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Neural crest migration with continuous cell states

Linus J. Schumacher1

MCR Centre for Regenerative Medicine, University of Edinburgh

Abstract

Models of cranial neural crest cell migration in cell-induced (or self-generated) gradients have included a

division of labour into leader and follower migratory states, which undergo chemotaxis and contact guidance,

respectively. Despite validated utility of these models through experimental perturbation of migration in the

chick embryo and gene expression analysis showing relevant heterogeneity at the single cell level, an often

raised question has been whether the discrete cell states are necessary, or if a continuum of cell behaviours

offers a functionally equivalent description. Here we argue that this picture is supported by recent single-cell

transcriptome data. Motivated by this, we implement two versions of a continuous-state model: (1) signal

choice and (2) signal combination. We find that the cell population migrates further than in the discrete-

state model and than in experimental observations. We further show that the signal combination model, but

not the signal choice model, can be successfully adjusted to experimentally plausible regimes by reducing the

chemoattractant consumption parameter. Thus we show an equivalently plausible, experimentally motivated,

model of neural crest cell migration.

Keywords: collective behaviour, cell migration, developmental biology

2010 MSC: 92C15

1. Introduction

Neural crest cell migration is a popular example of collective cell behaviour in development. Neural

crest cells migrate over long distances in the vertebrate embryo and contribute to a variety of tissue types.

Understanding their migration is important to identify the causes for birth defects, and they also provide a

model system to study the invasive migration of cancer cells, especially the neural crest derived melanoma5

[1, 2, 3]. Mechanisms of neural crest cell migration have been studied in a variety of model organisms, and

multiple groups have approached the problem with mathematical modelling [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

Previous work has shown that chick cranial neural crest cell migration can be described with discrete

leader-follower states that alternatively undergo chemotaxis or contact-guidance [9, 10], and switch between

the two on a non-zero timescale based on VEGF signals [14]. The utility of this model has been validated10

in a number of ways, such as using the model to predict the outcome of tissue transplantation experiments
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[9, 10, 14], and gene expression analysis [10, 14], including recent single-cell transcriptomics [15]. While

earlier studies identified key differences in the expression of selected genes between neural crest sub-groups,

the advent of single-cell whole transcriptome analysis provides an opportunity to investigate the heterogeneity

of the neural crest subpopulation in a less biased way.15

What has hitherto not been investigated is whether leader-follower cell states need be discrete, or could

lie on a continuum. This question is relevant in light of ongoing debate in the literature about whether

mechanisms of neural crest cell migration are common or distinct in different model organisms [16, 17, 18].

Here theoretical biology, and mathematical modelling in particular, can provide a useful argument, due to

the difficulty of inferring heterogeneity from cell tracking data alone [19]. From a molecular perspective,20

such questions about cellular identity are now just coming within reach of experimental measurement [20],

making this a highly timely topic of enquiry.

Here we address whether chick cranial neural crest cell migration can be described with continuous cell

states equally well as existing models and with experimentally plausible outcomes. We first revisit recently

published single-cell transcriptome data [15] to show that a continuum of cell states is not ruled out by25

the data. We then modify previous models [10, 14] to assess what effect a continuum of cell guidance

behaviours has on the collective migration, providing two alternative implementations of either choosing

between chemotaxis and contact guidance, or combining information from both signals. We find that the

naive implementation of continuous states achieves unrealistic migration outcomes with cells migrating too

far, and explore how the models can be modified to remedy this without sacrificing total cell number. The30

signal combination model can be successfully adjusted by reducing the chemoattractant consumption rate,

thus providing a reasonable alternative (or equivalent) to the model of discrete leader and follower states.

We finish by discussing model robustness and plausible alternative modifications.

2. Results

2.1. Analysis of single-cell transcriptome supports continuum of cell states35

Previous models have shown that migration in a cell-induced gradient can be more successful with fewer

cells in a leader state, suggesting heterogeneity of cell states at the scale of a few or tens of cells, which has

been confirmed with RT-qPCR [10]. Recently published single-cell RNAseq data [15] offers a less biased way

to assess the heterogeneity of gene expression in a cell population, as it measures the whole transcriptome

instead of selected genes. The published analysis of this dataset focussed on the identification of gene-40

signatures based on the pairwise differential expression between groups of cells, such as cells from trailing,

lead, and front portions of the migratory stream [15]. An alternative approach is to explore the data with

the question of whether cell states may be discrete or continuous.

