash buffer (10mM TrisHCl, 10mM NaCl, 3mM MgCl2, 0.005% NP40) with 

0.2U/l RNAse inhibitors was added to each nuclei suspension, gently mixed and 

incubated for 5min on ice. The suspension was centrifuged for 5min at 1,000g and the 

pellet gently re-suspended in PBS 2% BSA 0.2U/l RNAse Inhibitors. For 

quantification, the nuclei were stained with Hoechst (5g/ml) and counted in a 

hemocytometer. A total of 8,000 estimated nuclei for each sample was loaded on the 

10x MicroChip, although a much lower number of nuclei was recovered after 

sequencing (Extended Table 1). 

 

cDNA library preparation 

cDNA libraries have been prepared using the Chromium Single Cell 3’ Library and Gel 

Bead kit v2 (120267) according to the manufacturer’s instructions. 

 

MS patients and Control samples preprocessing and clustering 

The 20 samples were aligned with Cellranger -version (2.1.1) with reference genome 

GRCh38-1.2.0. Then, each of the output filtered UMI count matrixes was used as input 

for Velocyto25 with the parameters, velocyto run10x -m 

repeatMasker_filtered_UMI_count_matrixes GRCh38-1.2.0_genes.gtf. The 

repeatmasker track was download from UCSC tables. Velocyto only considers 

uniquely mapped reads from cellranger output UMI matrixes and reads that align to 

both exonic regions and intronic regions. The new UMI count matrices were exported 

from loom file format to R object format with Velocyto25 R package. For each of the 

samples, we combined the spliced and unspliced count matrices to get a matrix of 

33692 genes across 35753 cells. This final aggregate UMI matrices were used for all 

the downstream analyses. We checked quality metrics and removed cells with less 

than 200 genes and a total count below 500 and genes with a count above 1 in at least 

3 cells. 
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The following data processing was carried out with Seurat7 (version 2.1).  For each of 

the 20 samples, first we set up a first filter of min.cells = 3 and min.genes = 200 per 

sample, filtered by number of UMI (>6000), genes (<200) and mitochondrial 

percentage (>0.20). The distribution for gene, UMI and reads mapped to mitochondrial 

genome were visually inspected and used for quality assurance. Post-processed 

matrices were then log-normalized individually with a scale of factor of 10,000, followed 

by regressing inter-cellular variation in gene expression by UMI counts and batch 

number, and scaling of the gene expression. Highly variable genes (HVG) were set up 

as the union from the top 1000 HVG from each sample, resulting in 4361 genes.   

 

After quality filtering, 17799 nuclei and 21581 genes remained. Shared-nearest 

neighbor (SNN) graph was constructed on cell-to-cell distance matrix from top 15 

aligned canonical correlation vectors. The SNN graph with different resolution was 

used as an input for smart local moving (SLM) algorithm to obtain cell clusters, and 

visualized with t-Distributed Stochastic neighbor Embedding (tSNE). We performed 

the analysis in three different resolutions 0.8, 2 and 4. Based on differential expressed 

genes, identified by Wilcoxon rank sum test, with parameters min.pct = 0.25, 

thresh.use = 0.25, test.use = "wilcox” 7., we manually assigned and verified the 

consistency of the three different resolutions (Extended data Figure 2). Based on prior 

knowledge and consistency within different resolutions we selected the final number 

of cluster between the resolutions 2 and 4, which included all the major cell types in 

the brain a novel cell types26, resulting in 23 different clusters. 

 

Oligodendrocyte cell type assignment 

The CC alignment applied for the Control and MS combined analysis minimized inter-

sample variability to reduce possible batch effects, due to the individual variability or 

technical performance leading to intermingled comparable clusters that contained MS 

and Control nuclei. First, oligodendrocyte lineage cell types were identified based on 

canonical and novel markers3 from differential expression analysis. In order to verify 

cell identity, the expression patterns distributions were used in the different Oligo 

subclusters, and then verified in as separate based on the markers. In addition, 

evidence from mouse single cell data26 has shown OLs with an immunological 
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phenotype in a mouse model of experimental autoimmune encephalomyelitis (EAE). 

The combination of different resolutions allowed us to identify OLs expressing immune 

genes in the human dataset (ImOLG).  

