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Abstract 

Lean body mass (LM), consisting mostly of skeletal muscle, plays an important role in mobility 

and metabolic function. In a previous large scale study we identified five loci associated with 

LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify 

genetic signals having an association with both lean mass and fat mass.  

To identify additional LM loci and to be able to determine the impact of different fat mass 

adjustments, we performed genome-wide association analyses for whole body LM (in 20 cohorts 

of European ancestry with n=38,292) measured using DXA or bioelectrical impedance analysis, 

adjusted for sex, age, age
2
 and height with or without different fat mass adjustments (Model 1 no 

adjustment for fat mass;  Model 2 adjustment for fat mass as a percent of body mass; Model 3 

adjustment for fat mass in kilograms). Seven SNPs in/near separate loci, including one novel LM 

locus (TNRC6B), were successfully replicated in 47,227 individuals from 27 cohorts. The lean 

mass increasing allele of the identified genetic variant in the TNRC6B locus was also robustly 

associated with increased hand grip strength. 

Based on the strengths of the associations in Model 1 vs Model 3 we divided the LM loci into 

those with an effect on both lean mass and fat mass in the same direction and refer to those as 

“sumo wrestler” loci (FTO and MC4R).  In contrast, those loci with an impact specifically on 

lean mass were termed “body builder” loci (VCAN and ADAMTSL3). When evaluated in existing 

available GWAS databases, LM increasing alleles of SNPs in sumo wrestler loci were associated 
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with an adverse metabolic profile while LM increasing alleles of SNPs in”body builder” loci 

were associated with metabolic protection.  

In conclusion, we identified one novel LM locus (TNRC6B); our results suggest that genetically 

determined increase in lean mass might exert either harmful or protective effects on metabolic 

traits, depending on its relation to fat mass.  

 

keywords:  body composition, skeletal muscle, body fat, meta-analysis of genome wide 

association studies, metabolic profile 

 

 

ABBREVIATIONS: 

BIA - bioelectrical impedance analysis 

BMD - bone mineral density  

DXA – Dual energy X-ray absorptiometry  

EQTL - expression quantitative trait loci  

FDR  - false discovery rate  

GWS - genome-wide significant 

KASP - KBioScience Allele-Specific Polymorphism SNP genotyping system 

LD - linkage disequilibrium 

LM - Lean body mass 

MAF - minor allele frequency 

Q-Q - quantile–quantile (plots) 

sGWS  - suggestive genome-wide significance  
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Introduction  

Lean body mass (LM), consisting mostly of skeletal muscle, plays an important role in mobility 

and metabolic function. It is well established that high fat mass results in insulin resistance, 

increased risk of Type 2 diabetes and dyslipidemia. Observational studies indicate that lean mass 

adjusted for weight or fat mass is inversely associated with insulin resistance and metabolic 

abnormalities.
[1]

 However, the causal effects of lean mass on metabolic traits are unclear. 

Adipocytes and myocytes share common mesenchymal ancestry
[2]

 and factors (genetic and/or 

environmental) stimulating the development of mesenchymal stem cells towards the myocyte 

lineage instead of the adipocyte lineage may lead to more favorable body composition.  

In a recent large scale study we identified five loci associated with LM adjusted for fat mass in 

kilograms.
[3]

  In that study we were primarily interested in genes contributing to lean mass 

independent of those regulating fat mass.
[3]

  Because lean mass is positively correlated with fat 

mass and may even be stimulated to increase by the mechanical demands of carrying more fat 

mass, our previous results adjusted for fat mass in the statistical models. A potential limitation of 

this strategy of adjusting for fat mass is that the ability to identify genetic signals with an impact 

on both lean and fat mass will be reduced. Nevertheless, the FTO signal was found to be 

significantly associated with lean mass after fat adjustment and the direction of this association 

was the same as the association with fat mass found in other studies.
[4]

  To be less restrictive in 

our quest to identify additional lean mass loci and to gain more insight into the lean-fat mass 

relationship and its health consequences, in this study we performed different statistical models 

with either no fat adjustment at all, or with one of two fat adjustment models: fat as a percentage 

of body mass, or fat in absolute kilograms. 
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For identified lean mass SNPs, we also aimed to evaluate the associations with a variety of 

musculoskeletal and metabolic traits. Finally, we aimed to explore if the associations with 

musculoskeletal and metabolic parameters differed for significant loci identified in models 

without fat mass adjustment compared with those having the strongest association in models 

with fat mass adjustment.  
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METHODS 

Study summary: We performed a genome-wide association study meta-analysis on whole body 

lean mass in a set of discovery cohorts (Stage I), then meta-analyzed the discovery SNPs in 

replication cohorts (Stage II), followed by a combined analysis with discovery and replication 

cohorts. The total sample size for the combined analysis was 85,519 individuals of European 

ancestry from 47 studies.  