Analysis of single-cell transcriptomes is challenging because many (thousands) genes are sampled while

cell numbers can be as low as a few hundred, particularly when they have to be individually dissected.45

Here we utilise an approach from random matrix theory that discerns how many principal components of a
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data-set can be expected to result from non-random correlations given the size of the data set. A similar

approach has previously been used for single-cell gene expression analysis[21], and recently published as a

software tool [22] to separate out the signal from the noise in the variation of gene expression between cells.

In the neural crest data set [15], we focus on in vivo cells from chick embryo stages HH13&15, were we have50

cells from trailing, lead, and invasive front portions of the stream. We find that 59 dimensions are non-trivial

(Fig. S1), i.e., are expected to contain signal based on the comparison with matrices of random numbers.

The resulting 59-dimensional dataset is mapped to two dimensions using a force-based embedding approach

[23]. Labelling cells according to where in the stream they were sampled from, this exploratory visualisation

of the population structure broadly maintains the order of spatial positions in the stream of trail, lead, front55

(Fig. 1). There is further structure visible in the data, with the possible existence of subgroups comprising

all three sample categories, which we don’t investigate further here. Overall, there is mixing and overlap

between the sample categories of front, lead, and trail, but with a discernible ordering, which supports the

view that cell states may be continuous.

2.2. Model of neural crest cell migration60

Motivated by our exploratory analysis of single-cell RNAseq data, we wanted to investigate what effect

a continuum of leader and follower migratory behaviours would have on the collective migration of neural

crest cells. We built upon the existing model developed by the author and others [9, 10, 14], which we briefly

describe in the following sections 2.2.1 and 2.2.2 before explaining the new extensions to it in sections 2.2.3

and 2.2.4. Readers familiar with our earlier work [10, 14] may wish to skip to these latter sections.65

2.2.1. Cell-induced gradient

The model is a hybrid model with agent-based cell movement and a reaction-diffusion equation for the

chemoattractant (5), solved on a growing domain, with the cells acting as sink-terms, resulting in a cell-

induced [24], or self-generated gradient in the otherwise uniform chemoattractant. This paradigm has also

been studied in zebrafish lateral line migration [25], melanoma dispersal [26], and Dyctiostelium [27]. Here,

the reaction-diffusion equation is of the form

∂c

∂t
= D∇2c− λc

N(t)∑
i=1

δ(x− xi) + χc(1− c), (1)

where c is the chemoattractant concentration, λ the internalisation rate by cells, xi ths position of the ith

cell, and ξ the background production. For details of numerical implementation with tissue-growth see (5).

The initial conditions are spatially uniform chemoattractant, and the boundary conditions are no-flux. The

two-dimensional domain is rectangular with growth in the x-drection, such that (x, y) ∈ [0, Lx(t)]× [0, Ly].70

Domain growth is prescribed by a logistic equation fitted to experimental measurements of tissue growth,

see (4).
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Figure 1: Visualisation of a continuum of neural crest cell states based on gene expression. Single-cell RNAseq data (published

in [15]) from chick cranial neural crest (Hamburger-Hamilton stages 13 and 15, 310 cells in total) taken from distinct locations

in the migratory stream (trail: dark green, lead: light green, invasive front: pale yellow) were projected onto two dimensions for

visualisation using a force-based embedding method [23]. Only the top 59 principal components (out of 14299 genes measured,

12909 after preprocessing for a minimum of 10 transcripts per cell, 10 genes per cell, and 10 cells per gene) were retained prior

to embedding, based on random-matrix analysis [22] (Fig. S1). Note that while the rotation of this embedding is arbitrary, the

ordering of cells in gene expression space is reminiscent of the structure of the migratory stream (with invasive front to trailing

cells here oriented right to left), while also supporting a continuum of cell states.
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2.2.2. Cell movement

Cells enter the domain on one side, obeying volume exclusion, and sample discrete number of directions