 

In order to verify the subcluster identity and possible over or under clustering, a 

classification hierarchy was built. This approach places transcriptionally similar 

clusters close to each other on a tree allowing us to finally define the 6 Oligo clusters, 

the OPCs, the COPs and the ImOlGs as different separate clusters that were later 

validated with specific markers. 

 

Dimensional reduction with principal component analysis (PCA), followed by 

regressing out each of the sample variables, showed segregation of clusters based on 

patient identity (Extended Fig.7), suggestive of batch effects and individual variability. 

Thus, we performed CCA, considering all the individual samples as a variable and 

using the union of the top variable genes from each of the samples, in order to get 

common but also specific variable genes from all samples and discarding cells with 

higher than 0.5 PCA/CCA variance. CCA allows the alignment of all samples to a 

common low dimensional subspace followed by clustering7, showing that nuclei cluster 

more according to cell type rather than sample identity (Fig.1a and Extended Fig.3). 

 

Comparison of human and mouse oligodendroglia  
The normalized expression matrix from Falcao et al.26 was retrieved and mouse mm10 

Genesymbol IDs were extracted and combined with GRCh38 ENSEMBL geneIDs from 

Biomart27.  We recovered a final matrix with unique GRCh38 gene symbols renamed 

from mm10.  For the comparison analysis we combined in a single matrix the 6 Oligo 

clusters, OPCs, COPs and ImOlGs from human with the EAE mouse renamed matrix 

cells. Both datasets included only oligodendrocyte lineage cell clusters that combined 

MS, or EAE in mouse, and controls. The combined 900 most variable genes as 

described in 28 from all the mouse and human OLs were used to classify the celltypes. 

The datasets similarity analysis was performed with an unsupervised classifying 

approach to find the most similar cell types, using as a training and testing both 

datasets and with a top hits threshold of >= 0.7 mean area under the receiver operator 

characteristic curve (AUROC)28 score. 
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Integration of different human single nuclear-RNAseq datasets 

 

Published datasets pre-processing  
UMI count matrices from human cerebellar hemisphere (CH) (24580 genes, 5204 

cells), frontal cortex (FC) (24654 genes, 10319 cells) and visual cortex (VC) (32693 

genes,1386 cells) were retrieved from GEO (GSE97930), and pre-processed 

independently. First, cells that had no annotation were discarded (1 cell from frontal 

cortex UMI count matrix). We performed a quality control procedure as described 

above. Cells with a number of genes > 3100 (CH, FC and VC) and <350 (FC and VC) 

and number of UMI >5600 (CH, FC and VC) were considered as low quality or outliers, 

and were thereafter removed from downstream analysis. After quality controls, 5199, 

9557 and 18645 cells remained (CH, FC and VC). Post-processed matrices were then 

log-normalized individually with a scale of factor of 10,000, followed by regressing 

inter-cellular variation in gene expression by UMI counts and batch number, and 

scaling of the gene expression. Canonical correlation analysis7 each region. The first 

17 canonical correlation components (CCs) were chosen. There were 465 cells in the 

17 CCs with PCA/CCA variance more than 0.5, and thus were considered 

regional/batch specific and removed for following dataset alignment. After aligning 

regional expression in the first 17 CCs, clustering, visualization and OLs sub-setting 

were performed. 

 

UMI count matrices of human archived brain samples were retrieved from 

https://portals.broadinstitute.org/single_cell/study/dronc-seq-single-nucleus-rna-seq-

on-human-archived-brain#study-summary. Hippocampus (HIP) (10326 genes, 5433 

cells) and Prefrontal cortex (PFC) (10326 genes, 9530 cells) expression matrices were 

separated and underwent quality control. Cells with a number of genes > 4000 and < 

400 (PFC) and <350 (HIP), number of UMI >7500 (PFC and HIP), and mitochondrial 

percentage < 0.05 (PFC) and > 0.15 (HIP) were considered as low quality or outliers 

and were thereafter removed from downstream analysis. 6062 PFC cells and 4765 

HIP cells remained. Each regional dataset was then log-normalized with a scale of 

factor of 10,000, followed by regressing inter-cellular variation in gene expression by 