 

Study Population  

 The Stage I Discovery sample comprised 38,292 individuals of European ancestry drawn 

from 20 cohorts with a variety of epidemiological designs and participant characteristics 

(Supplementary Table S1 and Supplementary Note 1). Whole body lean mass was measured 

using DXA (10 cohorts, n=21,074) and BIA (10 cohorts, n=17,218).  Of the 20 cohorts, 15 

consisted of males and females, while 2 had males and 3 had females only. In total, the cohorts 

included 22,705 women and 15,587 men.   

Twenty-nine additional studies were used for replication with a total sample size of 

47,227 subjects of European ancestry.  The Stage II, Replication included cohorts with either 

existing GWAS data that were unavailable at the time of the Stage I Discovery, or cohorts 

without GWAS data who agreed to undergo de novo genotyping.  Because some of the 

replication cohorts performed de novo genotyping, there were fewer data points for SNPs that 

were newly genotyped compared to SNPs that were imputed from already available GWAS 

studies.  All studies were approved by their institutional ethics review committees and all 

participants provided written informed consent. 

 

Lean Mass Measurements  

Lean mass was measured in all cohorts using either DXA or BIA.  DXA provides a three 

compartment body composition assessment based on specific x-ray attenuation properties: bone 

mineral, lipid (triglycerides, phospholipid membranes, etc.) and lipid-free soft tissue.  Each pixel 

on the DXA scan is quantitatively partitioned into these three tissue types.  For the cohorts with 
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DXA measures, the phenotype used for these analyses was the lipid-free, soft tissue 

compartment that is referred to as lean mass, and is the sum of body water, protein, glycerol and 

soft tissue mineral mass. Two lean mass phenotypes were used: whole body lean mass and 

appendicular lean mass.  The latter was obtained by DXA while considering only pixels in the 

arms and legs collectively, which has been demonstrated to be a valid measure of skeletal muscle 

mass.
[5]

  Some of the cohorts estimated body composition using BIA, which has been detailed in 

our previous work.
[3]

  For BIA cohorts with specific resistance and reactance measures, we used 

the validated equation from Kyle et al. with an R
2
 of 0.95 between BIA and DXA to calculate the 

appendicular lean mass.
[6]

 

 

STAGE 1:   GENOME-WIDE ASSOCIATION ANALYSES IN DISCOVERY COHORTS 

Genotyping and Imputation: Genome-wide genotyping was done in each study on a variety of 

platforms following standard manufacturer protocols.  Quality control was performed 

independently for each study.  To facilitate meta-analysis, each group performed genotype 

imputation with IMPUTE
[7]

 or MACH
[8]

 software using HapMap Phase II release 22 reference 

panels (CEU or CHB/JPT as appropriate). Overall imputation quality scores for each SNP were 

obtained from IMPUTE (“proper_info”) or MACH (“rsq_hat”). Details on the genotyping 

platform used, genotype quality control procedures and software for imputation employed for 

each study are presented in Supplementary Table S2. Because the project started prior to the 

creation of denser imputation panels, only Hap Map II based imputation was available. 

 

Study-specific genome-wide association analyses with lean mass and different lean mass models: 

Details about study-specific genome-wide association analyses and meta-analyses have been 

described previously.
[3]

 Briefly, in each study, a multiple linear regression model with additive 

genetic effect was applied to test for phenotype-genotype associations using ~2.0 to 2.5 million 

genotyped and/or imputed autosomal SNPs. Because lean mass is correlated with fat mass and 

height, we pre-specified three models of adjustment: model 1: adjustment for sex, age, age
2
, 

height; model 2: adjustment for sex, age, age
2
, height, percent fat mass; model 3: adjustment for 

sex, age, age
2
, height, fat mass in kilograms. Other covariates adjusted in the model included 
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ancestral genetic background using principal components and, when appropriate, study specific 

covariates such as clinical center for multi-center cohorts. For family-based cohorts, including 

the Framingham Study, ERF, UK-Twins, Old Order Amish Study and the Indiana cohort, 

familial relatedness was taken into account in the statistical analysis.
[3]

 

 

Meta-analyses: Meta-analyses were conducted using the METAL package 

(www.sph.umich.edu/csg/abecasis/metal/). We used the inverse variance weighting and fixed 

effect model approach.  Prior to meta-analysis, we filtered out SNPs with low minor allele 

frequency, MAF (< 1%) and poor imputation quality (proper_info < 0.4 for IMPUTE and 

rsq_hat < 0.3) and applied genomic control correction where the genomic control parameter 

lambda (λGC ) was > 1.0.   

