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SPEAKER-INDEPENDENT CLASSIFICATION OF PHONETIC SEGMENTS
FROM RAW ULTRASOUND IN CHILD SPEECH

Manuel Sam Ribeiro, Aciel Eshky, Korin Richmond, Steve Renals

The Centre for Speech Technology Research, University of Edinburgh, UK

ABSTRACT

Ultrasound tongue imaging (UTI) provides a convenient way to
visualize the vocal tract during speech production. UTI is increas-
ingly being used for speech therapy, making it important to develop
automatic methods to assist various time-consuming manual tasks
currently performed by speech therapists. A key challenge is to
generalize the automatic processing of ultrasound tongue images to
previously unseen speakers. In this work, we investigate the classi-
fication of phonetic segments (tongue shapes) from raw ultrasound
recordings under several training scenarios: speaker-dependent,
multi-speaker, speaker-independent, and speaker-adapted. We ob-
serve that models underperform when applied to data from speakers
not seen at training time. However, when provided with minimal
additional speaker information, such as the mean ultrasound frame,
the models generalize better to unseen speakers.

Index Terms— ultrasound, ultrasound tongue imaging, speaker-
independent, speech therapy, child speech

1. INTRODUCTION

Ultrasound tongue imaging (UTI) uses standard medical ultrasound
to visualize the tongue surface during speech production. It pro-
vides a non-invasive, clinically safe, and increasingly inexpensive
method to visualize the vocal tract. Articulatory visual biofeedback
of the speech production process, using UTI, can be valuable for
speech therapy [1, 2, 3] or language learning [4, 5]. Ultrasound vi-
sual biofeedback combines auditory information with visual infor-
mation of the tongue position, allowing users, for example, to cor-
rect inaccurate articulations in real-time during therapy or learning.
In the context of speech therapy, automatic processing of ultrasound
images was used for tongue contour extraction [6] and the animation
of a tongue model [7].

More broadly, speech recognition and synthesis from articula-
tory signals [8] captured using UTI can be used with silent speech
interfaces in order to help restore spoken communication for users
with speech or motor impairments, or to allow silent spoken com-
munication in situations where audible speech is undesirable [9, 10,
11, 12, 13]. Similarly, ultrasound images of the tongue have been
used for direct estimation of acoustic parameters for speech synthe-
sis [14, 15, 16].

Speech and language therapists (SLTs) have found UTI to be
very useful in speech therapy. In this work we explore the automatic
processing of ultrasound tongue images in order to assist SLTs, who
currently largely rely on manual processing when using articulatory
imaging in speech therapy. One task that could assist SLTs is the
automatic classification of tongue shapes from raw ultrasound. This
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can facilitate the diagnosis and treatment of speech sound disorders,
by allowing SLTs to automatically identify incorrect articulations,
or by quantifying patient progress in therapy. In addition to be-
ing directly useful for speech therapy, the classification of tongue
shapes enables further understanding of phonetic variability in ultra-
sound tongue images. Much of the previous work in this area has
focused on speaker-dependent models. In this work we investigate
how automatic processing of ultrasound tongue imaging is affected
by speaker variation, and how severe degradations in performance
can be avoided when applying systems to data from previously un-
seen speakers through the use of speaker adaptation and speaker nor-
malization approaches.

Below, we present the main challenges associated with the au-
tomatic processing of ultrasound data, together with a review of
speaker-independent models applied to UTI. Following this, we
present the experiments that we have performed (Section 2), and
discuss the results obtained (Section 3). Finally we propose some
future work and conclude the paper (Sections 4 and 5).

1.1. Ultrasound Tongue Imaging

There are several challenges associated with the automatic process-
ing of ultrasound tongue images.

Image quality and limitations. UTI output tends to be noisy,
with unrelated high-contrast edges, speckle noise, or interruptions
of the tongue surface [17, 18]. Additionally, the oral cavity is not
entirely visible from the image, missing the lips, the palate, or the
pharyngeal wall.

Inter-speaker variation. Age and physiology may affect the
output, with children imaging better than adults due to more mois-
ture in the mouth and less tissue fat [17]. However, dry mouths lead
to poor imaging, which might occur in speech therapy if a child
is nervous during a session. Similarly, the vocal tracts of children
across different ages may be more variable than those of adults.

