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Abstract: This paper explores the relationship between land cover change and albedo, recognized 12 
as a regulating ecosystems service. Trends and relationships between land cover change and surface 13 
albedo were quantified to characterise catchment water and carbon fluxes, through respectively 14 
evapotranspiration (ET) and net primary production (NPP). Moderate resolution imaging 15 
spectroradiometer (MODIS) and Landsat satellite data were used to describe trends at catchment 16 
and land cover change trajectory level. Peak season albedo was computed to reduce seasonal effects. 17 
Different trends were found depending on catchment land management practices, and satellite data 18 
used. Although not statistically significant, albedo, NPP, ET and normalised difference vegetation 19 
index (NDVI) were all correlated with rainfall. In both catchments, NPP, ET and NDVI showed a 20 
weak negative trend, while albedo showed a weak positive trend. Modelled land cover change was 21 
used to calculate future carbon storage and water use, with a decrease in catchment carbon storage 22 
and water use computed. Grassland, a dominant dormant land cover class, was targeted for land 23 
cover change by woody encroachment and afforestation, causing a decrease in albedo, while 24 
urbanisation and cultivation caused an increase in albedo. Land cover map error of fragmented 25 
transition classes and the mixed pixel effect, affected results, suggesting use of higher resolution 26 
imagery for NPP and ET and albedo as proxy for land cover. 27 

Keywords: land cover change; albedo; trend analysis; grasslands; ecosystems services; net primary 28 
production; evapotranspiration 29 

 30 

1. Introduction 31 

Changes in land use and land cover (LULC) cause bio-geophysical changes to the land surface 32 
that disturb the Earth surface energy balance [1], which have noticeable impacts on ecological and 33 
environmental systems. Biophysical characteristics associated with land cover types are not only 34 
responsible for carbon storage in the landscape, but also affect water use of vegetation driven by eco-35 
hydrological processes [2], such as in grasslands in water scarce catchments in South Africa. 36 
Ecosystem changes can be detected and quantified using biophysical parameters derived from multi-37 
temporal satellite observations of the land surface [3]. Primary drivers of change within the rural 38 
catchments in the Eastern Cape have been linked to woody encroachment, commercial afforestation, 39 
urbanization, increased dryland cultivation and rangeland degradation to the detriment of native 40 
grasslands [4]. Conversion of grassland to woody vegetation results in higher actual 41 
evapotranspiration (ET) due to increases in biophysical attributes, such as leaf area and rooting depth. 42 
Higher ET in turn has the effect of reduced water yield from the catchment [2,5]. Changes in 43 
proportions and composition of LULC across the catchment will affect the net ecosystem carbon 44 
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exchange (NEE) [6] and influence the hydrologic functioning of a catchment affecting the climate 45 
system [7].  46 

Surface albedo, the proportion of solar radiation reflected relative to the total incident radiation, 47 
can vary considerably depending on the character of the landscape and the vegetation present [8]. 48 
Land surface albedo has long been recognized as a radiative force from LULC change [7,9] and plays 49 
a key role in climate change [9,10], while climate-modelling studies have confirmed albedo as a 50 
climate regulating ecosystem service [8]. Afforestation reduces surface albedo by absorbing more 51 
solar radiation and increasing surface temperature [9,11], while deforestation may activate either 52 
radiative forcing, due to surface albedo change, or non-radiative forcing due to change in 53 
evapotranspiration efficiency and surface roughness [12]. In addition, invasion by woody alien 54 
species changes the landscape composition and affects soil properties, even after clearing [13]. Thus 55 
for each land cover transition, the shift in surface albedo should also be considered. Commercial 56 
afforestation, invasive alien plants (IAPs) (e.g. Acacia mearnsii (black wattle)) and native woody plant 57 
encroachment (e.g. Vachelia karroo) all result in an increase in the total aboveground woody standing 58 
biomass [14,15] with associated increase in leaf area index (LAI) and consequently a possible 59 
reduction in surface albedo. The higher level of green water in these land cover classes is a good 60 
absorber of heat, and this may result in further global heating [9,11], possibly discounting the positive 61 
consequences of carbon sequestration [8]. In contrast, urban communities, such as found in the rural 62 
Eastern Cape, South Africa, with widely spaced dwellings interspersed with bare soil, may result in 63 
higher albedo. Similarly, degraded rangeland, with lower fractional canopy cover, may also have 64 
higher albedo [16]. [17] found surface albedo to be an accurate proxy for land cover change in a semi-65 
arid region in Brazil, due to its sensitivity to seasonal phenological variation [17,18] and landscapes 66 
affected by land management practices [19]. Land cover change projections in the Eastern Cape of 67 
South Africa have highlighted the importance of focusing land and water resources management 68 
interventions on rehabilitation in catchments under dualistic1 farming systems [20]. It is therefore 69 
vital to consider surface albedo within a range of different land cover classes, and recommend 70 
policies that will change albedo to promote improvements offered by carbon offsets. 71 

Remote sensing is a key tool for monitoring long term environmental change from space. High 72 
spatial resolution Landsat [21] and high temporal resolution gridded moderate resolution imaging 73 
spectroradiometer (MODIS) vegetation indices (VI) have been used to characterize land cover 74 
dynamics for climate change assessment, mitigation and adaptation [22,23]. Furthermore, the recent 75 
launch of the Google Earth Engine cloud-based platform facilitates systematic large scale processing 76 
of geospatial data through ease of access to data archives [24] and shared algorithms [25]. 77 

Due consideration must be given to the scale at which analyses should be conducted since spatial 78 
resolution and extent of analysis can have major effects on results, especially when categorical land 79 
cover maps are derived that provide information about patterns and processes in the landscape [26]. 80 
A common problem in spatial analysis of heterogeneous landscapes is the two-fold modifiable areal 81 
unit problem (MAUP; [27]). Not only can the shape and placement of non-overlapping units used to 82 
extract map values, such as land cover classes, influence analyses of those values, but also the 83 
dimensions of arbitrary aggregation units, such as pixels in remote sensing imagery, do not match 84 
the characteristic shapes and scales of natural features in the heterogeneous landscape, affecting 85 
subsequent analyses [28]. [26] suggested higher resolution imagery could address this problem. 86 
However, map error may be responsible for incorrect interpretations of land cover change [29]. Lack 87 
of adequate reference data or imperfect reporting of accuracy results, affect the explanations of the 88 
processes depicted in land cover change maps [26,30,31].  89 

Various studies have been conducted to gain an understanding of rangeland dynamics in the 90 
mesic regions of the Eastern Cape, using a combination of remote sensing and field data. For instance, 91 
[32] described the invasion of the rangelands by black wattle and the effect on soil properties [33]. [4] 92 
derived land cover change trajectories and associated error from land cover maps, while [5] 93 

                                                 
1 To describe the complexity around the communal farming tenure arrangement in the Eastern Cape, the label “dualistic or bilateral landholding arrangement” was 

agreed upon by stakeholders, due to the interaction of the components of traditional leadership and the municipal system in land allocation. 
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determined the fraction of photosynthetically active radiation (fPAR) and LAI for several land cover 94 
classes. Modelled evapotranspiration (ET) was used to highlight the effect of land cover change on 95 
the catchment evaporative fraction [2]. Future land cover changes were modelled based on observed 96 
land cover change maps [20] and future change trajectories derived. However, the effect of land cover 97 
change, both observed and modelled, on surface albedo and consequently the surface energy balance, 98 
has not been explored in this region. Additionally, the link between modelled landscape change, 99 
surface albedo and changes in catchment water and carbon fluxes have not been investigated. 100 
Recently, surface albedo was extracted from satellite data per land cover class for calibration of land 101 
surface models (LSM) in climate modelling [34,35], while other authors have investigated the 102 
potential of albedo in land cover [36] and land cover change analyses [17].  103 

The aim of this paper is to quantify trends and relationships between land cover change, surface 104 
albedo, NPP and ET to characterise catchment water and carbon fluxes and postulate consequences 105 
on ecosystem services provided by grasslands. Trends in surface albedo are described at catchment 106 
and trajectory level for observed land cover change. Links are established to quantify future carbon 107 
storage and water use – through respectively NPP and ET – in response to modelled land cover 108 
change. The benefits of using albedo as a proxy for land cover change are highlighted. 109 

2. Materials and Methods  110 

Located in the Eastern Cape Province, South Africa (Figure 2), the quaternary catchments S50E 111 
and T35B are dominated by grassland, interspersed with woody IAPs [37]. The Ncora Dam, supplied 112 
by the perennial Tsomo River, lies within the S50E catchment, while T35B, drained by the Pot and 113 
Little Pot Rivers, has no large dams. The mean annual rainfall for the area is ~800 mm [38], with the 114 
majority occurring falling in summer particularly during January.   115 

Mixed farming, with livestock grazing and crop cultivation practiced under dualistic land tenure 116 
[39] is practiced in S50E with its high grazing potential. Farming practices such as overgrazing, 117 
burning and wood felling in S50E have contributed to grassland transformation resulting in degraded 118 
vegetation diversity and richness. In contrast, T35B represents commercial/freehold land with several 119 
different land usages, including forestry, mixed livestock and crop production. Non-clustered rural 120 
and urban settlements are found in both catchments.  121 