(representing filopodia) to look for favourable chemoattractant gradients or contact guidance, depending on75

whether they are in a leader or follower state. For availability of the code, see Section A1.4. Cells can

switch between these discrete states on a non-zero timescale [14], which is controlled by the exposure the

chemoattractant gradient signal over time. This “Integrate-and-Switch” mechanism [14] was introduced to

incorporate the experimentally observed plasticity of cell states (see Section A1.3 for details). However, this

switch was not related to the magnitude of the gradient signal, and further raised the question whether a80

simplified model, without signal integration over time, would suffice. Further modifications of this model

included an inhibitory zone that can slow down cells and hence improve stream cohesion [3], but we have not

used this here. Previous versions of the model have implemented no-flux boundary conditions for the cells

at the edge of the migratory domain. Here we instead adopt reflective boundary conditions that prompt

cells to move away from the boundary, to more accurately represent the inhibitory zones [28, 29] that are85

thought to shape or confine the stream of cells. The change in boundary condition mainly changes the stream

morphology (cells don’t stay very close to the boundary), but do not effect the overall migration profiles (cell

number vs distance migrated). Further methodological detail can be found in the Appendix, Section A1.

2.2.3. Signal choice model

One alternative to discrete cell states that are restricted to make use of either chemotaxis or contact

guidance (Fig. 2A), is that each cell can choose between these two signals (Fig. 2C). This model reflects

the hypothesis that cells can sense both signals, but only act on one or the other at a given time. This

is implemented by a stochastic choice between the two signals, where the probability is given by the cell’s

perceived chemoattractant gradient. For simplicity, we have here chosen a linear relationship Pch = ∆c, where

∆c is the difference in chemoattractant concentration measured between the cell body and its filopodial tip.

This quantity is bounded between 0 and 1, as the chemoattractant concentration in our model is set in

arbitrary units between 0 and 1, effectively normalising with respect to the uniform starting concentration.

The contact guidance signal is thus chosen with a probability of Pcg = 1 − ∆c. Thus a cell’s direction of

movement, ~θ, is given by

~θ =


~θch, Pch = ∆c

~θcg, 1− Pch

(2)

where ~θch is the direction of the (sampled) chemoattractant gradient, and ~θcg is the direction prescribed by90

contact guidance. The signal choice model differs from the ”Integrate-and-Switch” model [14] in that there

is no signal integration over time. Instead of switching between discrete states, all cells are in the same

state and choose their instantaneous actions. The probability used here is proportional to the chemoat-

tractant difference, and this could be easily extended to non-linear relationships or other signals, such as

co-attraction [6, 13].95

5



2.2.4. Signal combination model

A second possibility for continuous states is that each cell combines the directional information from

chemotaxis and contact guidance (Fig. 2E). This reflects the hypothesis that both signals generate a motile

force in the cell’s cytoskeletal machinery, and the cell moves in the resulting overall direction. We implement

this by setting a cell’s direction of movement as a weighted sum of the directions from contact guidance and

chemotaxis, with the weighting determined by the strength of the chemoattractant gradient. For simplicity

we have again chosen a linear weight, such that the overall direction is given by

~θ = ∆c ~θch + (1−∆c)~θcg, (3)

with the individual directions as above, and ∆c again being the difference in chemoattractant concentration

measured between cell body and filopodial tip.

2.3. Continuous states migrate further than discrete states

To compare the original model with its two alternatives, we simulate migration for 18h and visualise the100

result as a histogram of number of cells vs distance migrated (defined as the maximum of the x-coordinates of

all cells). Both the signal choice and signal combination models migrate further than the discrete-state model

(Fig. 2G), and further than is typically observed experimentally. This can be interpreted as the cells having

more directional information to act on and hence being able to migrate in a more directed manner towards

the target zone at the end of the migratory route. We further observed that in these two implementations105

of the continuous-state model, cells stay attached to each other longer (Fig. 2H), whereas previously leaders

would not engage in contact guidance at all, and thus cells would detach when switching from the follower to

the leader state. In the continuous-state models, cells can instead stay attached to their nearby neighbours

throughout migration, even if primarily undergoing chemotaxis. We thus considered two avenues to refine

this initial implementation, by either breaking long-term cell-cell contact or by affecting the gradient sensing.110

2.4. Reducing contact guidance duration reduces cell number and distance migrated

To prevent the unrealistically long filopodia-cell contact times observed in the continuous-state models