UMI counts and mitochondrial percentage, and scaling of the gene expression. Highly 

variable genes were identified as with the Lake dataset, but with the high end cut off 

of 4 for average expression, and a union of 1521 variable genes was used for 

https://portals.broadinstitute.org/single_cell/study/dronc-seq-single-nucleus-rna-seq-on-human-archived-brain#study-summary
https://portals.broadinstitute.org/single_cell/study/dronc-seq-single-nucleus-rna-seq-on-human-archived-brain#study-summary
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canonical correlation analysis. CCA/PCA variance, dataset low dimensional subspace 

alignments, followed by clustering and OLs linkage sub-setting were performed as 

above with the first 11 CCs with 9702 cells in total after discarding cells with higher 

than 0.5 PCA/CCA variance.  

 

Dataset integration  
Oligodendroglial subsets from our Controls, Lake et al. and Habib et al. datasets29,30.  

were combined by performing a canonical component analysis with the union of top 

1000 highly variable genes from each dataset, and then 11 CCs were aligned after 

discarding data specific cells. Differentially expressed genes that were conserved 

among the datasets were identified by first performing individual within-dataset 

Wilcoxon rank sum tests, followed by ranking genes according to a unified combined 

Fisher’s p-values. The resulting clusters were found under resolution 1.0. 

 

Clustering based on PCA 

Seurat2.1 was also used for PCA of the 20 MS and Control samples. The filtered 

expression matrix, as described before, was log-normalized with a scale factor of 

10000, scaled and regressed on number of UMI and sample ID. PCA was run on highly 

variable genes, which was identified as previously described. 15 PCs were used and 

the HNN graph was constructed based on the Euclidean distance in PCA space, where 

the clusters were then identified using Louvain algorithm. The clusters were visualized 

using t-SNE. Clustering was run in three different resolutions, 0.8, 2 and 4, in order to 

be comparable with the clusters obtained with the CCA. 

 

Spatial gene-filtering and pseudo-ordering 

Cells were ordered, and lineages were approximated using a previously published 

pipeline31. In short, single nuclei were filtered so that each nucleus contained at least 

500 UMI counts, and at least 400 genes. We then used spatially correlating gene 

selection on the diffusion mapping32 obtained transition matrix. Subsequently, we 

reduced the high-dimensional space using non-negative matrix factorization33, of 

which the ideal ranks are estimated using a measure of mutual information across the 

obtained components. The selected rank was obtained by selecting the rank number 

for which the calculated joined mutual information no longer highly decreases upon 

increasing rank. The non-negative matrix is then transformed in a transition space 
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using diffusion mapping for which then lineages are calculated. Please see our github 

page Castelo-Branco-lab/GeneFocus for recent code. 

 

Differential expression analysis between MS Lesions and Control 

For differential expression analysis MAST was used34. All oligodendrocyte lineage 

cells were included in the analysis. An FDR of 0.05 was taken, and genes were 

selected with a log fold change of at least 5 to be included in the plot in Fig 4a. 

Proportional expression was calculated by taking the mean expression value of the 

cells, leading to a heavily 0 biased threshold. Cells expressing higher than this 

threshold are considered to be expressing cells, the proportion of expressing cells was 

then calculated on a per gene basis. 

 

Gene ontology analysis 

For the GO analyses, the most significantly differentially expressed genes from the 

snRNA-seq experiment of each OL subcluster were selected (adjusted p-val ≤0.05, 

log fold change ≥0.5). GO and pathway analysis was performed with the ClueGO 

(version 2.5.2) plug-in Cytoscape (version 3.7.0)35 with settings, GO Biological process 

(04.09.2018) and REACTOME pathways (04.09.2018), showing only pathways with p-

val <= 0.05. Default settings and GO fusion were used, for subclusters with more than 

200 significantly regulated genes (OPCs and COPs) a minimum of 7 genes per cluster 

were used, for sublusters less than 50 significantly regulated genes (Oligo4 and 

Oligo2) a minimum of 2 genes per cluster, for all other subclusters, a minimum of 5 

genes per cluster were used. 