Invasion by woody plants, particularly black wattle (Acacia mearnsii), silver wattle (Acacia 122 
dealbata) and poplar (Populus spp.) has transformed the grasslands [13,15], affecting rangeland 123 
production. Coordinated efforts of clearing IAPs [40] that have higher water use relative to 124 
indigenous vegetation [41] is underway to increase the proportion of water available to maintain 125 
other ecosystem services provided by rangelands [42,43]. Figure 1 provides an overview of the 126 
processing steps described in this section to perform trend analysis and characterize carbon fluxes 127 
(NEE) and water use in the catchments. 128 

 129 
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Figure 1. Processing flow to model albedo relationship with land cover  130 

2.1. Land cover change 131 

Observed land cover maps for 2000 (T1) and 2014 (T2) [4] and modelled land cover for 2030 (T3) 132 
[20] at 30m pixel resolution were selected for land cover change analysis. Land cover classes included 133 
grasslands (UG), shrublands, indigenous as well as invasive trees and bushes (FB), bare soils (BR), 134 
water bodies (WB), wetlands (WL), croplands (CL), forests (FP) and urban, built-up (UB). As 135 
described in [4,20], the existing South African National Land Cover map for 2000 [44] was adapted 136 
to these eight classes through aggregation to conceptually broader classes [45] and manual editing 137 
[4,33]. Supervised object-based image analysis using a rule-based decision tree classification of 138 
Landsat 8 imagery was implemented to generate the 2014 land cover maps [4,33]. The overall 139 
accuracy achieved for these maps was 84 ± 1% and 85 ± 1% for 2000 and 2014 respectively. Land cover 140 
changes between T1 and T2 were analysed along with explanatory variables to generate transition 141 
potential maps. Markov chain analysis was used to assign probabilities to potential changes to derive 142 
the future land cover map for 2030 [20], presented in Figure 2.  143 

 144 

Figure 2. Study area with land cover classification for 2000, 2014 and 2030 145 

Post-classification change analysis was performed through overlay of (1) T1 and T2, and (2) T2 146 
and T3 land cover maps and construction of a transition matrix for the intersection of each pair of 147 
land cover maps [4,20,33]. Observed historical land cover change of 21% and 18% in respectively S50E 148 
and T35B were reported for 2000-2014 [4]. Projected land cover change, modelled from the 2014 and 149 
2030 land cover maps, amounted to 23% and 16% of the catchment for S50E and T35B respectively 150 
[20]. Nine land cover change trajectory labels were assigned to specific land cover transitions to relate 151 
land cover change to specific landscape processes [4]. Landscape changes in the study area were 152 
grouped into three land change categories [46,47]. Table 1 shows the land cover class transitions 153 
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identified by trajectory labels with expected albedo change direction for each class transition, based 154 
on literature values [36,48,49] for similar land cover classes, provided in brackets: (↑) to signify 155 
increase, (↓) decrease or (-) no change. The land change category is also specified as abrupt 156 
(highlighted in light grey), seasonal (dark grey) or gradual ecological change (no background). 157 

Table 1. Land cover change trajectories. 158 

Land cover trajectory 

(label) 

Land cover transitions (expected 

albedo change) 

Land change category  

Woody encroachment (Ifg) UG->FB(↓); FP->FB(↑); CL->FB(↓) Gradual ecological 

change 

 

Abandonment (Ag) CL->UG(↓); UB->UG(↓) 

Degradation (Deg) UG->BR(↑) 

Reclamation (Reg) FB->UG(↑) 

Increased cultivation (Iaa) UG->CL(↑); FB->CL(↑); WB->CL(↑); 

WL->CL(↑); UB->CL(↓)  

Abrupt change 

Urban expansion (Iua) UG->UB(↑); CL->UB(↑); FB->UB(↑) 

Afforestation (Ra) UG->FP(↓); FB->FP(↓) 

Deforestation (Da) FP->UG(↑); FP->BR(↑) 

Natural dynamic (Dns ) UG->WB(↓); UG->WL(↓);  

WB->UG(↑); WL->UG(↑) 

Seasonal change 

UG: grasslands, FB: shrublands, BR: bare, WB: water bodies, WL: wetlands, CL: croplands, FP: forest/plantation, 159 
UB: urban. 160 

Gradual ecological change (superscripted with g) describes landscape changes associated with 161 
woody intensification of grassland, abandonment of agriculture, degradation of grassland and 162 
agriculture, as well as reclamation of grassland from IAPs. When a lower intensity use transitions to 163 
a higher intensity use, such as bushland encroachment into grassland, or increase in agriculture, it is 164 
considered intensification in the landscape. Although an increase in agriculture is intensification of 165 
the landscape, it is categorised as an abrupt change (superscripted with a), along with afforestation, 166 
deforestation and urban intensification due to the time scale over which the change occurs. 167 
Deforestation, degradation and reclamation, resulting in expected albedo increase, as well as 168 
abandonment, with expected albedo decrease, describe transitions to grassland and bare areas. 169 
Seasonal change (superscripted with s) can account for natural dynamics of seasonal conversions not 170 
explained through anthropogenic change that may result in albedo fluctuations. As trajectory labels 171 
identified in the study area (Table 1Table 1) define transitions from multiple land covers to a single 172 
land cover, or to multiple land covers, there may be opposing albedo change directions within the 173 
same trajectory. These opposing vectors may have a confounding effect on the results and require 174 
further work to untangle the influence of each land cover transition.  175 

The land cover trajectory labels (Table 1Table 1), subsequently called transition classes, were 176 
applied to the transitions between 2000-2014 and 2014-2030 [20]. In addition to these transitions, 177 
exceptionality, associated with potential map errors [4] was noted in the study area, but excluded 178 
from analysis (<1% of T35B, 2.8% of S50E). Persistent classes, defined as pixels that represent the same 179 
thematic land cover class in 2000 as in 2014, where no land cover change was measured, may 180 
represent a measure of seasonality, degradation or long-term background change not associated with 181 
class transition. Both transition and persistent classes were used for further analysis. 182 

2.2 Satellite data 183 

2.2.1 Albedo 184 

A strong agreement exists between Landsat surface reflectance (SR) and MODIS Nadir - 185 
Bidirectional reflectance distribution function (BRDF) – Adjusted Reflectance (NBAR) implying that 186 
the Landsat archive prior to the MODIS era can be used to obtain results of a similar quality to MODIS 187 
[18]. To maintain this integrity, the same methodology to estimate albedo was applied to both the 188 
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Landsat and MODIS collections. Albedo for each time step was calculated from MODIS and Landsat 189 
using the formula suggested by [50,51] with constant values referred to in Equation (1) provided in 190 
Table 2. 191 

𝑎𝑙𝑏𝑒𝑑𝑜 =  c0 + c1r1 + c2r2 + c3r3 + c4r4 + c5r5 + c7r7,     (1) 192 

where r1, r3, r4, r5, r7 are the surface reflectance derived from MODIS and Landsat bands 1, 3, 4, 5, 193 
and 7 respectively, while r2 is excluded for Landsat but represents MODIS band 2. 194 

Table 2 Constant values used in calculation of albedo from MODIS and Landsat 195 

 c0 c1 c2 c3 c4 c5 c7 

Modis -0.0015 0.160 0.291 0.243 0.116 0.112 0.018 

Landsat -0.0018 0.356 0 0.13 0.373 0.085 0.072 

The MODIS 500 m BRDF/NBAR/albedo product (MCD43A) [52,53] standardizes MODIS 196 
directional reflectance to a nadir view at the illumination of local solar noon to eliminate the angular 197 
effect on biophysical related parameters. A 15-year time series of MODIS data were extracted using 198 
the National Aeronautics and Space Administration (NASA) Application for Extracting and 199 
Exploring Analysis Ready Samples (AppEEARS) interface (https://lpdaacsvc.cr.usgs.gov/appeears/). 200 
This time-series was made up of 690 8-day surface reflectance (MCD43A4 Nadir Reflectance Band 1-201 
7, version 5) and albedo band quality (MCD43A2 BRDF Albedo Band Quality, version 5) data from 202 
2000-02-18 (8-day composite beginning on ordinal day 49) to 2015-02-10 at 500-m resolution. To cover 203 
fifteen years, each year-long period is defined as beginning on ordinal day 49 and ending on day 41 204 
containing 46 data points [54].  205 

Landsat imagery was selected from the Google Earth Engine (GEE) Image Collections [25] for 206 
the same period as the MODIS data. Sixty three Landsat 5 Thematic Mapper (LT5), 243 Landsat 7 207 
Enhanced Thematic Mapper Plus (LE7) and 49 Landsat 8 Operational Land Imager (LC8) images that 208 
had been (1) calibrated to a consistent radiometric scale; and (2) atmospherically corrected to 209 
represent surface reflectance were filtered for pixel quality and catchment geography (image 210 
path/row 169/082 for T35B and 170/082 for S50E). Equation (1) was applied to each image in the LT5 211 
and LE7 image collections as the band specifications on Landsat TM and Landsat ETM+ are identical. 212 
For the LC8 collection, the parameters r1, r3, r4, r5, r7 in Equation (1) are the surface reflectance 213 
derived from equivalent LC8 bands 2, 4, 5, 6 and 7 respectively [55]. The respective LT5, LE7 and LC8 214 
albedo collections, sorted by date, were merged into a new albedo image collection in GEE. 215 