(Fig. 2H), we allowed a cell’s filopodia to detach stochastically from the cell it is in contact with, with

probability Pd at every time-step. We then varied the detachment probability to assess whether a reduction

in the distance migrated could be achieved without a large loss in the total cell number, as this represents the115

experimentally plausible scenario in unperturbed in vivo migration. Simulation results show that increasing

the detachment probability in either the signal choice or signal combination models (Fig. 3A) does decrease

the distance migrated, but also rapidly decreases total cell number. Hence, reducing the persistence of

contact guidance is insufficient to make the continuous-state models biologically plausible.
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Figure 2: Comparison of cell migration models with discrete and continuous states. (A) Discrete states [14]: cells switch (at a

non-zero timescale) based on the presence of chemoattractant (CA) gradient. (B) Simulation of model in (A). Yellow cells are

in a chemotaxis/leader state, green cells are followers, grey cells are momentarily without contact guidance. Background colour

shows relative concentration of CA. Red dashed line shows max. distance migrated. (C) Signal choice model: cells choose

between chemotaxis and contact guidance, with a probability related to the strength of the CA gradient. See main text for

details. (D) Simulation of model in (C). (E) Signal combination model: cells combine the directional information from both

chemotaxis and contact guidance, with a weighting depending on the strength of the CA gradient. See main text. (F) Simulation

of model in (E). (G) Average outcomes for all three models at t=18h. (H) Durations of cell contacts during migration for the

three models, calculated from the number of consecutive time-steps a cell is contacting another with a filopodium. Line colours

as in (G). (C,D) n = 20 simulations for the discrete-state model, n = 40 for the choice and combination models.
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Figure 3: Modifications to the continuous-state models can achieve experimentally realistic results. (A) Introducing a detach-

ment probability, Pd, for the filopodial contacts used for contact guidance decreases the maximum distance migrated (defined

as the maximum of the x-coordinates of all cells), but only at the cost of decreasing the total cell number for both the signal

choice model (dashed lines) and the signal combination model (solid lines). (B) Reducing the chemoattractant consumption

rate, λ, to the range of 40-150 (arbitrary units per hour) achieves realistic maximum distances migrated, with only a moderate

reduction in cell number (highlighted by the black rectangle) for the signal combination model (solid lines), but not the signal

choice model (dashed lines). Data shown are averages over 40 simulations for each parameter value, error bars show standard

error of the mean. (C) Representative simulation of the signal combination model for λ = 100 (other parameters as in Table 1).

Background colour shows relative chemoattractant concentration, red dashed line marks max. distance migrated.
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2.5. Shallower cell-induced gradients enable the signal combination model to produce experimentally plausible120

outcomes

We reasoned that affecting the model parameters relating to the chemoattractant may make the cell

migration in the continuous-state models less directed. Reducing the chemoattractant consumption, λ,

of the cells decreases the sink-term in the reaction-diffusion equation, and should hence create shallower

local gradients in the chemoattractant. With lower chemoattractant consumption, the distance migrated125

decreases, as does the total cell number. For the signal combination model, there is an intermediate regime

where the distance migrated is at experimentally observed values, but the total cell number is still high (for

the range λ = 40 − 150, arbitrary units per hour) (Fig. 3B). This was not the case for the signal choice

model. The behaviour is otherwise robust for wide ranges of the experimentally less-constrained parameter

values, chemoattractant diffusivity and background production (Fig. S2A&B), with the exception of very130

high chemoattractant diffusivity in the combination model, which showed low cell numbers.

3. Conclusions

We have revisited the model of chick cranial neural crest migration to address the question whether

leader/follower (chemotaxis/contact guidance) cell migratory states could be continuous rather than dis-

crete (Fig. 2A). This was motivated in part by debates in the field, and in part by the recent availability of135

transcriptome data at single cell resolution. We reanalysed published gene expression data and found that

this can support a continuum of cell states (Fig. 1). Starting from our previous cell migration model, we then

implemented two versions of a continuous-state model, in which cells either choose between directional signals

(Fig. 2C&D) or combine the directional information (Fig. 2E&F). The initial implementations of these mod-

els, without any further modifications, showed the group of cells migrating further into the domain than the140

discrete-state model (Fig. 2G), with the distance migrated overshooting experimentally observed values. By

changing the chemoattractant consumption, a key parameter that determines the cell-induced/self-generated

gradient, we were able to adjust the signal combination model to achieve experimentally observed migration

distances without a drastic reduction in total cell number (Fig. 3B&C).