We used quantile–quantile
 
(Q-Q) plots of observed versus expected –log10 (p-value) to examine 

the genome wide distribution of p-values, Manhattan plots to report genome-wide p-

values, regional plots for genomic regions within 100Kb of top hits, and forest plots for meta-

analyses and study-specific results of the most significant SNP associations. For all three models, 

a threshold of p < 5 x 10
-8 

was pre-specified as being genome-wide significant (GWS), while a 

threshold of p < 2.3 x 10
-6

 was used to select SNPs for a replication study (suggestive genome-

wide significant – sGWS).   

 

STAGE 2:  REPLICATION  

In each GWS or sGWS locus, we selected the lead SNP with the lowest p-value for replication.  

In addition, GWS or sGWS SNPs that had low linkage disequilibrium (LD) with the lead SNPs 

(r
2
 < 0.5) were also selected for replication.  Both in-silico replication and de-novo genotyping 

for replication was conducted.  In-silico replication was done in 24 cohorts with GWAS SNP 

genotyping that did not have data available at the time of the initial discovery efforts 

(Supplementary Table S3).  De-novo replication genotyping was done using KBioScience Allele-

Specific Polymorphism (KASP) SNP genotyping system (in OPRA, PEAK25, AGES, CAIFOS, 

DOPS cohorts), TaqMan (METSIM), Illumina OmniExpress + Illumina Metabochip (PIVUS 

and ULSAM), or Sequenom's iPLEX (WHI) (Supplementary Table S4). Samples and SNPs that 

did not meet the quality control criteria defined by each individual study were excluded. 

http://www.sph.umich.edu/csg/abecasis/metal/
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Minimum genotyping quality control criteria were defined as: SNP call rate > 90% and Hardy-

Weinberg equilibrium p > 1x10
-4

.    

 

META-ANALYSIS OF REPLICATION AND DISCOVERY STUDIES 

In the replication stage, we meta-analyzed results from individuals of European descent only. A 

successful replication was considered if the association p-value in the cumulative-meta-analysis 

was GWS and less than the discovery meta-analysis p-value. Using the METAL package we also 

estimated I
2
 to quantify heterogeneity and p-values to assess statistical significance for a total of 

12 associations (three SNPs from model 1, four from model 2 and five from model 3) that were 

replicated in the cumulative-meta-analysis. Appendicular lean mass was available in a subsample 

of those with whole body lean mass (n=70,690 from 38 studies) and models 1-3 for appendicular 

lean mass were evaluated for the replicated GWS associations from the whole body lean mass 

analyses. 

 

ANNOTATION AND ENRICHMENT ANALYSIS OF REGULATORY ELEMENTS   

We predicted the function of coding variants by PolyPhen-2. For all replicated variants, we 

annotated potential regulatory functions based on experimental epigenetic evidence including 

DNase hypersensitive sites, histone modifications, and transcription factor binding sites in 

human cell lines and tissues from the ENCODE Project and the Epigenetic Roadmap Project. We 

first selected SNPs in high LD (r
2
 ≥ 0.8) with GWAS lead SNPs based on the approach of 

Trynka, et al.
[9]

 We then identified potential enhancers and promoters in the GWAS loci (GWAS 

SNPs and SNPs in LD with the GWAS SNPs) across 127 healthy human tissues/normal cell 

lines available in the ENCODE Project and the Epigenetic Roadmap Project from the HaploReg4 

web browser
[10]

 predicted by ChromHMM.
[11]

 To evaluate if replicated GWAS loci were 

enriched with regulatory elements in skeletal muscle tissue, we performed a hypergeometric test. 

Specifically we tested whether estimated tissue-specific promoters and enhancers in a GWAS 

locus were enriched in 8 relevant skeletal muscle tissues/cell lines vs. enrichment in non-skeletal 

muscle tissues (119 tissues/cell lines). The permutation with minimum p-value approach was 

performed to correct for multiple testing. Permutation p-values < 0.05 were considered 

statistically significant. In addition, we also performed enrichment analyses in smooth muscle 
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tissues/cells, fat tissue, brain, blood cells and gastrointestinal tract tissues. The 8 skeletal muscle 

relevant tissues/cells were excluded when conducting enrichment analyses for other tissue types. 

The detailed information for tissue types and chromatin state estimation is described in the 

Supplementary Materials (Suppl. Note 2). 

     

CIS-EXPRESSION QUANTITATIVE TRAIT LOCI (EQTL)  

We looked up cis-eQTL information from GTEx data on the 7 replicated GWS loci, 

SNPs rs2943656, rs9991501, rs2287926, rs4842924, rs9936385, rs10871777 and rs 733381 with 

gene expression within 2Mb of the SNP position. Multiple testing was corrected by using false 

discovery rate (FDR q value < 0.05) to account for all pairs of SNP-gene expression analyses in 

multiple tissues. 