2.2.2 NDVI and Peak Season Albedo 216 

As surface albedo is sensitive to vegetation cover change, especially during the growing season 217 
[56], peak season albedo (PSA) was extracted. PSA, defined as the albedo when the maximum 218 
normalized difference vegetation index (NDVI) value per year occurs, could limit seasonal vegetation 219 
fluctuation in the data thereby reflecting the relationship between inter-annual albedo variations with 220 
land cover change.  221 

For MODIS, NDVI was calculated from MCD43A4 surface reflectance band 1 (red) and band 2 222 
(near infrared) at 500 m spatial resolution for every pixel in each annual time-series and the relative 223 
position of the maximum NDVI was marked. The albedo value for the particular position, 224 
representing the PSA, was extracted from the MCD43A4 time series [56].  225 

The same method to derive PSA was applied to the Landsat data in GEE. However, only growing 226 
season images between September and May were considered as the lower temporal resolution and 227 
images with cloud cover may confound albedo at an annual time step. Cloudy pixels were masked 228 
out using the Quality Assessment bands that identify pixels exhibiting adverse instrument, 229 
atmospheric, or surface conditions, supplied with Landsat Surface reflectance products. The relative 230 
position of maximum NDVI during the peak growing season for each year was used to extract the 231 
albedo from the merged Landsat albedo image collection. NDVI was calculated from red and near 232 
infrared surface reflectance bands – bands 3 and 4 respectively for LT5 and LE7 and bands 4 and 5 233 
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respectively for LC8. Mean PSA values for persistent and transition classes in each study area were 234 
extracted from the MODIS and Landsat PSA using a zonal statistics function in R statistical software 235 
[57]. 236 

2.2.3 MODIS NPP and ET  237 

Net primary production (NPP) (MOD17A3, version 5, 1km) [58] and evapotranspiration (ET) 238 
(MOD16A2, version 5, 1km) [59,60] products, were extracted to represent carbon and water fluxes 239 
respectively. The MOD17A3 product provides information about annual (yearly) NPP at 1 km pixel 240 
resolution.  Although the new 500 m, version 6 product [58] was considered, uncharacteristically 241 
high NPP values were observed for 2000 and 2001, and the coarser resolution 1 km product was 242 
therefore selected instead. 243 

Not only does ET play an important role in the terrestrial water cycle through precipitation 244 
return, but as user of more than half of the total solar energy absorbed by land surfaces, ET is an 245 
important energy flux [61]. The MOD16 product uses a physical model based on the Penman–246 
Monteith logic  [62] to calculate ET [59,60,63]. Though uncertainties were noted in both measured 247 
[64] and remotely sensed data [60,65,66], MOD16A2 data was previously used in catchment S50E [2] 248 
to investigate the influence of land cover change on ET. 249 

Annual NPP (MOD17A3) and ET (MOD16A2) were extracted for the period 2000 to 2014 to 250 
visualise the trend of these variables in the catchments. Non-parametric least squares regression was 251 
performed in localised subsets to fit a smooth “LOcal regression” (LOESS) curve [67]. Mean NPP and 252 
ET per pixel were calculated. Summary statistics were computed from the gridded datasets for each 253 
land cover transition class using zonal statistics. 254 

2.3 Trend analysis  255 

Linear correlation analysis was performed on annual PSA time series for MODIS and Landsat 256 
using linear least square regression to identify significant linear trends (p<0.05) at catchment, land 257 
cover trajectory and pixel level. The slope of the regression, which describes the direction of change, 258 
was also extracted. PSA percentage change (slope of linear correlation analysis multiplied by study 259 
period) was computed per pixel. Mean values for catchment and trajectory level analyses were 260 
extracted by applying zonal statistics.  261 

Pixel-wise linear regression was performed between PSA, NPP, ET and NDVI to characterize 262 
the relationships between PSA and (1) NPP, (2) NDVI and (3) ET. The coefficient of determination 263 
(R2), correlation coefficient and the direction of the trend was extracted from the slope of the linear 264 
regression. Percentage change was applied to model future change as a function of land cover change 265 
using the linear regression equations developed for persistent classes applied to modelled land cover. 266 

A season-trend model (STM) [3] based on a classical additive decomposition model as 267 
formulated in breaks for additive seasonal and trend (BFAST) software [68] was applied to the 8-day 268 
MODIS albedo time series with package greenbrown [69] in R statistical software [57]. The full 269 
temporal-resolution albedo time series was explained by a piecewise linear trend and a seasonal 270 
model in a regression relationship [3], to identify trends, inter-annual variation (IAV) and significant 271 
breakpoints at pixel-level. The method uses ordinary least squares (OLS) regression fitting linear and 272 
harmonic terms to the original time series to estimate time series segments based on significant trend 273 
slope. The significance of the trend in each segment is estimated from a t-test. A maximum of three 274 
breakpoints with significant structural changes (p ≤ 0.05), were selected. Time series properties 275 
(mean, trend, inter-annual variability, seasonality and short-term variability) were estimated from 276 
the 8-day MODIS albedo product [3]. 277 

3. Results 278 

3.1. Catchment level PSA, NPP, ET and NDVI 279 
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Figure 3Figure 3 shows the spatial and statistical distribution of the PSA trend, computed as the 280 
pixel level slope of PSA regression over the study period for T35B and S50E for both MODIS (Figure 281 
3Figure 3A, B, E, F) and Landsat (Figure 3Figure 3C, D, G, H).  282 

283 

 284 

Figure 3. PSA trend (top) and histogram of trend (bottom) measured with MODIS and Landsat for 285 
T35B and S50E between 2000 – 2014. 286 

Although similar spatial patterns are observed, it is clear from Figure 3Figure 3C and D, that 287 
there are some extreme changes that are not captured at coarser MODIS resolution. This is borne out 288 
by the larger range for Landsat displayed on the x-axes in Figure 3Figure 3G and H. The slope for 289 
MODIS pixels varied between -0.003 (blue pixels) in both catchments with maximum increase of 0.005 290 
for S50E and 0.0026 for T35B (red pixels). Measured from Landsat PSA, greater variation of values 291 
between -0.01 (blue pixels) and 0.011 (red pixels) was calculated. Locations where Landsat PSA trend 292 
is either higher than the maximum MODIS trend or lower than the minimum trend are indicated 293 
with circles in Figure 3C and D. At catchment scale the mean change (mpc) in PSA was less than one 294 
per cent ±10 standard deviations (sd) for MODIS and ±5 sd for Landsat.  295 

Over the study period, mean MODIS PSA values of 0.145±0.011 and 0.150±0.014 were obtained 296 
for catchment T35B and S50E respectively, with mean Landsat PSA values significantly lower 297 
(p<0.05) at 0.143±0.022 for T35B and 0.140±0.022 for S50E. The boxplots in Figure 4 illustrate mean 298 
annual PSA (Figure 4A, B), NPP (Figure 4D, E), ET (Figure 4F, G) and NDVI (Figure 4H, I) trends for 299 
the observed study period extracted from MODIS data. Mean annual rainfall (Agricultural Research 300 
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Council weather station data, Tropical Rainfall Measuring Mission satellite data) is shown in the bar 301 
plot in Figure 4C. WS 30388 represents the rainfall in S50E at Cala, while WS 30149 represents the 302 
rainfall for T35B at Ugie. The linear trend is shown with a dotted line while the LOESS curve indicates 303 
the local trend. 304 

 305 

 306 

 307 

 308 

Figure 4. Mean annual PSA (A, B), NPP (D, E), ET (F, G) and NDVI (H, I) values respectively for T35B 309 
(left) and S50E (right), with bar plot of annual rainfall (C). LOESS regression curve in red, linear 310 
regression curve in dotted lines. 311 

While similar spatial patterns were observed for mean MODIS PSA at coarser resolution and 312 
mean Landsat PSA, linear correlation between Landsat pixels, scaled to MODIS resolution, only 313 
shows an R2 of 0.718 for T35B and 0.723 for S50E. In addition, the mean PSA in both S50E and T35B 314 
did not change significantly over the 15 year study period (p>0.05). However by fitting a median 315 
based linear model [70–72], the S50E slope showed a slight increase (β1M=0.00023; β1LS=0.0003; p>0.05), 316 
which would cause a net increase of 0.003 (0.004) in PSA. In contrast, mean PSA trend in T35B was 317 
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negative with MODIS (β1M=-00009) but positive with Landsat (β1LS=0.0004), translating to PSA change 318 
of -0.001 (+0.006). Non-significant trends at catchment scale were confirmed with a Mann-Kendall 319 
(MK) test (p>0.05) for both catchments. Mean albedo values and trend were also calculated from the 320 
8-day MODIS product (T35B-σ=0.135±0.017, β1M8=0.0001; S50E- σ=0.146±0.001, β1M8=0.00004).  321 

PSA generally followed an increasing trend in response to drop in rainfall, and a decreasing 322 
trend in response to increased rainfall, when comparing Figure 4A and B with Figure 4C. The high 323 
rainfall in 2006, categorised as a flood [73], caused a drop in PSA reflected in 2006. Although a 324 
relationship between albedo and rainfall is suggested, neither the linear, nor non-linear trend (Theil-325 
Sen slope, measured with MK-test) was significant (p>0.5) at catchment scale. NPP, ET and NDVI in 326 
T35B (Figure 4) have higher mean values (0.892 kg.C.m-2; 542 mm.yr-1; 0.54) compared to S50E (0.802 327 
kg.C.m-2; 508 mm.yr-1; 0.49) and are statistically different (p<0.05), measured with Wilcoxon signed 328 
rank test for non-parametric data. Though the trends appear strongly related to that of the rainfall 329 
pattern in Figure 4C, there is only a weak negative linear trend (p>0.1). Lower NPP, ET and NDVI 330 
were noted for 2003 in both catchments confirming the inflection point in 2004 indicated by [2] 331 
associated with extreme low rainfall in 2003 (Figure 4C). Even though the LOESS curve (in red) 332 
indicates a local downward trend, the linear trend is not significant (p>0.05) in any of the catchments.  333 