 

Immunohistochemistry 

4m FFPE sections were deparaffinized in decreasing EtOH concentrations and 

antigen retrieval was performed in antigen unmasking solution (Vector laboratories, H-

3300) for 10min. For colorimetric labelling, sections were washed in PBS, blocked for 

30min at RT with PBS 0.5% Triton (PBS-T) 10% heat inactivated horse serum (HIHS, 

blocking buffer). Primary antibody incubation was performed overnight a 4°C in 

blocking buffer. Sections were washed in PBS and incubated with a horseradish 

peroxidase (HRP)- or alkaline phosphatase (AP)-labelled secondary antibody 

according to the respective species for 2hrs at RT. Color reaction was performed using 



   

 

22 

 

DAB or VectorBlue reaction kits (Vector laboratories, SK-4100 and SK-5300 

respectively). Sections were washed and mounted. For fluorescent labelling, 

deparaffinized sections were incubated with autofluorescence eliminator reagent 

(Millipore, 2160) for 1min and washed with TBS 0.001% TritonX (wash buffer). 

Endogenous peroxidases were quenched with 3% H2O2 for 15min at RT, washed and 

blocked for 30min at RT with TBS 0.5% Triton (TBS-T) 10% HIHS (blocking buffer 2). 

Primary antibody incubation was performed overnight a 4°C in blocking buffer 2. 

Fluorophore reaction was performed using thyramide reaction kits for fluorescein, 

Cyanine 3 and Cyanine 5 (Perkin Elmer, NEL741B001KT, NEL744B001KT, 

NEL745B001KT respectively). Sections were counterstained using Hoechst (1:1000, 

Thermo Fisher, 62249), washed and mounted. The following primary antibodies were 

used: rabbit (rb)-Olig2 (Atlas, HPA003254, 1:100), goat (gt)-Olig2 (R&D Systems, 

AF2418, 1:100), rb-Olig1 (Abcam, ab68105, 1:100), rb-Mrf (Millipore, ABN45, 1:100),  

rb-Opalin (Abcam, ab121425, 1:100), rb-Sox6(Millipore, AB5805, 1:100) and gt-KLK6 

(Life Technologies, PA547239, 1:100). The specificity of our MRF antibody was 

validated by Western Blot as well as a combination of mRNA and protein-labelling in 

our tissue (Extended Fig. 7). The following secondary antibodies were used: Vector 

laboratories, rb-HRP IgG (MP-7401), rb-AP IgG (MP-5401), gt-HRP (MP-7405), ms-

HRP IgG (MP-7402), ms-AP IgG (MP-5402).  

 

BaseScope mRNA detection 

BaseScope mRNA detection was performed according to the manual using the 

RNAScope pretreatment and wash buffer reagents (ACD, 322380 and 310091 

respectively) and BaseScope Red and BaseScope duplex detection kits (ACD, 322910 

and 3223810, respectively). 4m FFPE sections were deparaffinized 2x 5min in 

Xylene and 2x 2min in EtOH. Sections were dried and incubated with H2O2 for 10min. 

Pretreatment was performed for 45min with pretreatment buffer, incubated for 3min in 

EtOH and dried overnight. Protease treatment was performed using proteaseIV for 1hr 

at 40°C, the protease was refreshed after 15min. Sections were washed in deionized 

water and probes were incubated for 2hrs at 40°C. Sections were washed in wash 

buffer and color reaction was performed according to the user manual with the 

following adjustments: for the single BaseScope detection, the AMP5 step was 

increased to 45min. For the duplex assay the steps Amp7 and Amp11 were increased 
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to 1hr. All the probes have been designed and produced by Advanced Cell 

Diagnostics. Probes against the following human genes were used: Channel 1 probes: 

BREVICAN, CDH20, WWOX, KLK6, CLDND1, OPALIN. Channel2 probes: 

LURAPL1.AS1 and CDH20. For the single assay, subsequent IHC was performed as 

described above. For the duplex assay, sections were counterstained for 1min with 

Hematoxilin (Scientific Laboratories, GHS132-1L) and blue reaction was performed 

using 0.02% ammonia water. Sections were dried at 60°C and mounted. 

 

Image analysis 

Brightfield images have been acquired using a Widefield observer (Zeiss) inverted 

microscope and a Vectra Polaris (Perkin Elmer) slide scanner. Fluorescent images (z-

stacks) have been acquired using a confocal microscope (Leica TCS SP8). Image 

analysis has been performed using open source Fiji36 and QuPath37 imaging software. 