 

Look-ups of replicated SNPs in GWAS of metabolic and musculoskeletal traits 

For the seven replicated lean mass SNPs, we performed look-ups of relevant metabolic and 

musculoskeletal traits using available results from published GWAS meta-analyses. The 

metabolic and musculoskeletal traits evaluated included  percent fat 
[12]

, BMI 
[4]

, coronary artery 

disease 
[13]

, type 2 diabetes 
[14]

, HOMA insulin resistance 
[15]

, triglycerides 
[16]

, total cholesterol 

[16]
, LDL cholesterol 

[16]
, HDL cholesterol 

[16]
, hand grip strength [17, 18], bone mineral density 

(BMD)
[19]

 and fractures (manuscript). (CITE ABSTRACT OF FX GWAS OR TIMING MIGHT 

BE OK FOR THE FRACTURE PAPER TO BE ACCEPTED AT BMJ)  We will keep this in the 

paper but revisit according to how the timing works out and if other fx paper authors are ok with 

this.)  

 

Genetic correlation in LD score regression 

We applied LD score regression to estimate genetic correlations across several muscle-related 

traits from summary-level data of publicly available GWAS. We used LD Hub
[20]

,  which is a 

centralized database of summary-level GWAS results for hundreds of diseases/traits from 

multiple consortia and online resources, as well as a web interface that automates the LD score 

regression analysis pipeline 
[21]

. According to Bulik-Sullivan, et al. 
[22]

, the genetic correlation for 
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a set of SNPs S is calculated as rS (y1 ,y2 ):=ρ S (y1 ,y2 ) /                      , where ρS  is 

genetic covariance among SNPs in S, y1 and y2 denote phenotypes, and h 
2
S, the heritability 

explained by SNPs in S.  
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Results 

 

GWAS META-ANALYSES FOR DISCOVERY AND REPLICATION  

Descriptions and characteristics of the study populations in the discovery stage and the 

replication stage are shown in Supplementary Table S1, S5, and Supplementary note 1. The age 

of the participants ranged from 18 to 100 years. In the GWAS discovery set, comprising 38,292 

participants for whole body lean mass, a substantial excess of low p-values compared to the null 

distribution was observed after genomic control adjustment of the individual studies prior to 

meta-analysis: λGC = 1.078 λGC =1.075and  λGC =1.076, for Model 1 (not adjusted for fat masss), 

Model 2 (adjusted for fat %) and Model 3 (adjusted for fat mass in kg), respectively (Figure S1A-

C).  

Tables 1A-C show the genome-wide significant (GWS) and suggestive (sGWS) results for the 

three models in the discovery set (see also Fig. S2. In Model 1, we observed three independent 

GWS results (in/near FTO, MC4R and CALCR) and four sGWS results (in/near HSD17B11, 

GMPPA, CMTM8 and C10orf39; Table 1A; Fig S2A). In Model 2, we observed three 

independent GWS results (in/near HSD17B11, FTO and CALCR) and 10 sGWS results (in/near 

MC4R, TNRC6B, RHOC, GMPPA, NUDT3, AKR1B1, ANGPT2, ZBTB16, ADAMTSL3, SMG6; 

Table 1B; Fig S2B). 

Data for Model 3 have already been presented in a previous publication
[3]

 but for comparison we 

display it in Table 1C.  To reiterate, in Model 3, we observed one independent GWS result 

in/near HSD17B11 and 10 sGWS results (in/near IRS1, VCAN, ADAMTSL3, FTO, RHOC, 

PRR16, FRK, AKR1B1, CALCR, KLF12; Table 1C; Fig S2C). 

We selected all GWS and sGWS associations for all three models (Tables 1A, 1B, 1C) to 

conduct a replication study in a set of 27 cohorts comprising up to 47,227 participants of 

European descent. Due to limited resources, five of the sGWS signals were evaluated only in the 

cohorts available for in-silico replication (Tables 1A, 1B, 1C).  
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The upper parts of each panel in Tables 1A-C show the results for successfully replicated SNPs 

(defined as combined p-value <5x10
-8

 and lower than discovery P-values) in participants, who 

were part of the discovery phase, replication phase, and the combined results. For Model 1, 

combined analysis of the discovery and replication cohorts successfully replicated 3 SNPs 

in/near HSD17B11, FTO and MC4R (P-values between 1.6x10
-8

 and 1.8 x 10
-30

). For Model 2, 

the same 3 SNPs as reported for Model 1 were successfully replicated and in addition one SNP 

in/near TNRC6B was also successfully replicated (P-values between 7.3x10
-10

 and 2.4 x 10
-20

). 