The correlation between mean PSA, NPP, NDVI and ET is reported in Table 3. Complete cases, 334 
where a value existed for each of the four datasets for the pixel in question, were extracted for every 335 
pixel within the two catchment extents for comparison. A positive correlation indicates the extent to 336 
which one variable e.g. PSA increases or decreases in parallel with another variable, while a negative 337 
correlation indicates the extent to which one variable increases as the other decreases. 338 

Table 3 Catchment level correlation between PSA, NPP, NDVI and ET 339 

T35B 1 2 3 4 

1. PSA - -0.01 -0.35 -0.22 

2. NPP  0.13 -  0.51*  0.71* 

3. NDVI -0.28  0.31 -  0.60* 

4. ET -0.08  0.64*  0.57* - 

Note. Correlations for S50E (n=2407) are presented above the diagonal in italics, and correlations for T35B 340 
(n=2162) are presented below the diagonal. *p < 0.05. 341 

In both the catchments, the strongest correlation was found between NPP and ET with 0.64 in 342 
T35B (n=2162) and slightly higher at 0.71 for S50E (n=2407). Correlation between NDVI and ET was 343 
~0.6 in both catchments while NDVI showed a stronger relationship with NPP in S50E. A weak 344 
negative correlation was found between PSA, NPP and ET. In T35B, PSA had a weak positive 345 
correlation with NPP, but none in S50E. Detail of the correlations computed per land cover class and 346 
transition trajectory are provided in supplementary material, Table S1. In contrast to the catchment 347 
results, at land cover class and transition level, the strongest correlation was between NDVI and ET 348 
(>0.79). Only persistent forest/plantation (n=42; 0.55) and trajectory deforestation (n=35; 0.75) in S50E 349 
showed a significant correlation between NPP and ET. Intensification of agriculture showed a similar 350 
response in both catchments, only the correlation between albedo and NDVI was stronger in T35B 351 
(n=41; -0.54) as compared to S50E (n=117; -0.45). Contrary to expectation, deforestation in T35B 352 
showed a positive correlation (n=23; 0.7) between albedo and NPP. Afforestation in S50E (n=6;-0.56) 353 
displayed a negative correlation between albedo and NPP, but a positive correlation in T35B (n=60; 354 
0.63). The aggregated catchment correlation masks some of the per class correlations, resulting in 355 
Simpson’s paradox where groups of data show one particular trend, which is reversed when groups 356 
are aggregated [74]. Common in spatial analysis of heterogeneous landscapes, this is an example of 357 
MAUP [28] where the sample size (n) is dictated by the arbitrary land cover aggregation units.  358 

The spatial distribution of the correlation between PSA and each of the variables NPP, NDVI 359 
and ET are shown in Figure 5Figure 5 for T35B (top) and S50E (bottom). Only significant correlations 360 
(p<0.05) are symbolised, while p>0.05 is shown in grey. “No data” values (white) are visible in Figure 361 
5Figure 5D and F where the NPP and ET algorithms did not calculate a value for the Ncora dam in 362 
S50E. Negative values (brown) show negative correlation where one variable increases as the other 363 
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decreases. Positive values (green) show positive correlation where variables increase in parallel. 364 
Pixels where all three variables are significantly correlated with PSA, are highlighted with blue 365 
(+PSA+ET+NDVI+NPP or –PSA-ET-NDVI-NPP) and red (+PSA-ET-NDVI-NPP or -366 
PSA+ET+NDVI+NPP) buffers to indicate the direction of the correlation.  367 

 368 

Figure 5. Spatial distribution of albedo correlation with NPP, NDVI and ET. 369 

Labels 1, 2 and 3 in Figure 5Figure 5 indicate the spatial location of three points where pixel 370 
values were extracted to further illustrate the correlation between PSA, NPP, ET and NDVI at local 371 
scale, linked to specific land cover trajectories. Point 1 represents an area with high negative albedo 372 
trend (Figure 5Figure 5A), in contrast to point 3 with a high positive albedo trend (Figure 5Figure 373 
5B). Point 2 was selected as the middle ground with almost no trend (Figure 5Figure 5B). In the case 374 
of points 1 and 3, negative correlation was noted while for point 2 positive correlation was measured 375 
between PSA and NPP, ET and NDVI. It is important to note that each of the variables (NPP, ET and 376 
NDVI) can show either positive or negative correlation with PSA at different spatial locations. 377 

3.2 Land cover trajectories 378 

Published albedo values are compared to similar land covers as those found in the study area 379 
(Table 4Table 4).  380 

Table 4. Study area albedo values compared to literature. 381 

   S50E T35B   

Land cover Landsat 
Mean 

Modis 
Landsat 

Mean 

Modis 
Literature value 

UG grasslands  0.142 0.152 0.146 0.147 0.17 [48] 

FB 

shrublands, indigenous 

as well as invasive trees 

and bushes  

0.113 0.133 0.138 0.144 0.17 [48] 
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BR bare  0.163 - - - 0.20 – 0.33 [49] 

WB water bodies  0.126 0.134 0.043 - 0.05 – 0.20 [49] 

WL wetlands  0.120 - 0.126 0.147  

CL croplands 0.146 0.155 0.163 0.154 0.163 [36] 

FP forest/plantation  0.105 0.117 0.113 0.124 0.11 [48] 

UB urban, built-up 0.166 0.163 0.177 0.157  

No persistent bare soil was observed in T35B, while the extent of bare soils and water bodies 382 
was too small to extract mean MODIS PSA. Similarly, in S50E, mean MODIS PSA could not be 383 
evaluated for bare soils and wetlands. In this study, UG refers to herbaceous vegetation (grassland, 384 
savannas and degraded grassland), while in other databases found in literature, such as the 385 
CORINNE database [75], grassland may refer to greener pastures with a lower albedo value. 386 
Similarly, in the case of shrublands it is probable that the albedo measured by [48] are leafier thus 387 
having a higher LAI and lower albedo than in this study area. [75] observed that class names used in 388 
land cover classification systems are often descriptive without providing detail on the criteria used 389 
to define these classes. Water bodies and croplands fall within the literature ranges, while 390 
forest/plantation lies within 0.01 of published values for this land cover class, although lower than 391 
reported by [36]. 392 

The percentage area per catchment occupied by persistent land cover classes and transition 393 
trajectories and significant PSA change (trend slope p<0.05), measured using both MODIS and 394 
Landsat, are summarised in Table 5Table 5. Significant PSA change is divided into decrease in albedo 395 
(negative change) and increase in albedo (positive change), given both in percentage of catchment 396 
area as well as PSA change. PSA change is calculated as the trend slope multiplied by the study 397 
period (15 years) to give the expected increase or decrease in PSA per land cover class or transition 398 
and is highlighted in light grey. Equally, the detail per land cover class is presented in supplementary 399 
material, Table S2 and Table S3. 400 

Table 5. Total and significant change in land cover classes per catchment, reported in percentage of 401 
catchment and change in albedo (highlighted in light grey). 402 

Study Total catchment Significant change Negative sig. change Positive sig. change 

area % area PSA change % area PSA change % area PSA change % area 
PSA 

change 

LC MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS 

T35B   -0.001 0.003 11.1 11.3 -0.013 0.004 7.9 4.3 -0.026 -0.039 3.2 7.0 0.019 0.031 

P 82.7 81.0 -0.001 0.004 7.4 8.4 -0.011 0.007 5.0 2.8 -0.025 -0.039 2.4 5.6 0.018 0.03 

T 17.6 17.8 -0.004 0.001 3.4 2.8 -0.017 -0.002 2.7 1.4 -0.027 -0.04 0.7 1.4 0.023 0.036 

S50E   0.004 0.004 8.5 16.1 0.016 0.017 1.9 4.1 -0.018 -0.026 6.6 12.0 0.026 0.032 

P 75.4 75.5 0.004 0.004 5.4 10.9 0.013 0.013 1.3 2.9 -0.023 -0.027 4.1 8.0 0.025 0.027 

T 20.6 21.1 0.007 0.009 3.0 5.0 0.023 0.029 0.5 1.1 -0.02 -0.027 2.5 3.9 0.032 0.045 

LC = land cover; MOD = MODIS; LS = Landsat; P = Persistent classes; T= Transition classes  403 

As expected, with persistent classes comprising 82% of T35B, the mean change (MODIS, Landsat; 404 
-0.001, 0.004) for persistent classes only was similar to that of the entire catchment (-0.001, 0.003). 405 
Significant change (9%, 10%) was noted with similar trend directions. Negative trends amounted to 406 
a larger negative change to lower albedo values, however the positive change measured with Landsat 407 
covered a larger area. For S50E, persistent classes covered 75% of the landscape with a mean change 408 
in PSA over the study period of 0.004 measured by both MODIS and Landsat. Although the area 409 
mapped as persistent is almost the same among the data sources, the area of significant change 410 
(p<0.05) is almost double using Landsat to map the change. Figure 6 illustrates the mean PSA for each 411 
persistent land cover class measured with MODIS and Landsat for T35B (A, C) and S50E (B, D) over 412 
the study period.  413 
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 414 