Reducing the chemoattractant consumption of cells has the effect of shallower cell-induced gradients.145

Leader and follower states have been primarily studied in cell-induced gradients [24, 9, 25, 30] (with the

notable exception of Drosophila border cells [31]). Does reducing the chemoattractant consumption simply

move us closer to a setting where the leader-follower division of labour is not required? If we were in a

regime where each cell has sufficient signal to efficiently undergo chemotaxis on its on, there may be no

benefit in also using contact guidance, thus rendering the collectivity of cell migration obsolete. Our results150

in Fig. 3B&C are not in this regime, as cells are not primarily undergoing chemotaxis alone. Lowering the

steepness of cell-induced gradients by increasing the chemoattractant diffusivity (Fig. S2A) did not have the

same effect, further supporting that the successful adjustment of the continuous-state model is not merely

due to moving away from the self-generated gradient regime.

9



It is possible that other model modifications would have had a similar effect. We could have chosen a155

non-linear relationship for the weighting in combining chemotaxis and contact guidance. Further to this,

one could refine the model by making the chemoattractant consumption proportional to a cells “leaderness”,

based on the experimental observation that VEGF receptor expression is higher in cells at the invasive

front [10, 15]. Based on our assessment presented here, the stochastic choice model is less plausible than

the combination model. The role of stochasticity has also been investigated in other aspects of neural crest160

migration, such as colonisation of the gut [32, 33, 12] and pigmentation patterning [11], and one could further

explore the role of noise in contact guidance, for example by adding angular noise to the directional signal

sensed, which we would expect to reduce the persistence of migration. Extending the model to 3D could

also reduce the distance moved in the primary direction of migration, as more of the movement would be

along the other two dimensions. A mathematically more challenging prospect for further work is to derive165

appropriate continuum equations, in which cells move in physical space as well as in cell state space. While

we can readily conceive of other versions of a continuous-state model that may be realistic presentations

of the neural crest migration, our work shows at least one such example, and that continuous-state models

ought to be taken into account.

Our results point to avenues for future experimental quantification, which in turn would further constrain170

the models. The comparison with experimental data in these models has been largely semi-quantitative due

to the limitations in reliably quantifying relevant statistics such as total cell number and distance migrated

in the chick model system. Distance migrated is not absolutely quantified experimentally, due to embryo-to-

embryo size variation, and a missing consensus on what to measure as a start-point. Further difficulties arise

due to the incomplete labelling efficiency of electroporated fluorescent markers. The time over which cell-cell175

contacts mediating contact guidance persist has not been quantified across the whole migratory population,

but observations on individual pairs of cells [34] indicate that the long-term contacts we observed in the

continuous-state models seem unrealistic.

Alternatives to the chemotaxis and contact guidance paradigm have been put forward in related work.

Contact-inhibition of locomotion has been studied as a mechanism enabling collective migration both in180

computational models and in Xenopus embryos [6], but this has not been observed in chick cranial neural

crest [18]. Another alternative to contact guidance would be pulling of followers by leader cells [35], and vice

versa, which would improve overall stream cohesion. Preliminary simulations in which cells require sufficient

neighbours to move show that this can also reduce migration (Fig. S2C). This would be a purely contact-based

mechanism distinct from theories of collective chemotaxis, in which cells communicate their chemoattractant185

measurements with each other to arrive at an improved consensus [36]. This form of collective chemotaxis, to

our knowledge, has not been explored in neural crest cell migration. To assess the robustness of mechanisms

proposed here (and alternative models) beyond the sensitivity analysis of individual parameters done here

(Fig. 3&S2), future work could adopt a Bayesian parameter inference approach, as has been done for other

models of collective cell migration [37].190
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In conclusion, we have shown that a model of chick cranial neural crest migration can work with continuous

cell states. This suggests our previous model [10, 14, 3] with discrete states may be an approximation of

continuous-state models. Whether continuous states make the mechanism simpler or more complex depends

on one’s perspective. With this work, we have provided a small step towards unifying competing views in the

literature [16], and hope that others will follow suit. It remains an open question whether apparently distinct195

mechanisms that have been observed by different groups actually lie on different points of a continuum, and

we believe generalising our mathematical models can help answer this. A similar model-based approach

to investigate discrete vs continuous states could be applied beyond neural crest cell migration, such as

development of the lateral line [30] and asymmetry in the brain [38] in zebrafish, Drosophila border cells

[31], and in collective migration of organisms. This study has considered collective cell migration, but the200

question of whether cell states are best described as discrete or continuous arises in many other biological

problems. Analogous modelling frameworks could help to investigate the effect of continuous cell states in

stem cell quiescence [39], proliferation [40, 41], and differentiation [42, 43].
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Appendix

Table 1: Model parameters

Parameter values listed were used as a default, unless otherwise stated, e.g., in the parameter sweeps of Fig.