For Model 3, combined analysis of the discovery and replication cohorts successfully replicated 

5 SNPs in/near IRS1, HSD17B11, VCAN, ADAMTSL3 and FTO (P-values between 1.4x10
-8

 and 

1.5 x 10
-11

;  Results of Model 3 SNPs have been previously reported 
[3]

 but are shown here for 

comparison (Table 1C).  

None of the 12 replicated associations (three for Model 1, four for model 2 and five for model 3) 

had significant heterogeneity at α=0.0042 (0.05/12, Bonferroni corrected for 12 tests). Only mild 

heterogeneity was indicated for the SNP in/near FTO in all three models (Model 1, I
2
=38%,; 

Model 2, I
2
=33%; Model 3, I

2
=33%; Tables 1A, 1B, 1C). 

In total 7 SNPs in independent loci (in/near IRS1, HSD17B11, VCAN, ADAMTSL3, FTO, MC4R 

and TNRC6B) were sucessfully replicated in any of the three models and the results for these 7 

SNPs in the three different models for whole body lean mass are given in Table 2. The seven 

SNPs were nominally (p<0.05) significant in all three models except for the SNP in/near IRS1, 

which was not associated with lean mass unadjusted for fat mass in model 1. Very similar 

associations were observed when these 7 SNPs were evaluated for their associations with 

appendicular lean mass available in up to 70,690 subjects of European descent (Suppl. Table S6).    

 

The impact of fat mass adjustment for lean mass loci - “sumo wrestler loci and body builder 

loci”  

In general the results from Model 1 and Model 3 differed most from each other while the 

associations for Model 2 were intermediate. Therefore, in the studies evaluating the impact of fat 

mass adjustment for lean mass loci, we mainly compared the results between Model 1 and Model 

3. Six of the seven loci (FTO, MC4R, TNRC6B, HSD17B11, VCAN and ADAMTSL3) had an 
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impact both on the absolute amount of lean mass (Model 1) and the amount of lean mass 

adjusted for fat mass (Model 3). However, the strengths of the associations in Model 1 vs Model 

3 varied substantially. The FTO and MC4R  signals had high Model 1/Model 3 ratios of Beta 

values for the association with lean mass (M1/M3 ratio 222-234%), demonstrating that the 

strengths of the associations were reduced after fat mass adjustment. This suggests that these two 

loci have an impact on both lean mass and fat mass in the same direction and this is also 

supported by the fact that they are associated with BMI and fat mass in the same direction as 

with lean mass (Table 3, Suppl. Table S7). As the alleles of the FTO and MC4R signals that were 

associated with greater lean mass also were associated with increased fat mass we named them 

“sumo wrestler” loci (Table 3; Suppl. Table S7).  

In contrast, there were two lean mass loci that had a low Model 1/Model 3 ratio of Beta values 

for the association with lean mass (M1/M3 ratio 64-67%), including the VCAN and ADAMTSL3 

loci. For these loci the lean mass associations were stronger after adjustment for fat mass. This 

means that these two loci have a substantial impact specifically on lean mass with associations in 

the opposite direction or no association with fat mass (Table 3, Suppl. Table S7). As the alleles 

of the VCAN and ADAMTSL3 loci that were associated with greater lean mass were associated 

with slightly reduced fat mass, we named them “body builder” loci. The TNRC6B and 

HSD17B11 loci had intermediate Model 1/Model 3 ratios of Beta values for the association with 

lean mass (M1/M3 ratio 120-125%), suggesting that their impact on lean mass did not appear to 

be influenced by fat mass, so we called them “intermediate” loci (Table 3; Suppl. Table S7). 

The signal in/near IRS1 was not associated with lean mass without adjustment for fat mass.  As 

shown in Tables 3 and S7, the lean mass increasing allele in/near IRS1 was associated with lower 

fat mass. This association with lower fat mass may indirectly make the association with fat mass 

adjusted lean mass to be significant in the opposite direction. It is indeed a locus with an impact 

on the ratio between lean and fat mass but with no significant association with the absolute 

amount of lean mass when the effect of fat mass is not taken into account. The lean mass 

increasing allele was associated with reduced BMI and fat mass (Table 3, Suppl. Table S7), 

suggesting that its inverse association with fat mass is dominant for its effect on BMI, which is 

influenced by both lean mass and fat mass. We, therefore, named the IRS locus a “fat-mediated 
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lean mass” locus as it primarily appears to impact the amount of fat mass (Table 3; Suppl. Table 

S7). 