Figure 6. PSA in persistent land cover classes over the study period 415 

In S50E, persistent urban land cover displayed the highest PSA, measured with either sensor 416 
(Figure 6C, D). In contrast, MODIS PSA in urban land cover (Figure 6A), showed an anomalous result 417 
for T35B as a result of the fragmented nature of the urban class (n=3; Table S1), representing only 418 
0.1% (n=3) of the catchment area (Table S1, S2). The urban sites in this catchment have a longer history 419 
of human occupation, and are considerably more woody than rural villages in S50E which are under 420 
communal tenure arrangements. Shrubland in T35B shows an unexplained trough between 2002-421 
2006 and 2009-2011 in Figure 6B. This could be related to variation in rainfall, IAP clearing activities 422 
and regrowth. 423 

Transition classes (Table 1Table 1) account for 18% in T35B and 21% in S50E [4] at Landsat 424 
resolution. These transition classes measured with MODIS and Landsat respectively showed smaller 425 
changes in T35B (-0.004, 0.001) compared to S50E (0.007, 0.009). Total area of transition in T35B is 426 
almost four per cent larger when measured with Landsat, while there is only two per cent difference 427 
in S50E, implying more local scale and fragmented transition in T35B. Between 2000 and 2014, 428 
gradual ecological change (woody encroachment, abandonment, degradation and reclamation) 429 
caused a positive significant increase in albedo for all Landsat-based classes (Supplementary 430 
material, Table S2 and S3), however the affected area covers less than 2% of the two catchments. In 431 
contrast, when MODIS data was used, only woody encroachment and reclamation caused increases 432 
in albedo. It is therefore clear that the detail of change in the landscape is not effectively captured 433 
using only MODIS data. Figure 7 illustrates the relationship between the transition classes and PSA 434 
from MODIS and Landsat compared with the catchment average PSA (black line). 435 
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 436 

Figure 7. PSA in transition classes over the study period (If-woody encroachment, Re- reclamation, 437 
R-afforestation, CAT-catchment average, Ia-increased cultivation, Iu-increased urban, D-438 
deforestation, De-degradation, A-abandonment) 439 

Degradation, urban intensification, increased cultivation and abandonment all have higher than 440 
catchment average PSA. These classes are all associated with increased bare surfaces with higher 441 
albedo. Increased cultivation also results in a higher albedo, due to clearing of existing vegetation to 442 
establish crops, the fraction of bare ground between standing rows or desiccation in fallow fields. In 443 
both catchments, the effect of degradation (De) is much larger when PSA is measured using Landsat, 444 
but the percentage is low (0.1% in both catchments). Deforestation (D) shows the expected increase 445 
in PSA in S50E, but not in T35B where it follows the afforestion (R) curve, possibly indicative of a 446 
classification error in the land cover products. 447 

3.3 Season-Trend model 448 

The estimated trend and breakpoints from the deconstructed 8-day albedo time series using the 449 
STM method [3], extracted for Points 1, 2 and 3 (Figure 5Figure 5) are depicted in Figure 8. Significant 450 
structural breakpoints (95% CI) are indicated by red squares and horizontal red lines. The trend line 451 
on 8-day time series, between significant breaks, is added in blue. The significance of the trend line 452 
segments are indicated by blue stars to show the p-value (*** p <= 0.001, ** p <= 0.01, * p <= 0.05). The 453 
slope and significance of the trend line on annual aggregate is added in blue text, with the p-value 454 
illustrated with green stars on the trend line. 455 
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 456 

Figure 8. Estimated trends on three selected points decomposed using STM in package greenbrown 457 
in R. Red squares indicate structural breaks, while blue and green stars indicate significance of trend 458 
segments. 459 

Trend for Point 1, with persistent forest/plantation (FP) and trajectory afforestation (Ra), shows 460 
a significant overall decrease of albedo (p<=0.001 green *) with three significant breakpoints, each 461 
with significant trend (blue *). The overall slope indicates a small but significant negative change. 462 
Point 3 indicates the opposite trajectory with Da (deforestation) resulting in an increase of albedo 463 
(p<=0.001). Two breakpoints are indicated with three significant segments (p<=0.01). Point 2 is an 464 
example of persistent grassland (UG) where overall trend shows a very small, insignificant increase. 465 
Structural changes occurred at all three points in 2007.  466 

Estimated inter-annual variability (IAV) (i.e., annual anomalies) and seasonality (i.e., mean 467 
seasonal cycle) are shown in Figure 9 for all pixels in the catchments, not only those with significant 468 
change. In Figure 9, the IAV is shown in the left panel, while the seasonal range is shown in the right 469 
panel for T35B (top; A, C) and S50E (bottom; B, D).  470 
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 471 

Figure 9. Inter-annual variability (IAV) standard deviation (sd) (A-T35B, B-S50E) and seasonal range 472 
(C-T35B, D-S50E) measured on all pixels from the 8-day MODIS product. 473 

Over the study period of fifteen years, albedo in S50E fluctuated annually with a mean of 0.0041, 474 
very similar to the mean of 0.0045 in T35B. However, the IAV for the two catchments were found to 475 
be significantly different (p<0.001; Wilcoxon rank sum test). The highest frequency of pixels varied 476 
with standard deviations (sd) between 0.003 and 0.005. Similarly, the mean seasonal cycle in the two 477 
catchments – based on 8-day MODIS albedo values – are significantly different (p<0.001; Mann-478 
Whitney U test for non-parametric data). The albedo can vary between 0.01 and 0.08. Distinct spatial 479 
patterns are noted in the maps in Figure 9. 480 

3.4 Modelling ET and NPP 481 

In Table 6, the area percentage for modelled persistent land cover classes in 2030 are compared 482 
with the size of these land cover classes in 2014. Table 6 also includes the net change, as well as the 483 
mean trend calculated from MODIS. Based on the mean MODIS PSA change and relationships with 484 
NPP and ET, three scenarios for future NEE and water use were calculated: (1) lower mean albedo 485 
indicating proliferation of woody vegetation; (2) mean albedo, the status quo persists; and (3) higher 486 
mean albedo, with conversion to agriculture and urban intensification dominating future transitions. 487 

Table 6 Modelled NEE and water use for persistent land cover classes in S50E (bold) and T35B (italics) 488 

Land cover class UG (grassland) 
FB (woody 

encroachment) 
CL (croplands) 

FP 

(forest/plantation) 
UB (urban) 

Catchment T35B S50E T35B S50E T35B S50E T35B S50E T35B S50E 

% area 2014 79.9 56.9 4 10.5 6.2 18.2 8.3 1.8 0.2 9.5 

% area 2030 79.7 52.1 3.1 9.9 6 20 9.8 0.7 0.2 14.4 

Net %change  -0.2 -4.8 -0.9 -0.6 -0.2 1.7 1.5 -1.1 0 4.9 

PSA trend † † * * † †† *** ** ** †† 

%Persistence 72.7 44.7 0.4 5.5 4.3 15 6.8 0.4 0.1 8.5 
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NEE  

(103 kg C) 

2014 2027 1633 53 213 138 408 206 71 2 129 

High 2021 1323 12 181 124 392 238 17 2 236 

Med 2690 1739 17 237 169 521 292 21 2 316 

Low 4605 2832 28 383 291 843 358 23 4 518 

ET  

(103 m3) 

2014 1437 1182 36 156 96 303 127 37 1 94 

High 1403 855 8 122 85 263 144 10 1 152 

Med 1520 1007 9 140 93 316 170 12 1 185 

Low 1714 1163 10 160 105 378 190 14 1 219 

Negative trend *** <-0.0005, ** <-0.0002, * <-0.0000; Positive trend † >0.0000, †† >0.0002, ††† >0.0005 489 

In the higher albedo scenario, the total modelled NEE in 2030 for persistent classes in T35B could 490 
reduce by one per cent when compared with 2014. Should a low albedo scenario ensue, an increase 491 
of more than 80% could be obtained with a catchment mean of 3.2 x 106 kg C based on the mean time 492 
series NPP. Similarly, water use could decrease by almost three per cent or increase by up to 19% for 493 
persistent classes. In T35B, the total change (gain and loss) in the landscape over all land cover classes 494 
was 15.5% for modelled period 2014 to 2030 [20], compared with 18.2% for the period between 2000 495 
and 2014 [4]. Trajectory labels indicating gradual and abrupt changes are responsible for the 496 
difference between persistence and the total modelled NEE and water use in the catchment. 497 
Trajectories abandonment, reclamation and degradation increase grasslands, woody encroachment 498 
boosts shrublands, increased cultivation, afforestation and urban expansion respectively result in 499 
higher croplands, forest/plantation and urban. Afforestation was the strongest modelled trajectory in 500 
T35B showing a net gain of 1.5% and a strong negative albedo trend. These changes could produce 501 
an additional 0.5-1.1 x 106 kg C and 0.3-0.4 Mm3 ET.  502 