3 & S2. The chemoattractant concentration is implemented in relative units, such that the starting value

c0 = 1.

Description Value Reference

nfilo directions sampled per time-step 2 n/a, Section A1.5.1

∆t simulation time-step 1 min n/a

R cell radius (nuclear) 7.5µm [44]

vlead cell speed (leader cells) 41.6µm/h [45]

vfollow cell speed (follower cells) 49.9µm/h [45]

Ly height of domain 120µm [9]

Lx length of domain (grows, Eq. (4)) 300 to 1100µm [9]

lfilo sensing radius 27.5µm Section A1.5.1

lmax
filo max. separation of cells in contact 45µm Section A1.5.1

D diffusivity of chemoattractant 0.1 µm2/h Section A1.5.1

χ production rate of chemoattractant 10−4 t/h Section A1.5.1

λ chemoattractant internalisation rate 103 µm2/h Section A1.5.1

kin rate at which cells enter the domain 10/h Section A1.5.1

ζ sensing accuracy 0.1 Section A1.2
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A1. Methods

Here we describe the model for neural crest cell migration with discrete leader-follower states, as used

in [10, 14, 3]. For the continuous-state models, everything applies as stated here, apart from the choice of

direction of movement, which is described in the main text.210

A1.1. Chemoattractant reaction-diffusion on a growing domain

Equations for tissue growth and reaction-diffusion of the chemoattractant were used as previously de-

scribed [10, 14, 3, Supplementary Information], and are reproduced below.

A1.1.1. Domain growth

Tissue growth was modelled as uniform, with the length of the migratory domain at any time between

t = 0 and t = 24 hours given by the logistic equation

Lx(t) = L0

(
L∞e

a(t−ts)L∞

L∞ − 1 + ea(t−ts)L∞
+ 1− L∞e

a(−ts)L∞

L∞ − 1 + ea(−ts)L∞

)
, (4)

with parameters L0 = 300µm, a = 0.08h−1µm−1, ts = 16 hours, L∞ = 870, determined by least-squares215

fitting to experimental domain length measurements [9].

A1.1.2. Chemoattractant reaction-diffusion

To model the change in chemoattractant concentration on a growing domain with (x, y) ∈ [0, Lx(t)] ×
[0, Ly], we rescale the growing domain to a stationary domain of unit length in x. To maintain numerical

accuracy as the effective lattice spacing increases due to the rescaling, we use a solver with automatic

grid refinement (d03ra from the Numerical Algorithms Group (NAG)), as was done in previous work [9].

Omitting the explicit time dependence of Lx, the change of chemoattractant concentration at a point (x, y) ∈
[0, 1]× [0, Ly] of the stationary domain is given by the RDE

∂c

∂t
= D

(
1

L2
x

∂2c

∂x2
+
∂2c

∂y2

)
− c

N(t)∑
i=1

λ

2πR2
exp

[
−L

2
x(x− xi)2 + (y − yi)2

2R2

]
+ χc(1− c)− L̇x

Lx
c, (5)

where the terms on the right-hand side describe diffusion, internalisation, production and dilution (by tissue

growth, the dot denoting time derivative), respectively. Scaling factors of Lx are introduced by rescaling to

a stationary domain to solve numerically on a grid of unit length [9]. Parameter names and values are given220

in Table 1.

A1.2. Sensing accuracy

The sensing accuracy of cells is based on [46], which we briefly outline here before commenting on

parameterisation. For a more detailed derivation, see the original work [46]. The fundamental limit in

the accuracy of concentration measurements is due to fluctuations in the numbers of molecules measured.225

Fluctuations in particle number, N , are proportional to
√
N . To proceed with the derivation, consider a
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sensor counting N molecules in a volume V with background (or average) concentration c̄. The inaccuracy

in a single concentration measurement is

∆c

c̄
≈ 1√

N
=

1√
V c̄

, (6)

in three dimensions, or 1/
√
Ac̄ in two dimensions, where A is the measurement area. The count of molecules

can be improved by repeated measurements. A sensor counting molecules in a volume can make n =

TD/V 2/3 independent measurements in a time T , based on the timescale of a molecule diffusing through

the measurement volume V . This improves the (root mean square) measurement error by 1/
√
n [46]. Thus,

with V ∼ R3, the measurement uncertainty reduces to

∆c

c̄
≈ 1√

DT c̄R
=: ζ, (7)

in three dimensions, or ∆c/c̄ ≈ 1/
√
DT c̄ in two dimensions. Here we have introduced the dimensionless

parameter ζ, which depends on the background concentration, c. To account for the dynamically changing230

background concentration, we explicitly scale ζ in simulations by the current relative concentration, i.e.,√
c0/c, where c0 is the starting background concentration (see Section A1.4). The exact derivation of the

sensing accuracy introduces a numerical factor of order unity, but since we can only parameterise the sensing

accuracy to orders of magnitude (see Section A1.5.2), we ignore this.