 

Metabolic associations for lean mass increasing alleles  

We next evaluated the associations with metabolic traits for the seven replicated lean mass SNPs,  

using available results from GWAS-meta-analyses of these traits (Table 3; Suppl. Table S7). The 

lean mass increasing alleles of SNPs in/near the two sumo wrestler loci (FTO and MC4R) were 

in general associated with an adverse metabolic profile both regarding carbohydrate 

metabolism (higher fasting insulin, higher HOMA-IR and increased risk of diabetes mellitus) 

and lipid metabolism (higher serum triglycerides and lower HDL cholesterol; Table 3; Suppl. 

Table S7). In addition, the lean mass increasing allele of the SNP in/near FTO was associated 

with increased risk of coronary artery disease (Table 3). In contrast, the lean mass increasing 

alleles of the SNPs in the two body builder loci (VCAN and ADAMTSL3) were in general 

associated with some metabolic protection both regarding carbohydrate metabolism (lower 

fasting insulin or reduced risk of diabetes mellitus) and lipid metabolism (lower serum 

triglycerides or higher HDL cholesterol; Table 3 presents general direction of associations; 

Suppl. Table S7 actual beta coefficients). The lean mass signals in the intermediate lean mass 

loci (TNRC6B and HSD17B11), not influenced by fat mass adjustment, did not have any major 

impact on metabolic traits.  

As reported previously 
[23]

, the lean mass increasing allele of the SNP in the fat-mediated lean 

mass locus IRS1 was associated with an adverse metabolic profile (Table 3; Suppl. Table S7).  

 

Musculoskeletal associations of lean mass increasing alleles  

We also evaluated the associations between the seven replicated lean mass SNPs and 

musculoskeletal traits. Importantly, the lean mass increasing alleles of the SNPs in/near TNRC6B 

and in/near ADAMTSL3 were robustly associated with higher hand grip strength (Table 4, Table 

S8). In general the associations with the other musculoskeletal traits (Table 4 and Suppl. Table 

S8) were less pronounced compared with the associations with metabolic traits (Table 3 and 

Suppl. Table S7) and no general pattern for the signals in the sumo wrestler loci vs. the signals in 

the body builder loci was observed for the musculoskeletal traits (Table 4; Suppl. Table S8). 
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Surprisingly the lean mass increasing allele of the SNP in/near TNRC6B was associated with 

lower lumbar spine BMD and increased risk of fractures.  

 

Genetic correlations with lean mass by LD score regression  

We next determined the genetic correlations between lean mass phenotypes and a variety of 

parameters with a focus on metabolic and musculoskeletal phenotypes using LD score regression 

(Table 5).  Obesity traits, including both extreme phenotypes, such as childhood obesity and 

extreme BMI, and quantitative traits, such as BMI and waist-to-hip ratio, demonstrated strong 

positive genetic correlation with lean mass in the model not adjusted for fat mass (Model 1) and 

as expected these genetic correlations were attenuated after fat mass adjustment (Model 2 and 

Model 3; Table 5).  

For all carbohydrate metabolism related traits (type 2 diabetes mellitus, fasting glucose,  fasting 

insulin, fasting proinsulin, HbA1C and HOMA-IR) positive genetic correlations with lean mass 

in Model 1 were observed.  All these correlations were attenuated after fat mass adjustment in 

Models 2 and 3.  

When lipid metabolism related traits were evaluated in lean mass Model 1, a positive genetic 

correlation was observed for serum triglycerides and negative genetic correlations were observed 

for total cholesterol and HDL cholesterol (Table 5). The significant genetic correlation with 

triglycerides was lost in lean mass Model 3 adjusted for fat mass in kg. Although the genetic 

correlations with HDL cholesterol was attenuated after fat mass adjustment (Model 3), the 

correlation was still significant.   

There was a modest positive genetic correlation between BMD parameters and lean mass in all 

three models while the genetic correlation with grip strength, a proxy for muscle function, was 

observed in Model 3 but not in Model 1 (Table 5).   

Age at menarche and age at menopause can be regarded as indicators of lifetime sex steroid 

exposure. Age at menarche but not age at menopause displayed negative genetic correlations 

with lean mass in all three models although most pronounced in Model 1 (Table 5).  
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Annotation and enrichment analysis of regulatory elements 

In the enrichment analysis of tissue-specific regulatory elements using experimental epigenetic 

evidence (DNase hypersensitive sites, histone modifications, and transcription factor-binding 

sites in human cell lines and tissues from the ENCODE Project and the Epigenetic Roadmap 

Project), SNPs in the TNR6CB locus were significantly enriched in these regulatory elements in 

blood cells, but not in muscle or other selected tissues after multiple testing correction (Suppl. 