For S50E, the total change over all land cover classes was 23% for the same modelled period [20]. 503 
By comparison, the period between 2000 and 2014 exhibited 21% change [4], assuming a similar map 504 
accuracy for the modelled map. The modelled NEE for persistent classes varies between 2.1 and 4.6 505 
x 106 kg C, with modelled water use varying between 1.4 and 1.9 Mm3. In 2014, these values were 2.5 506 
x 106 kg C and 1.8 Mm3 respectively (Table 6). Changes to the landscape could account for NEE of 0.7-507 
1.6 x 106 kg C and water use of 0.5-0.7 Mm3. The expected scenario for S50E is increased PSA due to 508 
intensification of agriculture, lower NEE and water use depending on which land cover class is 509 
replaced. 510 

4. Discussion 511 

4.1 Land cover change and trend analysis 512 

Land use and land cover change in the selected catchments have affected ecosystem services 513 
provided by land cover classes, particularly those provided by grasslands. Although land use 514 
patterns are characterised by relatively high persistence (Figure 2), it is clear that human activities are 515 
having an increasing impact on the size of the rangelands and consequently the productivity of the 516 
landscape. The availability of dense time series satellite images now enables degradation to be 517 
assessed not merely in terms land cover change vectors but with more sophistication through 518 
identifying trends or catastrophic changes across the time series. As was shown in this study, land 519 
cover change analysis using only categorical land cover maps can neither identify a decline in the 520 
productivity of grasslands nor minor intrusions of shrubs and woody vegetation into the landscape. 521 
However transitions can be identified and from analyzing time series data in these transition classes, 522 
a more nuanced understanding of long term changes can be gained. The results have shown that 523 
important transitions that have occurred from 2000 to 2014 [4] are likely to continue into the future 524 
[20] with alien invasion, afforestation, rehabilitation, and increased livestock production identified 525 
as factors that could affect water use and carbon storage either positively or negatively. Analysis of 526 
the characteristics of albedo trends, linked to catchments and land cover change trajectories, provide 527 
a deeper understanding of how these changes may influence NPP and ET, precursors to future carbon 528 
storage and water use potential in the carbon-water nexus. 529 
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Despite being actively targeted in many of the transitions in the catchment, grassland (UG) 530 
remains the dominant cover, and has the greatest effect on the catchment albedo, remaining constant 531 
over the study period (Figure 6). As LAI and fPAR measured for shrubland (Figure 6 and If in Figure 532 
7) and croplands (Figure 6) in the catchments [5] are higher than that measured for grassland, 533 
conversion would result in a potential gain in carbon storage (NEE) but a higher water demand by 534 
vegetation. When considering mean Landsat and MODIS albedo values calculated for the catchment 535 
land covers (Table 4), conversion from shrubland presenting a lower mean albedo than grassland, 536 
should cause a gradual decrease in albedo of ~0.03 (Table 4). Contrary to expectation, the grassland 537 
to cropland transition shows an increase in albedo. This increase in albedo may be related to the land 538 
tenure system, with farming interspersed with rural housing giving rise to an increase in degraded 539 
surfaces, and/or dry bare soil for parts on the year post-harvest may be increasing the mean albedo 540 
for this class, resulting in higher inter-annual variation (Figure 7). Continuous grazing by livestock 541 
also contributes to rangeland degradation and increase of albedo due to reduction in the basal cover 542 
of herbaceous plants (mainly grasses) [76]. Urban expansion and intensification increased the albedo 543 
when natural woody areas were replaced by housing. 544 

Similar spatial patterns of peak season albedo (PSA) were observed when comparing mean 545 
MODIS PSA with Landsat PSA (Figure 3Figure 3), although the values differ significantly (p<0.05). It 546 
was noted that the coarser MODIS resolution causes spatial smoothing that masks the detail captured 547 
at higher Landsat resolution, especially for small fragmented land cover classes, where coarse pixels 548 
with mixed land cover classes will be dominated by greener vegetation [77]. The spatial smoothing 549 
may then in turn result in misleading temporal patterns when analyzing the MODIS derived data. 550 
On the other hand, although Landsat has superior spatial resolution and despite the long record of 551 
the newly released Landsat data archives [24], MODIS offers a higher temporal resolution lending 552 
itself to a more dense time series and, as a result, a more detailed temporal analysis. As a consequence 553 
of lower temporal frequency, calculation of PSA using Landsat can become problematic when limited 554 
cloud-free images are available for the growing season. For example, a lower mean albedo may be 555 
calculated, from which could be concluded that more carbon can be sequestered than may happen in 556 
reality, and thus translating into higher expected water use. [3] demonstrated that the performance 557 
of trend estimation methods decreased with increasing inter-annual variability and [56] 558 
recommended reducing seasonal variation by using PSA. Seasonal effects on the time-series analysis 559 
are illustrated by high inter-annual variability (Figure 9) at, for example, the Ncora dam inflow, the 560 
perennial Nququ River in the west and the Tsomo River in the north of S50E and the confluence of 561 
Pot and Little Pot Rivers in T35B. The range of the seasonal cycle (Figure 9) was largest in areas of 562 
steep slope (>25%), usually classified as persistent grassland. Therefore the use of PSA rather than 563 
full time series albedo would reduce overall time series variation and likely increase the performance 564 
of trend estimations. 565 

The main land cover change trajectories recorded in the catchments are reflected in the measured 566 
NDVI, NPP and ET patterns. Changes in carbon storage and water use can be related to: (1) alien 567 
invasion and afforestation that decrease albedo but increase water use and carbon storage and (2) 568 
livestock production that increases water use but could result in grassland degradation with 569 
increased albedo, and rehabilitation (reclamation) that reduces water use and carbon storage. Given 570 
the reliance of NPP, ET and NDVI on water availability, as expected these MODIS calculated 571 
variables displayed a positive correlation with rainfall (as rainfall increased, each of these variables 572 
increased). Confirming this reliance on precipitation, lower NPP, ET and NDVI were measured in 573 
2003 when lowest rainfall was recorded, similarly 2006 stands out as a year with high rainfall and 574 
high NPP and ET in both catchments, though NDVI did not increase significantly (Figure 4). A weak 575 
negative trend over the study period (i.e. less rainfall over time) was however detected as less rainfall 576 
over time was recorded. S50E, the catchment under dualistic land tenure, was more affected by the 577 
low rainfall, with lower NPP, ET and NDVI (Figure 4). 578 

4.2 Catchment differences 579 
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Correlation analysis between PSA and the variables NPP, ET and NDVI at catchment scale 580 
(Table 3), showed similar trends with negative correlations between PSA and NDVI and PSA and ET. 581 
A positive correlation was determined between PSA and NPP in T35B, but no significance in S50E. 582 
However, significant positive correlations were recorded between ET and NDVI in all persistent land 583 
cover classes and transitions, i.e. greener vegetation associated with higher water use (supplementary 584 
material, Table S1). Intensification of wooded areas revealed different patterns in the two catchments: 585 
increase of woody biomass should increase NPP and ET while albedo decreases. Transition 586 
trajectories that describe conversions from multiple land cover classes, such as deforestation (removal 587 
of forest to be replaced by other land cover) or afforestation (gradual ecological change to plantations 588 
from either grassland or previously wooded areas) encapsulate opposing trajectories which may 589 
affect the correlation results especially in transition classes smaller than the MODIS footprint. The 590 
results of transition correlations may also be confounded by the difference in resolution of land cover 591 
data and biophysical parameters. This illustrates the effect of scale on spatial analysis, where the size, 592 
shape and placement of arbitrary aggregation units such as categorical land cover maps may lead to 593 
incorrect interpretation of results in heterogeneous landscapes [26,74]. 594 

In T35B, the commercial agriculture catchment, intensification of woody invaders in the upper 595 
reaches of the Pot River and Little Pot River is offset by reclamation to grassland (possibly degraded) 596 
in the lower reaches (Figure 2). The transition from shrubland to grassland is expected to increase 597 
albedo in this catchment based on mean MODIS and Landsat values extracted (Table 4Table 4). 598 
However, persistence of shrubland may be accompanied by densification of woody vegetation, 599 
which would not be noticed in the land cover change analysis as the land cover class remains 600 
constant. While afforestation (R in Figure 7) is the strongest trajectory in T35B, conversion to 601 
forest/plantation from all other classes will result in lowering of albedo. It is likely that the decrease 602 
in surface albedo could result in an increase in the absorption of energy, leading to higher 603 
temperatures [16]. Higher NPP was noted for T35B than in the dualistic catchment S50E, with 604 
declining patterns of NPP observed in both catchments (Figure 4). However, mean MODIS albedo 605 
trend decreased, with Landsat showing a positive increasing trend in PSA (Table 5). The net carbon 606 
storage for persistent classes in 2014, modelled from mean NPP values, was 3.2 x 106 kg C, giving a 607 
higher carbon value than extracted directly from the MODIS product for 2014. This leads to the 608 
conclusion that using the time series mean for modelled values may overestimate the NEE (and ET) 609 
in 2030. Although land cover change modelling predicted an increase in commercial forestry, with 610 
associated increase in NPP, grassland is still the largest land cover class, contributing less to 611 
catchment carbon sequestration. In 2030, the expected carbon storage based on 2014 figures would 612 
therefore be no higher and could even decrease. However, using mean MODIS NPP values, an 613 
increase of 30% in NEE was modelled. Water use in the catchment is expected to vary between -3% 614 
and +19% with WUE remaining constant at approximately 1.5 kg.m-3. 615 