Probe placement. Articulators that are orthogonal to the ultra-
sound beam direction image well, while those at an angle tend to
image poorly. Incorrect or variable probe placement during record-
ings may lead to high variability between otherwise similar tongue
shapes. This may be controlled using helmets [19], although it is
unreasonable to expect the speaker to remain still throughout the
recording session, especially if working with children. Therefore,
probe displacement should be expected to be a factor in image qual-
ity and consistency.

Limited data. Although ultrasound imaging is becoming less
expensive to acquire, there is still a lack of large publicly available
databases to evaluate automatic processing methods. The UltraSuite
Repository [20], which we use in this work, helps alleviate this issue,
but it still does not compare to standard speech recognition or image
classification databases, which contain hundreds of hours of speech
or millions of images.

http://www.ultrax-speech.org
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Fig. 1. Ultrasound samples for the four output classes based on place of articulation. The top row contains samples from speaker 12 (male,
aged six), and the bottom row from speaker 13 (female, aged eleven). All samples show a midsaggital view of the oral cavity with the tip of
the tongue facing right. Each sample is the mid-point frame of a phone uttered in an aCa context (e.g. apa, ata, ara, aka). See the UltraSuite
repository2 for details on interpreting ultrasound tongue images.

1.2. Related Work

Earlier work concerned with speech recognition from ultrasound
data has mostly been focused on speaker-dependent systems [21,
22, 23, 24]. An exception is the work of Xu et al. [25], which in-
vestigates the classification of tongue gestures from ultrasound data
using convolutional neural networks. Some results are presented for
a speaker-independent system, although the investigation is limited
to two speakers generalizing to a third. Fabre et al [6] present a
method for automatic tongue contour extraction from ultrasound
data. The system is evaluated in a speaker-independent way by
training on data from eight speakers and evaluating on a single held
out speaker. In both of these studies, a large drop in accuracy was
observed when using speaker-independent systems in comparison to
speaker-dependent systems. Our investigation differs from previous
work in that we focus on child speech while using a larger number
of speakers (58 children). Additionally, we use cross-validation to
evaluate the performance of speaker-independent systems across all
speakers, rather than using a small held out subset.

2. EXPERIMENTAL SETUP

2.1. Ultrasound Data

We use the Ultrax Typically Developing dataset (UXTD) from the
publicly available UltraSuite repository1[20]. This dataset contains
synchronized acoustic and ultrasound data from 58 typically devel-
oping children, aged 5-12 years old (31 female, 27 male). The data
was aligned at the phone-level, according to the methods described
in [20, 26]. For this work, we discarded the acoustic data and fo-
cused only on the B-Mode ultrasound images capturing a midsaggi-
tal view of the tongue. The data was recorded using an Ultrasonix
SonixRP machine using Articulate Assistant Advanced (AAA) soft-
ware at ∼121fps with a 135◦ field of view. A single ultrasound frame
consists of 412 echo returns from each of the 63 scan lines (63x412
raw frames). For this work, we only use UXTD type A (semantically
unrelated words, such as pack, tap, peak, tea, oak, toe) and type B
(non-words designed to elicit the articulation of target phones, such
as apa, eepee, opo) utterances.

1http://www.ultrax-speech.org/ultrasuite

2.2. Data Selection

For this investigation, we define a simplified phonetic segment clas-
sification task. We determine four classes corresponding to distinct
places of articulation. The first consists of bilabial and labiodental
phones (e.g. /p, b, v, f, . . . / ). The second class includes dental, alve-
olar, and postalveolar phones (e.g. /th, d, t, z, s, sh, . . . / ). The third
class consists of velar phones (e.g. /k, g, . . . / ). Finally, the fourth
class consists of alveolar approximant /r/. Figure 1 shows examples
of the four classes for two speakers.