For cell quantification of fluorescent images and brightfield images where no 

automated quantification was possible, a minimum of 8 randomly chosen regions of 

equal dimensions per patient and region have been acquired. Total cell numbers/mm2 

have been calculated based on the picture dimensions. For fluorescent images, z-

stacks have been collapsed to a maximum intensity projection and the number of cells 

has been quantified using the Fiji cell counter plugin. For quantification of the single 

channel brightfield images and the BaseScope IHC double positive images, the 

number of cells also have been quantified using the Fiji cell counter plugin. The 

average of these different regions has been taken and is considered as n=1. Where 

possible, brightfield images have been quantified automated. Therefore, whole slides 

have been scanned using a slide scanner. Using QuPath, a minimum of 4 random 

regions per sample and condition have been annotated and cells within these regions 

have been quantified using the automated ‘positive cell detection’ plugin. 

For the quantification of the duplex BaseScope, random brightfield images have been 

acquired in the WM of Ctr donors. All cells having any positive BaseScope signal have 

been quantified and represent 100% of labelled cells, the % of single- or double 

positive cells have been determined. 

For the quantification of the mRNA-expression differences between MS lesions, whole 

sections were scanned with a slide scanner. Lesioned regions were highlighted by the 

absence of CNP IHC. Within these regions, between 4 and 11 random regions of equal 

size have been annotated using QuPath and the number of BaseScope-positive dots 
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have been quantified. The average of the random regions within 1 lesioned area were 

considered as n=1. 

 

Western Blot 

Fresh frozen human brain sections (10µm) were lysed in RIPA buffer (Thermo 

Scientific 89900), sonicated, centrifuged for 10min at 13,000g and the supernatant 

collected. 10µl of supernatant per lane was diluted in RIPA and Laemmli-buffer and 

incubated for 5min at 96oC. Proteins were separated on an SDS-gel (Bio-Rad #161-

1176) together with a protein ladder (Bio-Rad kaleidoscope standard #161-0375). 

Proteins were blotted on a PVDF membrane in a wet blotting chamber with transfer 

buffer (1xTris-Glycine buffer, 20% MeOH) (2hrs @400mA). Membrane was washed 

with 1x TBS 0.01% Tween (TBS-T) and blocked for 1hr with TBS-T, 5% milk. The 

primary antibody (rb-MRF, Millipore, ABN45, 1:500) was incubated in blocking buffer 

over night at 4oC. The membrane was washed and secondary antibody (anti-rb HRP, 

Vector laboratories MP-7401,1:10,000) was incubated for 1hr at RT in blocking buffer. 

The membrane was washed and incubated for 5min with ECL solution (Thermo 

Scientific 1863031). Proteins were visualized using x-ray film. 

 

Statistics 

Statistical analysis has been performed using GraphPad Prism 7. In Fig.1g n 

represents the number of biologically independent persons. We used n=4 for 

LURAP1L.AS1+CDH20+, n=3 for the other combinations of OL subclass markers. No 

statistics applied. In Fig.3a n represents the number of different (i.e. biologically 

independent) donors. We used n=5 Ctr and n=9 MS patients. Hematoxylin: One-way 

ANOVA, F(2,20)=34.8, p<0.0001, Tukey’s multiple comparison test: Ctr WM vs. 

NAWM: p=0.7445, Ctr WM vs. Lesions: p<0.0001, NAWM vs. Lesions: p<0.0001. 

OLIG2/mm2: One-way ANOVA, F(2,20)=11.3, p=0.0005, Tukey’s multiple comparison 

test: Ctr WM vs. NAWM: p=0.6298, Ctr WM vs. Lesions: p=0.0013, NAWM vs. Lesions: 

p=0.0029. OLIG2%: One-way ANOVA, F(2,20)=3.553, p=0.0478, Tukey’s multiple 

comparison test: Ctr WM vs. NAWM: p=0.9687, Ctr WM vs. Lesions: p=0.1707, NAWM 

vs. Lesions: p=0.0523. In Fig.3b (SOX6) n represents the number of different donors. 