For S50E a positive albedo change trend over the 2000-2014 study period was observed (Table 616 
5), but when considering a scenario where mean albedo prevails and the positive trend does not 617 
continues, net carbon storage for persistent classes could increase by 15% to 2.88 x106 kg C by 2030 618 
based on land cover change. However, a more likely scenario is an increase in albedo due to 619 
degradation and decrease of grasslands, intensification of agriculture and urbanization resulting in a 620 
decrease of 12% in modelled NEE, mirroring the decline in NPP over the study period (Figure 4E). In 621 
2014 1.8 Mm3 of water was used by persistent classes in S50E recorded as ET, resulting in water use 622 
efficiency (WUE) of 1.4 kg.m-3. Total catchment ET for persistent classes could decrease by 6% in 2030 623 
based on mean time-series ET values, and may reduce to as low as 1.4 Mm3, a reduction of 21%. 624 
However, should albedo decrease, ET could increase by 9% in persistent land cover classes. 625 

4.3 Implications 626 

Land cover change brought about by woody encroachment of grassland and particularly 627 
densification of existing patches [15,32] will typically alter carbon sequestration and cycling [13,78]. 628 
Although technically regarded as a degradation gradient in the landscape [4] due to the effect on 629 
biodiversity and ecosystem services, this land cover change (woody encroachment and densification) 630 
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can potentially act as a carbon sink [13] due to increase in woody biomass [79]. Invasion of grassland 631 
by IAPs can also reduce productivity due to loss of rangeland productivity for livestock production. 632 
Acacia spp. are effective in utilising available resources more efficiently and may therefore outcompete 633 
native species by altering local conditions [80–82]. However, the value and use of IAPs as an 634 
ecosystem service is reducing in the study areas due to increased rural-urban migration and the 635 
increase in number of households supplied with electricity [83].  The cost of IAPs in the study areas 636 
will soon outweigh the benefits, resulting in a net negative trade-off. [15] suggested that IAP invasion 637 
would continue to increase in the Eastern Cape, unless deliberate land management intervention 638 
takes place. This has implications for national-scale invasion management strategies such as the  639 
Working for Water programme in South Africa [84]. Though grasslands are predicted to decrease in 640 
favour of woody invasive plant species and cultivated land, this study predicted a decrease of 12% 641 
and 6% respectively in net carbon storage and water use by vegetation. This is in contrast to 642 
expectation where previous studies [5] measuring LAI and fPAR indicated that woody encroachment 643 
would represent a gain in both catchment net ecosystem carbon exchange and evapotranspiration. 644 

The novelty of this study lies in the application of dense time series analysis of 15 years of data 645 
on surface energy balance, water and carbon sequestration parameters for catchments under two 646 
different land management regimes. The study juxtaposes the results of previous land cover change 647 
and future scenario analyses in the two catchments, with the results of the seasonal trend model and 648 
combines these data to quantify carbon sequestration and water use for areas of the study area which 649 
were unaffected by change (persistent classes) against those which transitioned from one land cover 650 
to another. The release of satellite image archives and the possibility of online bulk processing 651 
through platforms such as Google Earth Engine are allowing more subtle yet refined analyses of 652 
landcover changes. Not only can the changes themselves be quantified in terms of categorical land 653 
cover maps, but persistence and transition between and within classes has become possible. 654 
Analysing remote sensing data products such as albedo, NPP and ET can lead to better 655 
understanding in the functioning of catchments generally and rangelands specifically. Declining 656 
trends, as seen in albedo, NPP and ET (Figure 4) may be caused by regional climate trends. 657 
Information from multiple sources, both quality and type, can contribute to better understanding of 658 
degradation in rangeland productivity [85], relating degradation to the impact of climate versus land 659 
management by investigating dual catchments with similar climate regimes but clearly different 660 
management practices [85]. Quantifying the changes in these biophysical parametres can assist 661 
scientists and managers in addressing the global challenges of our times. 662 

5. Conclusions 663 

It was found that the spatial and temporal characteristics of the different sensors are useful for 664 
highlighting differing aspects of change in the study area with Landsat resolution well suited for 665 
highlighting spatial change but MODIS temporal resolution being ideal for a complete long term 666 
dense time series. The presence of many small fragmented land cover classes in these catchments 667 
suggest that analysis of albedo, NPP and ET derived from satellite data with similar resolution would 668 
be ideal. Further research is recommended to explore the use of higher resolution satellite data to 669 
effectively model carbon storage and water use. The Google Earth Engine platform provides shared 670 
geoprocessing algorithms [25] and access to long-term data [24], that can be used to generate detail 671 
maps [3] to model future scenarios.  672 

Furthermore, the advent of new sensors such as the European Space Agency’s Sentinel-2 673 
satellites, with 5 day revisit time and up to 10 m spatial resolution may provide a better option 674 
(particularly with the addition of the red-edge bands which will allow determination of rangeland 675 
quality [86]) for these analyses in the future. However since Sentinel-2B was only launched in March 676 
2017, it will take time before this data can be used for long term studies. In the meantime taking an 677 
ensemble approach with Landsat and MODIS can allow the benefits of each sensor to be exploited. 678 

Based on trend analysis, the study revealed little change in catchment mean albedo at the time 679 
of peak vegetative growth. This implies little to no change in either carbon capture potential or WUE 680 
of each catchment at the peak of the growing season. However since, inter-annual variation can affect 681 
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the accurate calculation of trends [3], and the peak season albedo (PSA) was used to minimise these 682 
effects in this study.  683 

As expected, a strong positive correlation between ET and NDVI was found as greener 684 
vegetation is associated with higher water consumption; and a decrease in albedo is correlated with 685 
an increase in ET and NDVI. However, some transitions include opposing albedo change vectors, 686 
confounding correlation analysis between these variables. It is therefore recommended that separate 687 
transition classes be analysed for opposing vectors, depending on the objectives of the study.  688 

Although the comparison of ET in grassland performed by [2] found lower values prior to 2003, 689 
this may be ascribed to the different method used to extract values from land cover maps with 690 
potential uncertainty, especially for grassland, a large dormant class. This confirms the importance 691 
of accurate land cover maps for further modelling [26] as reliability of downstream analyses can be 692 
impacted with substantial risk of error magnification [79]. 693 

It is probable that a decrease in precipitation leads to desiccation of vegetation and soil, thus 694 
resulting in a higher albedo. The cause and effect of a positive correlation between PSA and rainfall 695 
(increased PSA with increased rainfall as seen in 2006-2007) is yet to be established and it may be that 696 
at local scale increased albedo is driving a decrease in rainfall as suggested by [54,87].  697 

Finally, predicted land cover for the year 2030 was used to postulate consequences of the change 698 
on catchment water and carbon fluxes. The expected decrease in net carbon storage and water use by 699 
vegetation confirms recommendations for land and water resources management interventions in 700 
catchments under dualistic farming systems [20] such as S50E. 701 

In order to successfully model scenarios for future land cover change that may affect ecosystem 702 
services in different ways, accurate land cover classes and change trajectories are required. Even 703 
though map errors in land cover maps affect understanding of socioeconomic and environmental 704 
patterns and processes in landscapes, such maps remain an essential resource in describing and 705 
quantifying such processes [26]. Higher quality input datasets would provide higher confidence 706 
levels in the overall observed change. A large dominant class, such as grasslands may be easier to 707 
classify and exhibit smaller errors than highly fragmented classes such as woody outcrops (FB) or 708 
wetlands (WL) due to spatial and temporal autocorrelation [29,88]. This research has demonstrated 709 
that albedo can be an effective parameter for the detection of environmental change. Albedo could 710 
be considered a proxy for land cover and land cover change in studies investigating ecosystems 711 
services, capturing changes in productivity.  712 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Correlation 713 
coefficients per land cover class and transition, Table S2: Total and significant change in PSA per catchment 714 
T35B, reported in percentage area and PSA change (highlighted in light grey), Table S3: Total and significant 715 
change in PSA per catchment S50E, reported in percentage area and PSA change (highlighted in light grey).  716 
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Table S1. Correlation coefficients per land cover class and transition. Correlations for S50E are presented above the diagonal in italics, and correlations for T35B are presented 1 
below the diagonal. *p < 0.05. 2 

 UG 

T35B: n=1516 S50E: n=1249 

FB 

T35B: n=45 S50E: n=136 

CL 

T35B: n=92 S50E: n=323 

FP 

T35B: n=123 S50E: n=42 

UB 

T35B: n=3 S50E: n=103 

 

1.PSA 

2.NPP 

3.NDVI 

4.ET 
 

1 2 3 4 

- -0.24 -0.08 0.09 

-0.01 - 0.00 -0.04 

-0.20 0.33 - 0.86* 

0.11 0.19 0.84* - 
 

1 2 3 4 

- -0.10 -0.02 0.14 

0.02 - -0.33 -0.07 

-0.09 0.41 - 0.90* 

0.13 0.27 0.83* - 
 

1 2 3 4 

- -0.37 -0.30 -0.20 

-0.12 - -0.09 -0.13 

-0.58* 0.26 - 0.88* 

-0.34 0.15 0.87* - 
 

1 2 3 4 

- -0.18 -0.06 0.03 

0.30 - 0.70* 0.55* 

-0.62* 0.18 - 0.92* 

-0.39 0.13 0.90* - 
 

1 2 3 4 

- -0.30 -0.52* -0.35 

-0.42 - -0.06 -0.10 

-0.45 0.27 - 0.86* 

-0.17 0.14 0.79* - 
 

 If 

T35B: n=54 S50E: n=101 

A 

T35B: n=28 S50E: n=39 

De 

T35B: n=3 S50E: n=3 

Re 

T35B: n=108 S50E: n=70 

Dn 

T35B: n=60 S50E: n=15 

 