For each speaker, we divide all available utterances into disjoint
train, development, and test sets. Using the force-aligned phone
boundaries, we extract the mid-phone frame for each example across
the four classes, which leads to a data imbalance. Therefore, for all
utterances in the training set, we randomly sample additional exam-
ples within a window of 5 frames around the center phone, to at least
50 training examples per class per speaker. It is not always possible
to reach the target of 50 examples, however, if no more data is avail-
able to sample from. This process gives a total of ∼10700 training
examples with roughly 2000 to 3000 examples per class, with each
speaker having an average of 185 examples. Because the amount of
data varies per speaker, we compute a “sampling score”, which de-
notes the proportion of sampled examples to the speaker’s total train-
ing examples. We expect speakers with high sampling scores (less
unique data overall) to underperform when compared with speakers
with more varied training examples.

2.3. Preprocessing and Model Architectures

For each system, we normalize the training data to zero mean and
unit variance. Due to the high dimensionality of the data (63x412
samples per frame), we have opted to investigate two preprocessing
techniques: principal components analysis (PCA, often called eigen-
tongues in this context) and a 2-dimensional discrete cosine trans-
form (DCT). In this paper, Raw input denotes the mean-variance
normalized raw ultrasound frame. PCA applies principal compo-
nents analysis to the normalized training data and preserves the top
1000 components. DCT applies the 2D DCT to the normalized raw
ultrasound frame and the upper left 40x40 submatrix (1600 coeffi-
cients) is flattened and used as input.

http://www.ultrax-speech.org/ultrasuite


Fig. 2. Ultrasound mean image for speaker 12 (top row) and speaker
13 (bottom row). Means on the left column are taken over the train-
ing data, while means on the right are taken over the test data.

The first type of classifier we evaluate in this work are feedfor-
ward neural networks (DNNs) consisting of 3 hidden layers, each
with 512 rectified linear units (ReLUs) with a softmax activation
function. The networks are optimized for 40 epochs with a mini-
batch of 32 samples using stochastic gradient descent. Based on
preliminary experiments on the validation set, hyperparameters such
learning rate, decay rate, and L2 weight vary depending on the input
format (Raw, PCA, or DCT). Generally, Raw inputs work better with
smaller learning rates and heavier regularization to prevent overfit-
ting to the high-dimensional data. As a second classifier to evaluate,
we use convolutional neural networks (CNNs) with 2 convolutional
and max pooling layers, followed by 2 fully-connected ReLU layers
with 512 nodes. The convolutional layers use 16 filters, 8x8 and 4x4
kernels respectively, and rectified units. The fully-connected layers
use dropout with a drop probability of 0.2. Because CNN systems
take longer to converge, they are optimized over 200 epochs. For
all systems, at the end of every epoch, the model is evaluated on the
development set, and the best model across all epochs is kept.

2.4. Training Scenarios and Speaker Means

We train speaker-dependent systems separately for each speaker,
using all of their training data (an average of 185 examples per
speaker). These systems use less data overall than the remaining
systems, although we still expect them to perform well, as the data
matches in terms of speaker characteristics. Realistically, such sys-
tems would not be viable, as it would be unreasonable to collect
large amounts of data for every child who is undergoing speech
therapy. We further evaluate all trained systems in a multi-speaker
scenario. In this configuration, the speaker sets for training, develop-
ment, and testing are equal. That is, we evaluate on speakers that we
have seen at training time, although on different utterances. A more
realistic configuration is a speaker-independent scenario, which
assumes that the speaker set available for training and development
is disjoint from the speaker set used at test time. This scenario is im-
plemented by leave-one-out cross-validation. Finally, we investigate
a speaker adaptation scenario, where training data for the target
speaker becomes available. This scenario is realistic, for example,
if after a session, the therapist were to annotate a small number of
training examples. In this work, we use the held-out training data to
finetune a pretrained speaker-independent system for an additional
6 epochs in the DNN systems and 20 epochs for the CNN systems.

DNN Raw DNN PCA DNN DCT CNN Raw

Dependent 62.15% 57.78% 68.38% 66.56%
Multi-speaker 69.62% 66.30% 71.91% 74.70%
Independent 54.15% 55.14% 55.36% 59.42%

Adapted 69.26% 68.37% 67.76% 72.67%

with speaker mean

Multi-speaker 71.61% 67.71% 72.28% 74.81%
Independent 60.52% 55.76% 60.19% 67.00%

Adapted 70.31% 68.02% 69.41% 71.30%

Table 1. Phonetic segment accuracy for the four training scenarios.