A1.3. Integrate & switch mechanism235

In the previous models [14, 3] a variable that records for how long each cell has been exposed to the

presence of a chemoattractant. This variable increases at a fixed rate when a chemoattractant gradient

above the sensing accuracy threshold is sensed, and decreases otherwise at another fixed rate, like a decaying

memory. These rates are inversely proportional to the parameters ‘leader-to-follower switching time’, τLF,

and ‘follower-to-leader switching time’, τFL, respectively. Thus, this variable effectively integrates the time240

spent in a chemoattractant gradient (with a decaying “memory”), though this could be easily modified to

instead record the magnitude of the gradient or absolute value of the concentration.

Once the net time spent in a chemoattractant gradient (with time in the absence of an increasing gradient

counting negatively) reaches a threshold, follower cells switch state to adopt leader behaviour, i.e., begin

to undergo chemotaxis. Once cells are in a leader state and remain in a positive chemotaxis gradient, they245

do not increase their signal sensed further, that is, they do not become further entrained to stay in leader

state, which would increase the time taken to switch back to a follower state in the absence of the gradient.

Similarly, the intracellular signal decays with time spent in the absence of a positive gradient, until it becomes

low enough for cells to switch to a follower state, and then does not decrease further (unless a gradient is

found again). As a consequence, cells that have just switched state cannot switch back immediately, as long250

as the directional signal is lost/gained on timescales shorter than the switching time.
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A1.4. Model code

For model simulations, this code was implemented in Mathwork’s Matlab, and the chemoattractant

profile was solved using the Numerical Algorithms Group’s (NAG) d03ra, as previously described [9, 10, 14].

The code is available here: https://github.com/ljschumacher/NCCmigration255

A1.5. Notes on parameterisation

See Table 1 for values of parameters used in model simulations, and below for explanations of selected

parameters.

A1.5.1. Notes and further references

Experimental time. Cell migration is assumed to start approximately six hours after electroporation (t = 0).260

Directions sampled per time-step, nfilo. This cannot be directly related to the number of filopodia, which

are greater in number, but sample at a lower speed [9].

Sensing radius, lfilo. This was calculated as the sum of the cell radius (7.5µm) and the mean filopodial

length (which was directly measured from the cell body to be 9µm and estimated from total cell size to be

circa 20µm). Since we have only implemented contact between filopodium and cell body, but not between265

two filopodia, which may not occur in vivo [34], we allow for a greater effective length.

Maximum cell separation before contact is lost, lmax
filo . The maximum cell size including filopodia was mea-

sured to be 86.3µm, half of which gives an estimate of maximum cell separation of 43.15µm. Independent

measurements of filopodial lengths gave a maximum of 30.4µm (from the cell body), which, together with

the cell radius R = 7.5µm and the average filopodial length (allowing for interfilopodial contact) of 9µm,270

gives an estimate of 46.5µm.

Diffusion coefficient of chemoattractant, D. The primary identified chemoattractant in chick cranial neural

crest migration is VEGF165 [47]. Its related isoform VEGF164 is known to bind to ECM, and studies in an-

giogenesis estimate as little as 1% may be freely diffusing, the rest bound to ECM and cellular receptors [48].

Hence, we choose a low effective diffusivity. For freely diffusing VEGF in vivo, angiogenesis modelling studies275

have used much higher values of 105 µm2/h [48, 49]. However, with diffusivities of that order of magnitude

our model simulations still give qualitatively similar results.