1.PSA 

2.NPP 

3.NDVI 

4.ET 
 

1 2 3 4 

- -0.40 -0.07 0.11 

0.04 - 0.17 0.10 

-0.03 0.41 - 0.88* 

0.29 0.31 0.84* - 
 

1 2 3 4 

- -0.23 -0.19 -0.15 

0.14 - -0.18 -0.13 

-0.37 0.24 - 0.91* 

-0.25 0.17 0.88* - 
 

1 2 3 4 

- -0.13 -0.45 -0.35 

-0.28 - 0.14 -0.05 

-0.36 0.32 - 0.81* 

-0.21 0.13 0.84* - 
 

1 2 3 4 

- -0.32 -0.17 -0.01 

0.14 - -0.08 -0.07 

-0.22 0.34 - 0.90* 

-0.05 0.21 0.83* - 
 

1 2 3 4 

- -0.01 -0.37 -0.34 

0.66* - -0.07 -0.19 

-0.38 -0.32 - 0.82* 

-0.20 -0.19 0.89* - 
 

 Ia 

T35B: n=41 S50E: n=117 

Iu 

T35B: n=2 S50E: n=120 

R 

T35B: n=60 S50E: n=6 

D 

T35B: n=23 S50E: n=35 

 

 

1.PSA 

2.NPP 

3.NDVI 

4.ET 
 

1 2 3 4 

- -0.32 -0.45 -0.29 

-0.14 - -0.08 -0.15 

-0.54* 0.22 - 0.87* 

-0.29 0.11 0.87* - 
 

1 2 3 4 

- -0.28 -0.40 -0.22 

-0.38 - -0.07 -0.11 

-0.63* 0.19 - 0.87* 

-0.29 0.05 0.81* - 
 

1 2 3 4 

- -0.56* 0.11 -0.01 

0.63* - -0.20 -0.04 

-0.61* -0.38 - 0.90* 

-0.29 -0.29 0.86* - 
 

1 2 3 4 

- -0.75* -0.81* -0.67* 

0.70* - 0.86* 0.75* 

-0.63* -0.55* - 0.93* 

-0.31 -0.42 0.87* - 
 

 

      

UG-grasslands, FB-shrublands, CL-croplands, FP-forest/plantation, UB-urban,  3 
If-woody encroachment, A-abandonment, De-degradation Re- reclamation, Dn-natural dynamics,  4 
Ia-increased cultivation, Iu-increased urban, R-afforestation, D-deforestation   5 
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Table S2. Total and significant change in PSA per catchment T35B, reported in percentage and PSA change (highlighted in light grey).  6 

Study 

area 

 Total area Significant change Negative sig. change Positive sig. change 

 % PSA change % PSA change % PSA change % PSA change 

 LC MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS 

T35B   -0.001 0.003 11.1 11.3 -0.013 0.004 7.9 4.3 -0.026 -0.039 3.2 7.0 0.019 0.031 

T35B UG 70.4 69.3 0.000 0.005 4.0 5.3 0.000 0.017 2.1 0.7 -0.017 -0.023 1.9 4.6 0.018 0.023 

FB 2.1 1.7 -0.001 0.001  0.1  0.012  0.0  -0.029  0.1  0.030 

CL 4.3 4.5 0.003 0.009 0.5 0.9 -0.001 0.029 0.2 0.2 -0.029 -0.038 0.3 0.7 0.023 0.045 

FP 5.7 5.4 -0.015 -0.012 2.5 2.2 -0.031 -0.038 2.5 2.1 -0.031 -0.039  0.1  0.020 

UB 0.1 0.1 -0.005 0.011 0.0 0.0 -0.024 0.030 0.0 0.0 -0.024 -0.020  0.0  0.039 

P 82.7 81.0 -0.001 0.004 7.4 8.4 -0.011 0.007 5.0 2.8 -0.025 -0.039 2.4 5.6 0.018 0.030 

If  2.5 2.3 -0.002 -0.003 0.2 0.1 -0.006 -0.003 0.1 0.1 -0.022 -0.030 0.1 0.1 0.018 0.029 

A  1.3 1.3 0.002 0.009 0.1 0.2 -0.008 0.022 0.0 0.0 -0.028 -0.033 0.0 0.2 0.012 0.031 

De 0.1 0.1 -0.003 0.005  0.0  0.022  0.0  -0.022  0.0  0.031 

Re  5.0 6.0 0.000 0.004 0.3 0.4 -0.009 0.023 0.2 0.1 -0.022 -0.025 0.1 0.4 0.023 0.031 

Ia  1.9 1.7 0.005 0.012 0.0 0.4 0.023 0.033  0.1  -0.031 0.3 0.3 0.023 0.045 

Iu 0.1 0.1 -0.004 0.012  0.0  0.029  0.0  -0.030  0.0  0.038 

R  2.8 2.8 -0.014 -0.013 1.0 1.0 -0.029 -0.034 1.0 0.9 -0.029 -0.038  0.1  0.020 

D  1.1 0.9 -0.019 -0.008 0.6 0.2 -0.031 -0.021 0.6 0.2 -0.031 -0.032  0.0  0.022 

Dn  2.8 2.4 -0.005 0.003 0.8 0.3 -0.021 0.008 0.7 0.1 -0.027 -0.034 0.1 0.3 0.024 0.025 

 T 17.6 17.8 -0.004 0.001 3.4 2.8 -0.017 -0.002 2.7 1.4 -0.027 -0.040 0.7 1.4 0.023 0.036 

UG-grasslands, FB-shrublands, CL-croplands, FP-forest/plantation, UB-urban,  7 
If-woody encroachment, A-abandonment, De-degradation Re- reclamation 8 
Ia-increased cultivation, Iu-increased urban, R-afforestation, D-deforestation 9 
Dn-natural dynamics 10 
   11 

T
35

B
 P

er
si

st
en

t 
T

35
B

 T
ra

n
si

ti
o

n
 



 3 of 4 

 

 

Table S3. Total and significant change in PSA per catchment S50E, reported in percentage and PSA change (highlighted in light grey). 12 

Study 

area  

  Total catchment Significant change Negative sig. change Positive sig. change 

 % PSA change % PSA change % PSA change % PSA change 

 LC MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS MOD LS 

S50E   0.004 0.004 8.5 16.1 0.016 0.017 1.9 4.1 -0.018 -0.026 6.6 12.0 0.026 0.032 

 UG 50.8 50.2 0.004 0.004 3.1 6.3 0.017 0.016 0.6 1.0 -0.012 -0.023 2.5 5.3 0.024 0.023 

FB 6.4 6.6 -0.002 -0.006 0.7 1.5 -0.023 -0.018 0.5 1.3 -0.032 -0.026 0.1 0.2 0.013 0.027 

CL 15.3 15.6 0.005 0.008 1.3 2.4 0.018 0.028 0.2 0.3 -0.012 -0.028 1.1 2.2 0.024 0.034 

FP 2.0 1.8 -0.004 -0.006 0.3 0.6 -0.013 -0.019 0.3 0.5 -0.017 -0.034 0.0 0.1 0.018 0.044 

UB 4.9 4.7 0.007 0.008 0.3 0.7 0.015 0.023 0.0 0.1 -0.016 -0.022 0.2 0.6 0.020 0.027 

P 87.7 85.5 0.004 0.004 5.4 10.9 0.013 0.013 1.3 2.9 -0.023 -0.027 4.1 8.0 0.025 0.027 

If  4.8 5.3 0.005 0.006 0.9 1.3 0.012 0.016 0.4 0.6 -0.023 -0.028 0.5 0.8 0.038 0.050 

A  1.8 1.8 0.005 0.006 0.0 0.3 0.002 0.021  0.1  -0.026 0.0 0.2 0.002 0.031 

De 0.1 0.1 -0.003 0.000  0.0  0.009  0.0  -0.031  0.0  0.037 

Re  3.3 3.5 0.003 0.003 0.2 0.5 0.012 0.008 0.0 0.2 -0.003 -0.024 0.1 0.3 0.017 0.034 

Ia  5.5 4.8 0.005 0.010 0.2 0.9 0.009 0.029 0.1 0.1 -0.017 -0.029 0.1 0.8 0.027 0.033 

Iu 5.7 5.9 0.006 0.005 0.4 0.8 0.021 0.015 0.0 0.2 -0.008 -0.027 0.4 0.7 0.024 0.026 

R  0.3 0.2 0.004 0.001  0.0  0.002  0.0  -0.026  0.0  0.036 

D  1.7 1.5 0.032 0.056 0.8 0.9 0.038 0.068  0.0  -0.026 0.8 0.9 0.038 0.070 

Dn  0.7 0.6 -0.001 -0.001  0.1  0.002  0.0  -0.035 0.0 0.0  0.027 

 T 24.0 23.8 0.007 0.009 3.0 5.0 0.023 0.029 0.5 1.1 -0.020 -0.027 2.5 3.9 0.032 0.045 
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