We use all available training data across all training scenarios, and
we investigate the effect of the number of samples on one of the top
performing systems.

This work is primarily concerned with generalizing to unseen
speakers. Therefore, we investigate a method to provide models
with speaker-specific inputs. A simple approach is to use the speaker
mean, which is the pixel-wise mean of all raw frames associated with
a given speaker, illustrated in Figure 2. The mean frame might cap-
ture an overall area of tongue activity, average out noise, and com-
pensate for probe placement differences across speakers. Speaker
means are computed after mean variance normalization. For PCA-
based systems, matrix decomposition is applied on the matrix of
speaker means for the training data with 50 components being kept,
while the 2D DCT is applied normally to each mean frame. In the
DNN systems, the speaker mean is appended to the input vector. In
the CNN system, the raw speaker mean is given to the network as
a second channel. All model configurations are similar to those de-
scribed earlier, except for the DNN using Raw input. Earlier experi-
ments have shown that a larger number of parameters are needed for
good generalization with a large number of inputs, so we use layers
of 1024 nodes rather than 512.

3. RESULTS AND DISCUSSION

Results for all systems are presented in Table 1. When comparing
preprocessing methods, we observe that PCA underperforms when
compared with the 2 dimensional DCT or with the raw input. DCT-
based systems achieve good results when compared with similar
model architectures, especially when using smaller amounts of data
as in the speaker-dependent scenario. When compared with raw in-
put DNNs, the DCT-based systems likely benefit from the reduced
dimensionality. In this case, lower dimensional inputs allow the
model to generalize better and the truncation of the DCT matrix
helps remove noise from the images. Compared with PCA-based
systems, it is hypothesized the observed improvements are likely due
to the DCT’s ability to encode the 2-D structure of the image, which
is ignored by PCA. However, the DNN-DCT system does not out-
perform a CNN with raw input, ranking last across adapted systems.

When comparing training scenarios, as expected, speaker-
independent systems underperform, which illustrates the difficulty
involved in the generalization to unseen speakers. Multi-speaker
systems outperform the corresponding speaker-dependent systems,
which shows the usefulness of learning from a larger database,
even if variable across speakers. Adapted systems improve over
the dependent systems, except when using DCT. It is unclear why
DCT-based systems underperform when adapting pre-trained mod-
els. Figure 3 shows the effect of the size of the adaptation data when
finetuning a pre-trained speaker-independent system. As expected,
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Fig. 3. Accuracy scores for adapted CNN Raw, varying amount of
adaptation examples. We separately restrict training and develop-
ment data to either n or all examples, whichever is smallest.

the more data is available, the better that system performs. It is
observed that, for the CNN system, with roughly 50 samples, the
model outperforms a similar speaker-dependent system with roughly
three times more examples.

Speaker means improve results across all scenarios. It is partic-
ularly useful for speaker-independent systems. The ability to gener-
alize to unseen speakers is clear in the CNN system. Using the mean
as a second channel in the convolutional network has the advantage
of relating each pixel to its corresponding speaker mean value, al-
lowing the model to better generalize to unseen speakers.

Figure 4 shows pair-wise scatterplots for the CNN system.
Training scenarios are compared in terms of the effect on individual
speakers. It is observed, for example, that the performance of a
speaker-adapted system is similar to a multi-speaker system, with
most speakers clustered around the identity line (bottom left sub-
plot). Figure 4 also illustrates the variability across speakers for each
of the training scenarios. The classification task is easier for some
speakers than others. In an attempt to understand this variability, we
can look at correlation between accuracy scores and various speaker
details. For the CNN systems, we have found some correlation
(Pearson’s product-moment correlation) between accuracy and age
for the dependent (r = 0.26), multi-speaker (r = 0.40), and adapted
(r = 0.34) systems. A very small correlation (r = 0.15) was found
for the independent system. Similarly, some correlation was found
between accuracy and sampling score (r = −0.32) for the depen-
dent system, but not for the remaining scenarios. No correlation was
found between accuracy and gender (point biserial correlation).