Table S9). There was no significant tissue specific enrichment of regulatory elements for the 

MC4R locus. The enrichment results for the other loci have previously been presented.
[3]

 

 

Expression quantitative trait loci 

No significant association was found between rs733381 and TNRC6B gene expression in the 

skeletal muscle tissue (p=0.13, N=491) fom GTEx data; although individuals with homozygosity 

of minor allele G appear to have relatively lower TNRC6B gene expression in the skeletal muscle 

tissue. We also looked at eQTLs of rs733381 in other tissues from GTEx data, but none of the 

associations achieved statistical significance after multiple testing correction. MC4R gene 

expression is not detectable in the skeletal muscle tissue, whole blood and many other tissue 

types, except for brain tissues, esophagus and testis from GTEx data. Among those tissues with 

detectable MC4R gene expression, the smallest p-value between rs10871777 and MC4R gene 

expression was found in the frontal cortex brain tissue (p=0.017, N=118). However, no statistical 

significance was found after multiple testing correction. The eQTL results for the other loci have 

previously been presented.
[3]
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Discussion 

Body weight consists of lean mass (LM), fat mass and bone mass, each with substantial heritable 

components and each playing important roles in physical function and metabolism. Since LM is 

correlated with fat mass, it is difficult to identify genetic determinants specific for LM. In 

addition, this makes it challenging to determine the metabolic health consequences of LM 

independent of fat mass. In the present study, we performed large scale GWAS for LM without 

or with different fat mass adjustments and we identified genetic variants in seven separate loci, 

including one novel locus (TNRC6B), associated with LM. Based on the relative strengths of the 

associations in models without and with fat adjustments we divided the LM loci that we 

identified into those with an effect on both LM and fat mass in the same direction (named sumo 

wrestler loci) and those with an impact specifically on LM (named body builder loci). LM 

increasing alleles of SNPs in Sumo wrestler loci were associated with an adverse metabolic 

profile while LM increasing alleles of SNPs in body builder loci were associated with metabolic 

protection.  

The 7 SNPs that were were reproducibly associated with LM in any of the three models used 

were in independent loci (in/near IRS1, HSD17B11, VCAN, ADAMTSL3, FTO, MC4R and 

TNRC6B). Five of these SNPs (in/near IRS1, HSD17B11, VCAN, ADAMTSL3 and FTO) were 

identified in the model adjusted for fat mass in kilograms and the results from this model have 

been previously reported
[3]

. However, in the present study, we could determine how the strengths 

of the LM associations for these five SNPs were affected in different models without or with fat 

mass adjustement, enabling us to divide them into Sumo wrestler loci or body builder loci.  

A genetic variant in the MC4R locus was in the present study GWS associated with LM in the 

model not adjusted for fat mass while the association was weaker in the model adjusted for fat 

mass in kilograms, and consequently this locus was categorized as a Sumo wrestler locus. The 

MC4R locus has not previously been identified as a LM locus in a GWAS on LM. However, in a 

GWAS on fat mass, the MC4R locus was found to be associated with not only fat mass but also 

in secondary analyses with LM in the same direction.
[24]

 These findings indicate that the MC4R 

locus has a pleiotropic effect, regulating both fat mass and lean mass in the same direction. 



 
 

42 
 

Importantly, the TNRC6B (Trinucleotide Repeat Containing 6B) locus was in the present study 

identified as a novel LM locus and comparison of the strengths of the associations in the 

different models of fat mass adjustments demonstrated that its LM association was only 

modestly affected by different fat mass adjustments. TNRC6B is a protein coding gene in 

pathways related to cellular senescence, innate or adaptive immune system, Wnt signaling, and 

calcium modulating pathways (GO:0007223). In addition to the LM, BMI, HDL, grip strength, 

LS-BMD, and fracture associations presented here, other GWAS have reported the TNRC6B 

locus GWS associated with a “chronotype” (defined as “Morningness” or “Eveningness”) 

phenotype
[25]

, uterine fibroids
[26]

, and mammographic density
[27]

. Understanding the mechanisms 

by which TNRC6B variants relate to body composition and this multitude of phenotypes may be 

useful for mitigating a wide range of aging and disease states. 

.  

The LM increasing allele of SNPs in the Sumo wrestler loci (FTO and MC4R) were associated 

with higher fasting insulin, higher HOMA-IR, increased risk of diabetes mellitus, higher serum 

triglycerides and lower HDL cholesterol. In addition, the LM increasing allele of the SNP in the 

FTO locus was associated with inceased risk of coronary artery disease. Thus, genetically 

determined increase in LM by genetic variants in Sumo wrestler loci is clearly associated with an 

adverse metabolic profile. In contrast, the LM increasing alleles of SNPs in the body builder loci 

(VCAN and ADAMTSL3) were in general associated with a beneficial metabolic profile both 

regarding carbohydrate metabolism (lower fasting insulin or reduced risk of diabetes mellitus) 

and lipid metabolism lipid metabolism (lower serum triglycerides or higher HDL cholesterol). 