Production rate of chemottractant, χ. In other tissues, VEGF production, or estimates thereof, range from

0.01-0.20 molecules/cell/s [50], or 4.39-5.27·10−5 molecules/µm−2/s [51] to 0.25 · 10−17 pmol/µm2/s[48]. In

our system, the rate of VEGF production is unknown and difficult to measure. However, it is outweighed280

by internalisation through migrating neural crest cells, as VEGF is not seen to be replenished in trailing

portions of the stream [47]. Thus, we assume χ to be low.
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Chemoattractant internalisation rate, λ. To our knowledge, no estimates or measurements of VEGF internal-

isation rate of chick cranial neural crest exist. Angiogenesis studies have used values of kVEGFR2 = O(10−4)/s

per receptor [52, 50]. [46] estimate the number of receptors needed for a near-optimal sensing accuracy as285

NR = R/s, where R is the cell radius and s the receptor size. With s = O(nm), we can estimate the

near-optimal number of receptors to be NR ≥ 104. If receptor internalisation rates are comparable to other

tissues, a lower bound for the total internalisation rate would be given by kVEGFR2NR ≥ 1/s (per cell). From

this we estimate the chemoattractant consumption, as defined in (5), to be λ ≥ O(103)µm2/h. However, the

concentration of VEGF in our system is unknown, and hence the units of c, and therefore λ, in our model290

are arbitrary. We assume a high λ to ensure quick consumption of chemoattractant by cells.

Rate at which cells enter the domain, kin. This is the rate of attempted cell insertions, and not the effective

rate seen in vivo. In a typical simulation, on the order of 10% of insertions are unsuccessful. Greater values

of the insertion rate thus result in equal or only slightly increased cell numbers. It should be noted here

again that our simulations are a two-dimensional abstraction of the three-dimensional migratory stream,295

which may contain 4-5 times as many cells in vivo in the transverse (z) direction. Thus, cell numbers in

(unperturbed) simulations are approximately correct for a section of the migratory stream, to within the

accuracy that total cell numbers are known in vivo.

A1.5.2. Parameterisation of the sensing accuracy

Most of the variables upon which the sensing accuracy depends are underdetermined in the case of chick300

cranial neural crest migration, such as VEGF diffusivity, D, VEGF background concentration, c̄, and the

sensing time, T . Nevertheless, we can proceed to estimate order of magnitudes, which can serve as bounds

for our model simulations.

Background concentration, C̄. The concentration of VEGF used in in vitro experiments is 1µg/ml [47],

which, at a molecular weight of 19.2 kDa ≈ 20kg/mol, leads us to estimate c̄ ≈ 3 · 107/µm3 (50mM).305

Sensing time, T . The time-step of our simulations is ∆t = 1 minute, and we assume that a cell takes

up only a fraction of this time with sensing, and most of it with movement. We could therefore estimate

T ≤ 0.1·∆t = 0.1 minutes. If we relax our assumptions, this estimate might change by an order of magnitude.

This would only change the sensing accuracy by a factor of roughly 1/3, which gives qualitatively similar

results in typical model simulations.310

Lower bounds on gradient measurement accuracy. For the measurement of a gradient, i.e., the difference

between two concentration measurements, the Berg-Purcell limit (7) increases by a factor of
√

2.With the

estimates for c̄ and T as above, and the parameter values D = 0.1µm2/h and R = 7.5µm (Table 1), we

obtain an estimate of the sensing accuracy (7) of ζd=3 ≈ 0.002 in three dimensions, or ζd=2 ≈ 0.01 in two

dimensions. These can be taken as a lower bound for the (order of magnitude of) sensing accuracy of neural315
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crest cells in our model. Note that the sensing accuracy rescales with changing background concentration,

which has to be taken care of in the computational implementation (see Section A1.4).
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Figure S1: Distribution of eigenvalues of the cross-correlation matrix as calculated by the “randomly” software package [22] for

the single-cell RNAseq data from [15]. Bigger eigenvalues correspond to principal components that explain more variance of the

data. Random matrix theory predicts that the eigenvalues of the cross-correlation matrix of a set of independent identically

distributed random variables are distributed according to the Marchenko-Pastur law. Hence, a certain amount of correlation

in a data-set is to be expected under the null model of independence, here shown in red, and only principal components with

large enough eigenvalues are treated as signal (here, the top 59 eigenvalues).
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Figure S2: Further analysis of the continuous states model, showing total number of cells and maximum distance migrated

after 18h of migration (defined as the maximum of the x-coordinates of all cells), varying (A) the chemoattractant diffusivity,

D (µm/h), (B) the background chemoattractant production, χ (arbitrary units per hour), and (C) introducing a neighbour

requirement, such that cells only move in a directed manner if they have at least n neighbours within filopodial reach. Data

shown are averages over 40 repeated simulations for each parameter value.
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