We used n=4 Ctr and n=5 NAWM and lesions. One-way ANOVA, F(2,11)=50.42, 

p<0.0001, Tukey’s multiple comparison test: Ctr WM vs. NAWM: p=0.0032, Ctr WM 

vs. Lesions: p<0.0001, NAWM vs. Lesions: p=0.0003.  For Fig. 3c (OPALIN) we used 
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n=3 for Ctr and n=5 for NAWM and Lesions. One-way ANOVA, F(2,10)=147.9, 

p<0.0001. Tukey’s multiple comparison test: Ctr WM vs. NAWM: p=0.0002, Ctr WM 

vs. Lesions: p<0.0001, NAWM vs. Lesions: p<0.0001. In Fig.4e (CDH20 BaseScope) 

n represents the number of different lesions from separate individuals. We used n=5 

for active lesion, n=7 for chronic inactive lesions and n=3 for chronic active lesions in 

a total of 7 MS patients. One way ANOVA, F(2,12)=5.473, p=0.0205. Tukey’s multiple 

comparison test: Active vs. chronic inactive lesions: p=0.0214, active vs. chronic active 

lesions: p=0.8439, chronic inactive vs. chronic active lesions: p=0.1368. For Extended 

Fig.4b-e we used n=3 different donors to validate the co-labeling of each marker. For 

Extended Fig.4g (OPALIN bins) we used n=3 different donors for each group. One-

way ANOVA, F(2,6)=73.89, p<0.0001. Tukey’s multiple comparison test: Ctr WM vs. 

NAWM: p=0.0007, Ctr WM vs. Lesions: p<0.0001, NAWM vs. Lesions: p=0.0093. In 

Extended Fig. 8a (BCAN) n represents the number of different donors. We used n=4 

Ctr, n=6 NAWM and n=5 Lesions. One-way ANOVA, F(2,12)=38.39, p<0.0001, 

Tukey’s multiple comparison test: Ctr WM vs. NAWM: p<0.0001, Ctr WM vs. Lesions: 

p<0.0001, NAWM vs. Lesions: p=0.0634. In Fig. 8b (KLK6) n represents the number 

of different donors. We used n=4 Ctr and n=5 NAWM and lesions. One-way ANOVA, 

F(2,11)=6.742, p=0.0123. Tukey’s multiple comparison test: Ctr WM vs. NAWM: 

p=0.2150, Ctr WM vs. Lesions: p=0.2621, NAWM vs. Lesions: p=0.0095. In Extended 

Fig.8d (MYRF) n represents the number of different donors. We used n=6 Ctr and 

NAWM and n=7 lesions. One-way ANOVA, F(2,16)=44.63, p<0.0001. Tukey’s multiple 

comparison test: Ctr WM vs. NAWM: p=0.0015, Ctr WM vs. Lesions: p<0.0001, NAWM 

vs. Lesions: p=0.0004. For Extended Fig.9a, the individual number of quantified mRNA 

molecules per field per patient (n=7) are shown. We used the following number of 

fields: MS235: n=10 for A and CI lesions, MS200: n=4 for A, CI and CA lesions, MS249: 

n=4 for A and n=8 for CI lesions, MS361: n=7 for A and n=10 for CI lesions, MS106: 

n=11 for CA and CI lesions, MS161: n=6 for CA and n=10 for CI lesions, MS300: n=7 

for A and n=10 for CI lesions. No statistics applied. For Extended Fig.9b (WWOX) n 

represents the number of different lesions from separate individuals. we used n=2 

active lesions, n=5 chronic inactive lesions and n=4 chronic active lesions in a total of 

5 MS patients. No statistics applied. For Extended Fig.9c, the individual number of 

quantified mRNA molecules per field per patient (n=5) are shown. We used the 

following number of fields: MS245: n=8 for A, n=10 for CI and n=9 for CA lesions, 

MS361: n=6 for A and n=10 for CI lesions, MS101: n=6 for CI and n=11 for CA lesions, 
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MS161: n=10 for CI and n=7 for CA lesions, MS296: n=11 for CA and n=6 for CI 

lesions. No statistics applied. 

 

Code availability 
All source code and notebooks can be found at the github page 

“https://github.com/Castelo-Branco-lab/Jaekel_Agirre_et_al_2018”. 
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