The intermediate loci (TNRC6B and HSD17B11) were not associated with a clear metabolic 

profile. These findings suggest that a genetically determined higher LM per se without affecting 

fat mass has favorable metabolic effects while a genetically determined higher LM that is 

associated with a higher fat mass as well has adverse metabolic consequences. Alternatively the 

described associations with metabolic traits could be explained by pleiotropic effects of the 

respective genes. 

 

While we could divide the SNPs that we found associated with LM in the different models into 

categories based on a relation with LM and fat mass or LM only, we found that the SNP in IRS1 

behaved differently from the other genes. The LM increasing allele in/near IRS1 was associated 

http://pathcards.genecards.org/card/cellular_senescence
http://pathcards.genecards.org/card/innate_immune_system
http://amigo.geneontology.org/amigo/term/GO:0007223
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with lower fat mass and lower BMI but had no significant effect on the absolute amount of LM 

when the effect on fat mass was not taken into account. We, therefore, named the IRS locus a 

“fat-mediated lean mass” locus as it primarily appears to impact the amount of fat mass. 

Besides cross-phenotype analyses, we determined the genetic correlations between LM 

phenotypes and a variety of parameters with a focus on metabolic and musculoskeletal 

phenotypes using LD score regression. Genetic correlation in LD score regression is 

(asymptotically) proportional to Mendelian randomization estimates
[22]

. This method has an 

advantage for several reasons: it does not require individual genotypes, is not restricted to 

genome-wide significant SNPs, and there is no need for LD-pruning (which loses information if 

causal SNPs are in LD)
[22]

. LD score regression analyses revealed strong positive genetic 

correlations between LM and several obesity traits and carbohydrate metabolism related traits 

such as type 2 diabetes mellitus, fasting glucose and fasting proinsulin. These genetic 

correlations were attenuated in models adjusted for fat mass in kilograms, supporting the notion 

that genes that determine both fat mass and LM have a stronger genetic overlap with genes that 

determine obesity and glucose intolerance than genes that determine LM irrespective of fat mass. 

Similar obeservations with stronger genetic correlations in models not adjusted for fat mass were 

made for the positive genetic correlations with serum triglycerides and the negative genetic 

correlations with HDL cholesterol.  

 

Cross-phenotype analyses revealed that the LM increasing alleles of the SNPs in/near TNRC6B 

and in/near ADAMTSL3 were robustly associated with higher hand grip strength, suggesting that 

increased muscle mass resulted in increased muscle strength. This notion is supported by our 

finding of a positive genetic correlations between LM and grip strength in models adjusted for 

fat mass. In general, fat mass adjustment attenuated the genetic correlations between LM and 

metabolic traits, whereas the same adjustment enhanced or did not change the genetic 

correlations between LM and musculoskeletal traits. 

 

Interestingly, age at menarche but not age at menopause displayed negative genetic correlations 

with LM in all three models but was most pronounced in Model 1, implying that genes related to 

both fat mass and LM are correlated with genes determining age at menarche. One may speculate 
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that the amount of LM is involved in the onset of menarche. Alternatively it is possible that 

augmented sex hormone status might be the link between early menarche and high LM. 

 

There are limitations to our study. The X chromosome, harboring the androgen receptor gene, 

was not included in the present meta-analysis, which is notable since androgens have a major 

impact on muscle mass. Another potential weakness of this study is our decision to meta-analyze 

body composition results using two different techniques (BIA and DXA). Nevertheless, the two 

methods are highly correlated,
[6]

 and by combining them power to detect GWS loci was greatly 

enhanced. 

In conclusion, we identified one novel LM locus (TNRC6B) and our results suggest that 

genetically-determined increase in LM might exert either harmful or protective effects on 

metabolic traits, depending on its relation to fat mass.  
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Legends to supplemental figures 

 

Figure S1. Quantile-quantile plots of the genome-wide association results of the inverse-

variance weighted meta-analysis.  

Total lean mass according to Model 1 (A; not adjusted for fat masss), Model 2 (B; adjusted for 

fat %)) and Model 3 (C; adjusted for fat mass in kg). 

 

Figure S2. Manhattan plots for the genome-wide meta-analysis results. 

Total lean mass according to Model 1 (A; not adjusted for fat masss), Model 2 (B; adjusted for 

fat %)) and Model 3 (C; adjusted for fat mass in kg). Blue line indicates p = 5 x 10
-8

. Red line 

indicates suggestive genome-wide significant p=2.3 x 10
-6

. 
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Figure S1A
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Figure S1B
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Figure S1C 
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 Figure S2A Figure S2A 
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Figure S2B
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Figure S2C  
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