4. FUTURE WORK

There are various possible extensions for this work. For example,
using all frames assigned to a phone, rather than using only the mid-
dle frame. Recurrent architectures are natural candidates for such
systems. Additionally, if using these techniques for speech therapy,
the audio signal will be available. An extension of these analyses
should not be limited to the ultrasound signal, but instead evaluate
whether audio and ultrasound can be complementary. Further work
should aim to extend the four classes to more a fine-grained place
of articulation, possibly based on phonological processes. Similarly,
investigating which classes lead to classification errors might help
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Fig. 4. Pair-wise scatterplots for the CNN system without speaker
mean. Each sample is a speaker with axes representing accuracy
under a training scenario. Percentages in top left and bottom right
corners indicate amount of speakers above or below the dashed iden-
tity line, respectively. Speaker accuracies are compared after being
rounded to two decimal places.

explain some of the observed results. Although we have looked at
variables such as age, gender, or amount of data to explain speaker
variation, there may be additional factors involved, such as the gen-
eral quality of the ultrasound image. Image quality could be affected
by probe placement, dry mouths, or other factors. Automatically
identifying or measuring such cases could be beneficial for speech
therapy, for example, by signalling the therapist that the data being
collected is sub-optimal.

5. CONCLUSION

In this paper, we have investigated speaker-independent models for
the classification of phonetic segments from raw ultrasound data.
We have shown that the performance of the models heavily degrades
when evaluated on data from unseen speakers. This is a result of the
variability in ultrasound images, mostly due to differences across
speakers, but also due to shifts in probe placement. Using the mean
of all ultrasound frames for a new speaker improves the generaliza-
tion of the models to unseen data, especially when using convolu-
tional neural networks. We have also shown that adapting a pre-
trained speaker-independent system using as few as 50 ultrasound
frames can outperform a corresponding speaker-dependent system.
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Csapó, and Alexandra Markó, “F0 estimation for DNN-based
ultrasound silent speech interfaces,” in Proc. ICASSP. IEEE,
2018.

[17] Maureen Stone, “A guide to analysing tongue motion from
ultrasound images,” Clinical linguistics & phonetics, vol. 19,
no. 6-7, pp. 455–501, 2005.

[18] Min Li, Chandra Kambhamettu, and Maureen Stone, “Auto-
matic contour tracking in ultrasound images,” Clinical linguis-
tics & phonetics, vol. 19, no. 6-7, pp. 545–554, 2005.

[19] Lorenzo Spreafico, Michael Pucher, and Anna Matosova, “Ul-
trafit: A speaker-friendly headset for ultrasound recordings in
speech science,” Proc. Interspeech, pp. 1517–1520, September
2018.

[20] Aciel Eshky, Manuel Sam Ribeiro, Joanne Cleland, Korin
Richmond, Zoe Roxburgh, James M Scobbie, and Alan A
Wrench, “Ultrasuite: a repository of ultrasound and acoustic
data from child speech therapy sessions,” in Proc. Interspeech,
September 2018.

[21] Thomas Hueber, Gérard Chollet, Bruce Denby, Gérard Drey-
fus, and Maureen Stone, “Continuous-speech phone recogni-
tion from ultrasound and optical images of the tongue and lips,”
in Proc. Interspeech, 2007.

[22] Licheng Liu, Yan Ji, Hongcui Wang, and Bruce Denby, “Com-
parison of DCT and autoencoder-based features for DNN-
HMM multimodal silent speech recognition,” in 10th Inter-
national Symposium on Chinese Spoken Language Processing
(ISCSLP). IEEE, 2016, pp. 1–5.

[23] Eric Tatulli and Thomas Hueber, “Feature extraction using
multimodal convolutional neural networks for visual speech
recognition,” in Proc. ICASSP. IEEE, 2017, pp. 2971–2975.

[24] Yan Ji, Licheng Liu, Hongcui Wang, Zhilei Liu, Zhibin Niu,
and Bruce Denby, “Updating the silent speech challenge
benchmark with deep learning,” Speech Communication, vol.
98, pp. 42–50, 2018.

[25] Kele Xu, Pierre Roussel, Tamás Gábor Csapó, and Bruce
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